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1. Introduction

It might be a good time to reconsider various concepts concerning the Higgs boson mass mh and the
physics beyond the standard model (SM), on the basis of recent experimental results at the Large
Hadron Collider (LHC).

The discovery of the Higgs boson at LHC with the observed value mh � 126 GeV [1,2] is quite
suggestive. It rekindles the question whether mh is a natural parameter or not [3–5]. Furthermore,
evidence from new physics such as supersymmetry (SUSY), compositeness, and extra dimensions
have not yet been discovered, and this fact could be the turning point of particle physics, because the
gauge hierarchy problem [6,7] would be revisited.

Therefore, it is interesting to reexamine the validity of concepts relating mh and the physics beyond
the SM, from various aspects. In this paper, we reconsider the naturalness of mh from the viewpoint
of effective field theories, including the SM. Our study is motivated by the alternative scenario that
the SM (modified with massive neutrinos) holds up to a high-energy scale such as the Planck scale
MPl [8,9]. We expect that the unnaturalness for scalar masses might be an artifact in the effective
theory, and it could be improved if features of an ultimate theory are brought in and the ingredients
of the effective theory are enriched. We reanalyze radiative corrections on scalar masses using the
φ4 theory, and propose a calculation scheme utilizing a hidden duality.

The outline of this paper is as follows. In the next section, we review naturalness and its relevant
symmetries. We give a suggestion for the subtraction of quadratic divergences by presenting a cal-
culation scheme, considering a duality relating integration variables, in Sect. 3. In the last section,
we give conclusions and discussions.

2. Naturalness and conformal symmetry

Let us first recall the concept of naturalness. According to ’t Hooft [4], naturalness is based on the
dogma that “at any energy scaleμ, a physical parameter or set of physical parameters ai (μ) is allowed
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to be very small only if the replacement ai (μ) = 0 would increase the symmetry of the system.”
We refer to this type of parameter as a natural parameter.

We discuss the naturalness of fermion masses and scalar masses from the viewpoint of low-energy
effective theories such as quantum electrodynamics (QED), the φ4 theory, and the SM.

2.1. Naturalness of fermion masses

The electron mass me is listed as a natural parameter in QED. When we set me = 0, the classical
global chiral symmetry appears. Here, the chiral symmetry is the invariance of the action integral
under the different phase changes for Weyl fermions ψL and ψR with the different chiralities, i.e.,
ψL → eiθLψL and ψR → eiθRψR, (θL �= θR). Note that the chiral symmetry is broken down, even in
the massless case me = 0, such that

〈∂μ(ψ†
Lσ

μψL)〉 = e2

32π2 εμναβFμνFαβ, 〈∂μ(ψ†
Rσ

μψR)〉 = − e2

32π2 εμναβFμνFαβ, (1)

in the presence of the axial U (1) anomaly. In the massive case, the U (1) vector current defined
as jμV = ψγμψ = ψ

†
Lσ

μψL + ψ
†
Rσ

μψR is conserved, and the U (1) axial vector current defined as

jμA = ψγ5γ
μψ = ψ

†
Lσ

μψL − ψ
†
Rσ

μψR is anomalous such that

〈∂μ jμA 〉 = 2i(me + δme)(ψ
†
LψR − ψ

†
RψL)+ e2

16π2 εμναβFμνFαβ, (2)

where δme represents the radiative corrections on the tree-level mass me.
δme at the one-loop level is given by

δme = 3α

4π
me

(
ln
�2

m2
e

+ 1

2

)
, (3)

where α ≡ e2/(4π) and � is a cutoff scale. In the limit of me → 0, δme also vanishes. This fea-
ture holds for higher-order corrections, and the chiral symmetry is not broken down perturbatively
(although it is broken down anomalously without threatening the consistency of the theory). Hence,
chiral symmetry is regarded as a powerful concept for controlling quantum corrections.

A classical conformal symmetry also appears in the limit of me → 0, and is broken down in the
presence of anomaly. For instance, the scale invariance is broken down as

〈Tμμ〉 = (me + δme)(ψ
†
LψR + ψ

†
RψL)+ βα

α
FμνFμν, (4)

where βα is the β function for α. In QED, the conformal symmetry seems to play the same role as
chiral symmetry does.

In the SM, chiral symmetry has a superior quality to conformal symmetry because chiral symmetry
such as SU (2)L × U (1)Y becomes local and is not broken down either perturbatively or anomalously,
whereas the conformal symmetry is broken down not only with the negative mass squared of the
Higgs doublet explicitly, but also in the presence of anomalous terms. The chiral gauge symmetry
is broken down spontaneously with the vacuum expectation value of the Higgs boson v = 246 GeV,
and fermions ψ f acquire masses m f = y f v/

√
2 via the Higgs mechanism, where y f are Yukawa

coupling constants. On the other hand, the global chiral symmetry enhances in the limit of y f → 0.
In this way, the smallness of fermion masses, compared with a high-energy scale MU such as the
gravitational scale M ≡ MPl/

√
8π = 2.4 × 1018 GeV, stems from the smallness of v compared with

MU. Furthermore, the smallness of fermion masses, except for the top quark mass, compared with
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the weak gauge boson mass MW = gv/2, originates from the smallness of y f compared with the
SU (2)L gauge coupling constant g. Hence, it is considered that chiral symmetry is responsible for
the smallness of SM fermion masses.

2.2. Naturalness of scalar masses

Next, we study the relation between the relevant symmetry of scalar mass mφ and radiative correc-
tions on mφ , in order to gain information on the naturalness of mh. Unless a theory has dimensional
parameters other than mφ , the classical conformal symmetry appears in the limit of mφ → 0. In the
same way as for QED, the scale invariance is broken down as

〈Tμμ〉 = (m2
φ + δm2

φ)φ
2 +

∑
k

βkOk, (5)

where δm2
φ represents the radiative corrections on m2

φ , βk are β functions for coupling constants ak ,
and Ok are operators with mass dimension 4.

In the φ4 theory, δm2
φ at the one-loop level is most commonly written by

δm2
φ = λφ

32π2

(
�2 − m2

φ ln
�2

m2
φ

)
+ · · · , (6)

where λφ is the quartic self-coupling constant of φ, and the ellipsis stands for � independent terms.
For example, the unregularized one is given by

δm2
φ = λφ

2

∫ ∞

−∞
d4 p

(2π)4
1

p2 + m2
φ

= λφ

32π2

(∫ ∞

0
dp2 +

∫ ∞

0

−m2
φ

p2 + m2
φ

dp2

)
, (7)

where we rotate to Euclidean space and carry out the integration for the angles of momentum space.
The δm2

φ of (6) is obtained by replacing ∞ by �2 − m2
φ in the final expression in (7).

As seen from (6), it is widely thought that mφ is not a natural parameter, because δm2
φ does not

vanish in the limit of m2
φ → 0 due to the appearance of the quadratic term of �.

However, if the quadratic term is subtracted or absent for some reason, mφ can be a natural param-
eter. Bardeen reexamined naturalness in the SM and pointed out that the classical scale invariance
implies the naturalness of the Higgs boson mass mh [10]. The reasoning is illustrated as follows. In
the SM, scale invariance is broken as

〈Tμμ〉 = (m2
h + δm2

h)|H |2 +
∑

k

βkOk, (8)

where δm2
h represents the radiative corrections on m2

h. The anomalous terms are quantum corrections
induced from loop contributions due to particles with masses smaller than the reference energy scale.
It is quite unlikely that the radiative corrections on masses affect them. Hence, the anomalous diver-
gence of the scale current should remain in the limit of mh → 0, and δm2

h should be proportional not
to�2 but to m2

h. In other words, the classical symmetries should be restored in the limits of mh → 0
and βk → 0.

In effective field theories, ambiguities can exist in the regularization procedure, and such ambigu-
ities, in most cases, are resolved by considering symmetries realized manifestly at the low-energy
scale [11]. If we had a theory with a high calculability and predictability, regularization-dependent
quantities would be absent. In this regard, quantities depending on the regularization method should
be subtracted or eliminated, unless the subtraction induces any physical effects.
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The dimensional regularization is known as a regularization procedure that does not induce
quadratic divergences for scalar masses. Using it, δm2

φ at the one-loop level is given by

δm2
φ = λφ

32π2 m2
φ

(
−2

ε
+ γ − 1

)
+ · · · , (9)

where ε = 4 − D (D is the dimension of space time) and γ = 0.577 · · · is the Euler constant. The
δm2

φ becomes infinite in the limit of ε → 0, i.e., D → 4. The 2/ε corresponds to ln(�2/m2
φ), and

then the quadratic divergence is absent.
Fujikawa gave a scheme on the subtractive renormalization of the quadratic divergences of scalar

mass [12]. In the case where the subtraction of quadratic divergences induces no physical effects
on the low-energy theory, such a scheme is useful for treating physical quantities, including scalar
masses.

Aoki and Iso studied the quadratic divergences of scalar mass from the viewpoint of the Wilsonian
renormalization group, and found that they can be absorbed into a position of the critical surface,
which means their subtraction [13].

Extensions of the SM have been proposed by adopting the classical conformal invariance as a
guiding principle [14–18].1

2.3. Naturalness of Higgs boson mass

Before we study the subtraction of quadratic divergences from the viewpoint of hidden symmetry,
we discuss the naturalness of the Higgs boson mass. In the SM, the radiative corrections on the Higgs
mass squared m2

h at the one-loop level are given by

δm2
h = ch�

2 + c′
hm2

h ln
�2

m2
h

+ · · · , (10)

where ch and c′
h are functions of the SM parameters such that

ch = 1

16π2

(
6λ+ 9

4
g2 + 3

4
g′2 − 6y2

t

)
, c′

h = 1

16π2

(
6λ− 9

4
g2 − 3

4
g′2 + 3y2

t

)
. (11)

Here, λ is the quartic self-coupling constant of the Higgs boson, g′ is the U (1)Y gauge-coupling
constant, yt is the top Yukawa coupling constant, and contributions from other fermions are omitted.

If we face the quadratic divergences squarely, fine tuning among parameters is necessary to explain
the observed value mh � 126 GeV, unless � ≤ O(1)TeV or ch = 0 is realized. Here, the condition
� ≤ O(1)TeV means that a new physics beyond the SM must exist around the terascale, unless
nature requires fine tuning. The condition ch = 0 is equivalent to the Veltman condition m2

h = 4m2
t −

2M2
W − M2

Z [5],2 which leads to a value mh � 320 GeV at the weak scale.3

If all quadratic divergences are subtracted, δm2
h also vanishes in the limit of mh → 0. Then, the

classical conformal symmetry seems to control quantum corrections as the chiral symmetry does.

1 A model where both the Planck scale and the weak scale emerge as quantum effects has been proposed [15].
As an extension including dark matter candidates, a model with a strongly interacting hidden sector, to trigger
the breakdown of electroweak symmetry, has been constructed [16]. Recently, various models to generate the
weak scale and provide dark matter candidates have been proposed [19–22].

2 The same type of condition was derived through a tadpole diagram concerning the Higgs boson [23].
3 Recently, it was pointed out that ch = 0 holds around MPl and there is a possibility that the bare Higgs mass

vanishes there [24].
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If this feature holds for higher-order corrections, the classical conformal symmetry is not broken
down perturbatively (although it is broken down anomalously without threatening the consistency
of the theory). In this way, the conformal symmetry might be responsible for the smallness of the
Higgs boson mass, compared with a high-energy scale MU. Or it might be said that the regularization
ambiguities can be resolved by the conformal symmetry.

Hence, the problem of whether the weak scale relating the Higgs boson mass is stabilized against

radiative corrections in the framework of the SM (a narrow definition of the naturalness problem)4 can
be solved by the subtraction of quadratic divergences. Then, the naturalness can become a powerful
guiding principle for constructing an effective theory.5 In other words, symmetries such as the chiral
symmetry, the gauge symmetry, and the conformal symmetry become powerful tools for realistic
model-building, from the viewpoint of the effective field theory. There is a possibility that all fields,
in our low-energy world, are massless at MU.

At this stage, the following questions (other parts of the naturalness problem) arise.
One is, what induces the negative mass squared of the Higgs boson around the weak scale, starting

the massless state at MU, i.e., what is the origin of the weak scale? A possible solution has been pro-
posed based on the extension of the SM with the U (1)B−L gauge symmetry and new particles around
the terascale [14,17]. In particular, the TeV scale B − L model proposed in [18] has several excellent
features such as classical conformality, the flatness of the Higgs potential at MU, and predictability
in relating mh � 126 GeV.

The other is the problem of whether the weak scale is stabilized against large radiative corrections

due to heavy particles in the framework of field theory including a high-energy physics, e.g., a grand

unified theory. This is (the technical side of) the gauge hierarchy problem [6,7]. For instance, in the
presence of heavy particles with masses MI and some SM gauge quantum numbers, m2

h generally
receives large radiative corrections of O(M2

I ) in addition to the quadratic term of � such that

δm2
h = c̃h�

2 + c′
hm2

h ln
�2

m2
h

+
∑

I

c′′
hI M2

I ln
�2

M2
I

+ · · · , (12)

and the stability of the weak scale is threatened. Here, c̃h and c′′
hI are also functions of parameters.

Then, the fine tuning is indispensable for M2
I � m2

h in the appearance of the quadratic term of MI

( part of the logarithmic divergences), even if the quadratic divergences of O(�2) are removed and
unless some miraculous cancellation mechanism works among corrections due to heavy particles.
We will come back to this problem in Sect. 3.3.

3. Naturalness and duality

Let us explore the possibility that the quadratic divergences are removed, in the expectation that the

quadratic divergences might be artifacts of the regularization procedure and the calculation scheme

can be selected by the physics.

4 We use the terminology “the naturalness problem” in a wider sense; that is, it should be regarded as a
collective term for a fine-tuning problem concerning mass parameters of scalar fields such as the Higgs mass,
which contains the gauge hierarchy problem.

5 Wells presented an interesting observation toward the SM from QED using naturalness as the guiding
principle [25].
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Concretely, we pursue other reasoning to suggest the subtraction of quadratic divergences, based
on the conjecture that an ultimate theory does not induce any large radiative corrections for low-

energy fields owing to a symmetry, and such a symmetry is hidden in the SM.6 We present a (tricky)
calculation scheme that rules out quadratic divergences thanks to a hidden duality.

In the following, it is shown that the logarithmic corrections on a scalar mass can be picked out by
specifying the duality in the effective field theory.

3.1. Basic idea

Our method is based on the following assumptions relating features of an underlying theory:7

(a) There is an ultimate theory, which has a fundamental energy scale. We denote the scale as �,
for simplicity.

(b) The ultimate theory has a duality between the physics at a higher-energy scale (E � �) and
that at a lower-energy scale (E � �). It consists of the following two features:
(b1) The physics is invariant under a duality transformation, e.g., E → E ′ = �2/E .
(b2) The physics is only described by one of the two energy regions, relating with each other

by the transformation.
(c) A remnant of the duality is hidden in quantities of the low-energy physics involved with �,

e.g., radiative corrections on parameters.

To illustrate our idea, let us consider quantum corrections on a parameter a at the one-loop level
given by

δa =
∫ ∞

0
f (p2)dp2, (13)

where p2 is a Euclidean momentum squared for a massless virtual particle running in the loop, and
f (p2) is a function of p2.

In case that δa diverges, the infinities come from p2 = ∞ and/or p2 = 0, and hence it is ordinarily
regularized as

δa =
∫ �2

μ2
0

f (p2)dp2, (14)

where μ0 is a fictitious mass parameter.
Here, let us show that expression (14) is necessarily obtained and the form of δa is restricted, based

on the above assumptions, by specifying the duality transformation.
First, we rewrite (13) as

δa =
∫ �2

μ2
0

f (p2)dp2 +
∫ �4/μ2

0

�2
f (p2)dp2. (15)

Note that (15) is reduced to (13) in the limit of μ2
0 → 0. Using assumption (b), (14) is obtained if

the domain of integration [μ2
0,�

2] is transformed into [�2,�4/μ2
0] under a remnant of duality and

6 This conjecture corresponds to one of the guiding principles in solving the gauge hierarchy problem and
the cosmological constant problem, without SUSY and extra dimensions, proposed by Dienes [26].

7 Our idea is inspired by the world-sheet modular invariance in string theory. We will comment on world-
sheet modular invariance in Sect. 3.3.
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the following relation holds, ∫ �2

μ2
0

f (p2)dp2 =
∫ �4/μ2

0

�2
f (p2)dp2. (16)

Next, we take p2 → p′2 = �4/p2 as the remnant of duality transformation. Hereafter, we refer
to the remnant of duality transformation as the duality transformation or the duality, in most cases.
Then, using assumptions (b1) and (c), the the following relation is derived:∫ �2

μ2
0

f (p2)dp2 =
∫ �2

�4/μ2
0

f (p′2)dp′2 =
∫ �4/μ2

0

�2
f (�4/p2)

�4

p4 dp2. (17)

From (16) and (17), the form of f (p2) is restricted as f (p2) = c(p2)/p2, where c(p2) is a function
invariant under the change p2 → �4/p2, e.g., c(p2) = p2 +�4/p2. Unless we consider effects of
heavy particles with masses of O(�) such as threshold corrections, f (p2) does not contain � and
then δa is determined as

δa = c−1 ln
�2

μ2
0

, (18)

where c−1 is a p2-independent quantity.
Our procedure can be regarded not as a mere regularization but as a recipe to obtain finite physical

values, because � is (large but) finite and infinities are taken away by the symmetry relating inte-
gration variables, like string theory. It is also regarded as the operation to pick out parts that satisfy
assumptions. In the case that f (p2) does not contain �, it is simply denoted by

δa = Du

[∫ ∞

0
f (p2)dp2

]
= Du

[∫ ∞

0

∑
n

cn

(
p2
)n

dp2

]
= c−1 ln

�2

μ2
0

, (19)

where Du[∗] represents the operation, and f (p2) is expanded in a series.

3.2. Radiative corrections on scalar mass

We apply our method to radiative corrections on m2
φ .

In case that the bare mass is zero, the unregularized one is given by

δm2
φ = λφ

2

∫ ∞

−∞
d4 p

(2π)4
1

p2 = λφ

32π2

∫ ∞

0
dp2. (20)

If we demand that the duality p2 → �4/p2 is hidden in δm2
φ and the physics can be described by

the region below �, δm2
φ turns out to be zero, such that

δm2
φ = Du

[
λφ

32π2

∫ ∞

0
dp2

]
= 0. (21)

Next, we study the case with a non-zero bare mass, based on the momentum cutoff method and the
proper time method.

(i) The momentum cutoff method. First, we separate the original into quadratic and logarithmic
divergent parts such that

δm2
φ = λφ

32π2

∫ �2
φ

0
dp2 −

λφm2
φ

32π2

∫ �2
φ

0

dp2

p2 + m2
φ

, (22)

where�φ is a provisional cutoff parameter (�2
φ � m2

φ) which goes to infinity in the limit of m2
φ → 0.

In the case with�2
φ = (�4/m2

φ)− m2
φ , we find that the second term on the right-hand side in (22) is
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invariant under the change p2 + m2
φ → �4/(p2 + m2

φ), but the first term is not. Furthermore, in this
case, the integration from p2 = 0 to p2 = �2

φ is divided into that from p2 = 0 to p2 = �2 − m2
φ(

�2
φ) and that from p2 = �2 − m2

φ to p2 = �2
φ , and these integrals for the second term take the

same value. Note that the duality transformation reduces to that in the massless case, in the limit of
m2
φ → 0.
Here, we impose the duality relating p2 + m2

φ → �4/(p2 + m2
φ) on quantities relevant to �.

If the physics from p2 = 0 to p2 = �2 − m2
φ is same as that from p2 = �2 − m2

φ to p2 = �2
φ ,

and the physics is only described by one of the two regions,� is naturally introduced and the desired
expression is obtained as

δm2
φ = −λφm2

φ

32π2

∫ �2−m2
φ

0

dp2

p2 + m2
φ

= − λφ

32π2 m2
φ ln

�2

m2
φ

. (23)

Note that δm2
φ vanishes in the limit of m2

φ → 0.

(ii) The proper time method. Using the proper time method, δm2
φ is given as

δm2
φ = λφ

2

∫ ∞

−∞
d4 p

(2π)4

∫ ∞

0
e−(p2+m2

φ)tdt = λφ

32π2

∫ ∞

0

e−m2
φ t

t2 dt, (24)

where t is a parameter called a proper time.
First, we separate δm2

φ into quadratic and logarithmic divergent parts by expanding the exponential
factor such that

δm2
φ = λφ

32π2

∫ 1/m2
φ

1/�̃2
φ

dt

t2 − λφm2
φ

32π2

∫ 1/m2
φ

1/�̃2
φ

dt

t
+ λφm4

φ

64π2

∫ 1/m2
φ

1/�̃2
φ

dt + · · · , (25)

where �̃φ is a provisional cutoff parameter (�̃2
φ � m2

φ)which goes to infinity in the limit of m2
φ → 0.

In the case with �̃2
φ = �4/m2

φ , we find that the second term on the right-hand side in (25) is invariant
under the change t → 1/(�4t), but the others are not. Furthermore, in this case, the integration from
t = 1/�̃2

φ to t = 1/m2
φ is divided into that from t = 1/�̃2

φ to t = 1/�2 and that from t = 1/�2 to
t = 1/m2

φ , and these integrals for the second term take a same value.
Here, we impose the duality relating t → 1/(�4t) on quantities relevant to �. If the physics from

t = 1/�̃2
φ to t = 1/�2 is same as that from t = 1/�2 to t = 1/m2

φ and the physics is only described
by one of the two regions, � is naturally introduced and the desired expression is obtained as

δm2
φ = Du

[
λφ

32π2

∫ ∞

0

e−m2
φ t

t2 dt

]
= −λφm2

φ

32π2

∫ 1/m2
φ

1/�2

dt

t
= − λφ

32π2 m2
φ ln

�2

m2
φ

. (26)

In a similar way to the momentum cutoff method, δm2
φ vanishes in the massless limit.

The region around p2 = �2
φ or t = 1/�̃2

φ corresponds to the ultraviolet (UV) region, and that
around p2 = 0 or t = 1/m2

φ corresponds to the infrared (IR). Hence, the symmetry relating p2 +
m2
φ → �4/(p2 + m2

φ) or t → 1/(�4t)might suggest that� has a physical meaning as a fundamen-
tal scale and that, in an ultimate theory, there is an equivalence between the physics in the UV region
and that in the IR one.

3.3. Different choice

It is important to examine the applicable scope of our scheme. Here, we point out that the result
depends on the choice of duality transformation, by giving an example.
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Based on the proper time method, δm2
φ is rewritten as

δm2
φ = λφ

32π2

∫ ∞

0

e−m2
φ t

t2 dt = λφ

32π2

∫ ∞

0
dτ2

∫ 1/2

−1/2
dτ1

�2

τ 2
2

exp

[
−m2

φ

�2 τ2

]
, (27)

where τ2 = �2t . Let us make the complex parameter τ = τ1 + iτ2 play the role of the modular
parameter in string theory. The world-sheet modular transformation is given by

τ → aτ + b

cτ + d
, (ad − bc = 1) (28)

where a, b, c, and d are integers, and the transformation is generated by the compositions of two types
of transformations τ → τ + 1 and τ → −1/τ . If we require invariance under the transformation (28)
and assume that the physics is only described by an independent region, which is not connected with
by the transformation, the following expression is obtained,

δm2
φ = Du

[
λφ

32π2

∫ ∞

0
dτ2

∫ 1/2

−1/2
dτ1

�2

τ 2
2

exp

(
−

m2
φ

�2 τ2

)]
= λφ

32π2�
2
∫
F

d2τ

τ 2
2

= λφ

32π2

π

2
�2,

(29)
where F stands for the fundamental region defined by

F = {τ : |Re τ | ≤ 1/2, 1 ≤ |τ |}. (30)

The value of (29) is different from that of (26). The difference of values comes from that of the
invariant measures, i.e., the invariant measure for τ → −1/τ is d2τ/τ 2

2 , but that for t → 1/(�4t) is
dt/t up to a sign factor. Note that both τ → −1/τ and t → 1/(�4t) connect the UV region to the
IR one, and τ → −1/τ reduces to τ2 → 1/τ2, which corresponds to t → 1/(�4t), in the case with
τ1 = 0.

In this way, we find that the value of δm2
φ depends on the form of duality transformation, and we

need to specify it in order to obtain a physically meaningful value. We expect that the form of duality
transformation is determined by matching the counterpart in the ultimate theory.

We add a comment on radiative corrections in string theory. From the world-sheet modular invari-
ance for the closed string, δm2

φ (radiative corrections of the scalar mass including contributions from
innumerable string states) should be given by

δm2
φ =

∫
F

d2τ

τ 2
2

G(τ ), (31)

where G(τ ) is a world-sheet modular invariant function, i.e., G(τ ) = G(τ + 1) and G(τ ) =
G(−1/τ). In cases where SUSY holds exactly, G(τ ) vanishes, and then δm2

φ = 0. Even if SUSY is
broken down, there is a possibility that G(τ ) vanishes in conspiracy with infinite towers of massive
particles, as suggested in Ref. [26].

In string theory, the world-sheet modular invariance is deeply connected to the consistency of the
theory, and radiative corrections should be given in the world-sheet modular invariant form for the
closed string. On the other hand, in the effective field theory, a corresponding symmetry stays in
the background if it exists at all, and the consistency of the theory would not necessarily be threatened
if it is overlooked. Hence, radiative corrections in the effective theory are not generally given in the
duality invariant form, and the projection to pick out the invariant parts would be required.

Finally, we give a conjecture on a solution for one side of the naturalness problem, whether the weak

scale is stabilized against radiative corrections, taking string theory as a candidate for the ultimate
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theory. In string theory, the world-sheet conformal invariance induces the massless string states, and
the world-sheet modular invariance guarantees the finiteness of physical quantities. We conjecture
that, owing to some powerful symmetry (such as SUSY) in addition to the world-sheet modular
invariance, the masslessness of scalar particles would be protected against quantum corrections, and
the abovementioned problem would not be caused. This could be understood in the framework of
low-energy effective field theory, as follows. We assume that the theory is described by only massless
string states, effects of massive string states are introduced as non-renormalizable interactions among
massless particles, and they do not cause (the technical side of) the gauge hierarchy problem. In the
field theory limit, if τ reduces to τ2 with τ1 = 0, the duality transformation τ → −1/τ reduces
to τ2 → 1/τ2, which corresponds to t → 1/(�4t). Then, massless scalar fields do not receive any
radiative corrections on their masses, as seen from (26). This matches the conjecture based on string
theory. For the case with massive light scalar fields, more careful consideration is needed which
is beyond the scope of this paper, because it is deeply related to the other side of the naturalness
problem, what is the origin of the weak scale or the Higgs mass?

4. Conclusions

We have reconsidered naturalness and its relevant symmetries from the viewpoint of effective field
theories including the SM, in the expectation that unnaturalness for scalar masses might be an artifact
in the effective theory and they could be improved if features of an ultimate theory are introduced
and the ingredients of the effective theory enriched. We have given a suggestion for the subtraction of
quadratic divergences, based on assumptions relating features of the ultimate theory. The assumptions
are summarized as follows. Beyond the SM, there is an ultimate theory with a fundamental scale �
and a duality between the physics at the UV region beyond� and that at the IR region, and a remnant
of the duality is hidden in the lower-energy theory. We have shown that the logarithmic corrections
can be picked out by specifying the duality transformation. Because the logarithmic corrections are
compatible with a specific duality, it is expected that the subtraction of quadratic divergences could
be justified in the ultimate theory.

If the quadratic divergences of scalar fields are artifacts of the regularization procedure, the problem
whether the weak scale is stabilized against radiative corrections in the framework of SM can be
solved by the subtraction of quadratic divergences. Note that, even if the quadratic divergences are
eliminated, the physics beyond the SM can induce the gauge hierarchy problem, i.e., the effective field

theory becomes unnatural, because fine tuning is required to obtain the weak scale and/or to stabilize

the weak scale, if there is a high-energy physics relevant to the SM. The sources of large radiative
corrections, which can ruin the stability of the weak scale, are logarithmic divergences due to heavy
particles. There is a possibility that the SM (or the extension of the SM with new particles around the
terascale and without new concepts such as SUSY, compositeness, and extra dimensions) holds until
� and an ultimate theory protects masses of low-energy fields against large quantum corrections by
some mechanism and/or symmetry. This is the background of our previous work [27].

Finally, we discuss the applicable scope of our method. The issue is whether our calculation
scheme is applicable to other systems and ordinary results are obtained or not. We anticipate that
it is applicable to calculate logarithmic corrections including � on quantities.

We have applied our method to the radiative corrections on vacuum energy density, and shown that
the logarithmic corrections can be picked out, in Appendix A. Under the assumption that QED holds
until � in the broken phase of electroweak symmetry, we have also applied it to the self-energy of
the electron, and obtained the well-known result, in Appendix B.
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Because our procedure contains a provisional cutoff parameter depending on a mass, it looks like an
artifact or a temporary expedient to pick out specific corrections. It is important to examine whether
it is applicable to radiative corrections with higher loops by introducing several proper times and
more complex models including several fields.

Even if our scheme has a limit of application or the hidden duality is a product of fantasy, our
expectation would survive that the calculation scheme can be selected by the physics, and radiative
corrections can be constrained by a remnant of symmetries in an ultimate theory.

Acknowledgements

This work was supported in part by scientific grants from the Ministry of Education, Culture, Sports, Science,
and Technology under Grant Nos. 22540272 and 21244036.

Appendix A. Radiative corrections on vacuum energy density

We apply our procedure to radiative corrections on the vacuum energy density δ�V. For the scalar
field φ, δ�V at the one-loop level is commonly written as

δ�V = −1

2

∫ ∞

−∞
d4 p

(2π)4
ln(p2 + m2

φ) = 1

2

∫ ∞

−∞
d4 p

(2π)4

∫ ∞

0

e−(p2+m2
φ)t

t
dt

= 1

32π2

∫ ∞

0

e−m2
φ t

t3 dt, (A1)

and it contains infinities. We carry out the same procedure as for scalar masses.
First, we separate δ�V into the quartic, quadratic, and logarithmic divergent parts by expanding

the exponential factor such that

δ�V = 1

32π2

∫ 1/m2
φ

1/�̃2
φ

dt

t3 − 1

32π2 m2
φ

∫ 1/m2
φ

1/�̃2
φ

dt

t2

+ 1

64π2 m4
φ

∫ 1/m2
φ

1/�̃2
φ

dt

t
− 1

128π2 m6
φ

∫ 1/m2
φ

1/�̃2
φ

dt + · · · , (A2)

where �̃φ is a provisional cutoff parameter (�̃2
φ � m2

φ), which goes to infinity in the limit of m2
φ →

0. In case with �̃2
φ = �4/m2

φ , we find that the third term on the right-hand side of (A2) is invariant
under the change t → 1/(�4t), but the others are not.

Here, we impose the duality relating t → 1/(�4t) on quantities relevant to �. If the physics from
t = 1/�̃2

φ to t = 1/�2 is same as that from t = 1/�2 to t = 1/m2
φ and the physics is only described

by one of the two regions, we obtain the relation

δ�V = Du

[
1

32π2

∫ ∞

0

e−m2
φ t

t3 dt

]
= 1

64π2 m4
φ

∫ 1/m2
φ

1/�2

dt

t
= 1

64π2 m4
φ ln

�2

m2
φ

. (A3)

In this way, the quartic and quadratic divergences in δ�V are eliminated by requiring that the
effective theory should have a hidden symmetry on the proper time. Note that δ�V also vanishes in
the massless limit mφ = 0. Because the subtraction of the quartic and quadratic divergences in δ�V
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induces the effect that the cosmological constant shifts, a more careful consideration is required to
justify our procedure.8

Appendix B. Self-energy of electron

The self-energy of an electron with the momentum p at the one-loop level is given by [29]

Σ(p) = −e2
∫ ∞

−∞
d4q

(2π)4

(
i

q2 + μ2
γ

γν
i

p/− q/− me
γ ν

)
, (B1)

where we rotate to the Euclidean space, q is a momentum of virtual photon, p − q is the momen-
tum of a virtual electron, and μγ is a fictitious photon mass for a regularization of IR divergences
occurring at q2 = 0. Using the proper time method, Σ(p) is written by

Σ(p) = e2
∫ ∞

0
dz1

∫ ∞

0
dz2

∫ ∞

−∞
d4q

(2π)4
[
γν (p/− q/+ me) γ

ν
]

× exp
[
−z1

(
q2 + μ2

γ

)
− z2

(
(p − q)2 + m2

e

)]
. (B2)

By changing the integration variable q into the following one,

q̃ ≡ q − z2

z1 + z2
p = q − p + z1

z1 + z2
p, (B3)

and integrating out q̃, we obtain the expression

Σ(p) = e2

16π2

∫ ∞

0

∫ ∞

0

dz1dz2

(z1 + z2)2

(
−2

z1

z1 + z2
p/+ 4me

)

× exp

[
−
(

z1z2

z1 + z2
p2 + z1μ

2
γ + z2m2

e

)]
. (B4)

Furthermore, we insert the following identity relating the delta function into the integrand,∫ ∞

0
dξ δ(ξ − z1 − z2) =

∫ ∞

0

dξ

ξ
δ

(
1 − z1 + z2

ξ

)
= 1, (B5)

and integrate out z2 after changing the scale of the proper time parameters zi as ξ zi , we obtain the
expression

Σ(p) = e2

8π2

∫ 1

0
dz1 (−z1 p/+ 2me)

∫ ∞

0

dξ

ξ
e−ξ m̃2

, (B6)

where m̃2 is a function of p2 and z1, defined by

m̃2 ≡ z1(1 − z1)p
2 + z1μ

2
γ + (1 − z1)m

2
e . (B7)

We expand the exponential factor such that

Σ(p) = e2

8π2

∫ 1

0
dz1 (−z1 p/+ 2me)

∫ 1/m̃2

1/�̃2
p

dξ

ξ

− e2

8π2

∫ 1

0
dz1 (−z1 p/+ 2me) m̃2

∫ 1/m̃2

1/�̃2
p

dξ + · · · , (B8)

where �̃p is a provisional cutoff parameter (�̃2
p � m̃2). In the case with �̃2

p = z2
1�

4/m̃2, we find
that the first term in the right-hand side of (B8) is invariant under the change ξ → 1/(z2

1�
4ξ), but

8 As another work to show the importance of the trans-Planckian physics, Volovik gave the observa-
tion that the sub-Planckian and trans-Planckian contributions to the vacuum energy are canceled by the
thermodynamical argument [28].
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others are not. Furthermore, in this case, the integration from ξ = m̃2/z2
1�

4 to ξ = 1/m̃2 is divided
into that from ξ = m̃2/z2

1�
4 to ξ = 1/(z1�

2) and that from ξ = 1/(z1�
2) to ξ = 1/m̃2, and these

integrals for the first term take the same value. If we identify z1ξ as a proper time t , the transformation
is the same form t → 1/(�4t) as that in case of the scalar mass mφ .

Here, we impose the duality relating ξ → 1/(z2
1�

4ξ) on quantities relevant to �. If the physics
from ξ = m̃2/z2

1�
4 to ξ = 1/(z1�

2) is same as that from ξ = 1/(z1�
2) to ξ = 1/m̃2 and the physics

is only described by one of the two regions, the desired expression is obtained as

Σ(p) = e2

8π2

∫ 1

0
dz1 (−z1 p/+ 2me)

∫ 1/m̃2

1/(z1�
2)

dξ

ξ

= e2

8π2

∫ 1

0
(−z1 p/+ 2me) ln

z1�
2

(1 − z1)m2
e + z1μ2

γ + (1 − z1)z1 p2 dz1. (B9)

Using (B9), we obtain the ordinary expression for radiative corrections on the electron mass such
that

δme = Σ(p)|p/=me
= e2me

8π2

∫ 1

0
(2 − z1) ln

z1�
2

(1 − z1)2m2
e
dz1 = 3α

4π
me

(
ln
�2

m2
e

+ 1

2

)
, (B10)

where we take the limit of μ2
γ → 0.
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