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Abstract

The Feynman path integral for the Dirac equation in the general

dimensional spacetime is determined mathematically in the form of the

sum-over-histories satisfying the superposition principle, i.e. the “sum”

of the probability amplitudes with a common weight, over all possible

paths that go in any direction at any speed forward and backward in

time. It should be noted that our Feynman path integral is determined

not in configuration space, but in phase space.

1 Introduction

Let T > 0 be an arbitrary constant, 0 ≤ t ≤ T and x = (x1, . . . , xd) ∈

Rd. Let E(t, x) = (E1, . . . , Ed) ∈ Rd and (Bjk(t, x))1≤j<k≤d ∈ Rd(d−1)/2 de-
∗Research partially supported by Grant-in-Aid for Scientific Research No.23540195, Min-
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note the electric strength and the magnetic strength tensor, respectively and

(V (t, x), A(t, x)) = (V,A1, . . . , Ad) ∈ Rd+1 an electromagnetic potential, i.e.

E = −∂A
∂t

− ∂V

∂x
,

Bjk =
∂Ak

∂xj
− ∂Aj

∂xk
(1 ≤ j < k ≤ d), (1.1)

where ∂V/∂x = (∂V/∂x1, . . . , ∂V/∂xd). We consider the Dirac equation

i!∂u
∂t

(t) = H(t)u(t)

:=

[
c

d∑

j=1

α̂(j)

(
!
i

∂

∂xj
− eAj(t, x)

)
+ β̂mc2 + eV (t, x)

]
u(t) (1.2)

as in (11) of §67, p.257 of [4] or (4.19), p.70 of [11], where tu(t) = (u1(t), . . . , uN(t)) ∈

CN , α̂(j)(j = 1, 2, . . . , d) and β̂ are constant N × N Hermitian matrices, c is

the velocity of light, ! is the Plank constant and e is the charge of an electron.

For the sake of simplicity we suppose ! = 1 and e = 1 hereafter. We note that

through the present paper constant matrices α̂(j) (j = 1, 2, . . . , d) and β̂ are

assumed to be only Hermitian.

Let us take the Hamiltonian function

H(t, x, p) = c
d∑

j=1

α̂(j)
(
pj − Aj(t, x)

)
+ β̂mc2 + V (t, x) (1.3)

as in (23) of §69, p.261 of [4], where p ∈ Rd is the canonical momentum. It

follows from the classical rule of the replacement as in §67, p.257 of [4] that

ξ = p−A(t, x) ∈ Rd is the kinetic momentum. So, the Lagrangian function is

given by

L(t, x, ξ) = p · ẋ−H(t, x, p)

= ξ · ẋ+ ẋ · A(t, x)− V (t, x)− (cα̂ · ξ + β̂mc2), (1.4)
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where p · ẋ =
∑d

j=1 pjẋj, α̂ = (α̂(1), . . . , α̂(d)) and α̂ · ξ =
∑d

j=1 α̂
(j)ξj.

We will determine the Feynman path integral in phase space in terms of

(1.4). Let 0 ≤ τj ≤ T (j = 1, 2, . . . , ν − 1) and set ∆ := {τj}ν−1
j=1 . We

don’t necessarily assume τj ≤ τj+1. We set τ0 = 0 and τν = t. Let x ∈ Rd

be fixed. For arbitrary points x(j) ∈ Rd (j = 0, 1, . . . , ν − 1) and ξ(j) ∈

Rd (j = 0, 1, . . . , ν − 1) let us denote the broken line path in Rd joining x(j) at

τj (j = 0, 1, . . . , ν, x(ν) = x) in order by q∆(x(0), . . . , x(ν−1), x) and the piecewise

constant path in Rd taking value ξ(j) (j = 0, 1, . . . , ν − 1) for θ ∈ [τj, τj+1) if

τj < τj+1 or θ ∈ (τj+1, τj] if τj+1 < τj and ξ(ν−1) at t by ξ∆(ξ(0), . . . , ξ(ν−1)).

We note that the paths q∆ and ξ∆ go in any direction forward and backward

in time and that q∆ have any speed. Let us write q∆ and ξ∆ for θ ∈ [τj, τj+1)

or (τj+1, τj] by q∆(θ) and ξ∆(θ).

The approximation KD∆(t, 0)f of the Feynman path integral for the Dirac

equation (1.2) is determined in terms of the oscillatory integral (cf. p.45 of

[23]) by

KD∆(t, 0)f =

∫∫
e∗iS(t,q∆,ξ∆)f(q∆(0))Dq∆Dξ∆

:= Os−
∫

· · ·
∫

e∗iS(t,q∆,ξ∆)f(x(0))dx(0) · · · dx(ν−1)d̄ξ(0) · · ·d̄ξ(ν−1) (1.5)

for f ∈ S(Rd)N , i.e. the Schwartz rapidly decreasing function, where d̄ξ(j) =

(2π)−ddξ(j) and the probability amplitude exp ∗iS(t, q∆, ξ∆) for a path (q∆, ξ∆)

is defined as a product of matirices from the Lagrangian function (1.4) by

exp i
ν−1∑

j=0

∫ τj+1

τj

{
ξ∆(θ) · q̇∆(θ) + q̇∆(θ) · A(θ, q∆(θ))− V (θ, q∆(θ))

}
dθ

× exp−i

∫ t

τν−1

{
cα̂ · ξ∆(θ) + β̂mc2

}
dθ · exp−i

∫ τν−1

τν−2

{
cα̂ · ξ∆(θ) + β̂mc2

}
dθ

· · · · exp−i

∫ τ1

0

{
cα̂ · ξ∆(θ) + β̂mc2

}
dθ. (1.6)
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A little simpler definition of exp ∗iS(t, q∆, ξ∆) than (1.6) will be given in Re-

mark 2.3 of the present paper.

The main results of the present paper are stated in Theorems 2.1 and 2.2.

Let L2(Rd) denote the space of all square integrable functions in Rd with inner

product (f, g) :=
∫
f(x)g(x)dx and norm ∥f∥, where g(x) denotes the complex

conjugate of g(x). Let f ∈ L2(Rd)N and L0 ≥ 0 an arbitrary constant. Then,

we will prove in Theorem 2.1 that as |∆| := max0≤j≤ν−1 |τj+1 − τj| → 0 under

the assumption
ν−1∑

j=0

|τj+1 − τj| ≤ L0, (1.7)

then KD∆(t, 0)f converges to KD(t, 0)f independently of the choice of L0,

which we call the Feynman path integral, in L2(Rd)N uniformly in t ∈ [0, T ]

and that KD(t, 0)f is the solution to (1.2) with u(0) = f . In Theorem 2.2 we

will prove the convergence of KD(t, 0)f to KD(t, 0)f in some weighted Soblolev

spaces as |∆| → 0 uniformly in t ∈ [0, T ] under the assumption (1.7).

We could say from (1.5) that the Feynman path integral KD(t, 0)f is writ-

ten in the form of the “sum” of the probability amplitudes with a common

weight over all possible paths, i.e. the form of the sum-over-histories satisfying

the superposition principle as is stated in sections 1-4, 2-2, 2-5 and 2-6 of [9],

in (13) and (14), p.752 of [6], in (2) and (4), p.772 of [7], in (37) and (38),

p.447 of [8], in p.146 of [22], in (9.2), p.276 of [25] and in §2.3 of [27]. As

Feynman noted in p.376 of [5] that the electron goes in any direction at any

speed forward or backward in time, we consider all possible paths to determine

KD(t, 0)f along which the electron goes in any direction at any speed foward

or backward in time. We remark that Feynman also noted for the probability

amplitude of a photon in pp.88 and 89 of [10] that there is also an amplitude

of a photon, i.e. light to go faster (or slower) than the conventional speed c of
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light and not to go only in straight lines.

We note that it is stated in §2-6, p.38, §9-1, p.237 and §9-8, p.264 of [9]

that in the relativistic theory of the electron we shall not find it possible to

express the amplitude for a path as eiS, or in any other simple way.

It should be also noted that the paths q∆ and ξ∆ to determine KD∆(t, 0)f

were also used to determine the Feynman path integrals for the Schrödinger

equation in Main Theorem of [18] and the Pauli equation in Theorem 2.3 of

[20], though we didn’t consider the paths that go backward in time, but could

consider as is seen from their proofs.

Now we go back to the past studies of the Feynman path integral for the

Dirac equation. There seems to be no past studies of the Feynman path integral

in phase space. All studies seem to be made of that in configuration space.

Consider the Dirac equation in two dimensional spacetime

i
∂u

∂t
(t) =

[
cα̂(0)

(
1

i

∂

∂x
− A(t, x)

)
u+ β̂(0)mc2 + V (t, x)

]
u(t), (1.8)

where tu(t) = (u1(t), u2(t)) ∈ C2 and

α̂(0) =

⎛

⎝1 0

0 −1

⎞

⎠ , β̂(0) =

⎛

⎝ 0 −1

−1 0

⎞

⎠ .

Let (V,A) = 0 in (1.8). Suppose that the interval [0, t] is divided into small

equal steps of length ϵ0 > 0. We consider zigzags in the spacetime of straight

segments with velocity c that go only forward in time. The amplitude for each

zigzag is given by (iϵ0)R, where R is the number of reversals. It follows from

the superposition principle that the Feynman path integral was determined by

(2-27), p.35 of [9]. See Appendix E, p.118 of [26] in detail. The other studies

below seem not to suppose the superposition principle and also consider the

paths that go backward in time. In [13] and Theorem 2.1 of [14] the solution to
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a general (1.8) was written in terms of a measure on the space of all continuous

paths in [0, t]. In Theorem, p.8 of [1] and p.221 of [3] the solution to (1.8) was

written in terms of a Poisson process. It is noted that in [1, 3, 13, 14] the

support of the measure on the path space is included in the space consisting

of all zigzags with velocity c that go only forward in time.

In Theorem, p.318 of [12] the Fourier transform û(t, ξ) =

∫
e−ix·ξu(t, x)dx

of the solution u(t, x) to (1.2) is represented in terms of a Poisson measure,

where Aj(x) (j = 0, 1, . . . , d) (A0 = V/c) are assumed to be independent of t

and given by the Fourier transform of totally finite measures. In (5), p.2436

and (35), p.2448 of [21] the physical consideration is given to the representation

of the solution to (1.2) with d = 3 and N = 4 that generalizes the result to

(1.8) in [9] stated above.

We will explain an idea for proving our results. Let 0 ≤ s ≤ t ≤ T or

0 ≤ t ≤ s ≤ T . We define

qt,sx,y(θ) = y +
θ − s

t− s
(x− y) (1.9)

in s ≤ θ ≤ t or t ≤ θ ≤ s for x and y in Rd and consider the classical action

in phase space

S(t, s; x, ξ, y) :=

∫ t

s

{
ξ · q̇t,sx,y(θ) + q̇t,sx,y(θ) · A(θ, qt,sx,y(θ))

− V (θ, qt,sx,y(θ))− (cα̂ · ξ + β̂mc2)
}
dθ

= (x− y) · ξ +
∫ t

s

{
q̇t,sx,y(θ) · A(θ, qt,sx,y(θ))− V (θ, qt,sx,y(θ))

}

− (t− s)(cα̂ · ξ + β̂mc2) (1.10)

from (1.4), where q̇t,sx,y(θ) = dqt,sx,y(θ)/dθ. We take χ ∈ C∞
0 (Rd), i.e. an infinitely

differentiable function in Rd with compact support, such that χ(0) = 1. Let
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ϵ > 0 be a constant and define an operator

(Gϵ(t, s)f)(x) =

∫∫
eiS(t,s;x,ξ,y)f(y)χ(ϵξ)dyd̄ξ (1.11)

for S(Rd)N . Then we can write

KD∆(t, 0)f = lim
ϵ→0

Gϵ(t, τν−1)χ(ϵ·)Gϵ(τν−1, τν−2)χ(ϵ·) · · ·χ(ϵ·)Gϵ(τ1, 0)f (1.12)

from (1.5) and (1.6). We can prove the main results from (1.12) as in the proof

of Theorem of [16], which is originated in [24].

In more detail we will prove that
{
Gϵ(t, s)

}
0<ϵ≤1

is a bounded family of

operators from S(Rd)N into itself, that there exists an operator G(t, s) on

S(Rd)N independent of the choice of χ satisfying

G(t, s)f = lim
ϵ→0

Gϵ(t, s)f (1.13)

in S(Rd)N for f ∈ S(Rd)N , that the stability

∥G(t, s)f∥ ≤ eK(t−s)2∥f∥ (1.14)

holds with a constant K ≥ 0 and that the consistency

lim
ϵ→0

∥∥∥∥

(
i
∂

∂t
−H(t)

)
Gϵ(t, s)f

∥∥∥∥ ≤ C(t− s)∥ < · >M f∥ (1.15)

holds with a constant C ≥ 0 and a positive integer M , where < x >=
√

1 + |x|2 and ∥f∥2 =
∑N

j=1 ∥fj∥2 for tf = (f1, . . . , fN) ∈ L2(Rd)N .

Let U(t, 0)f for f ∈ S(Rd)N be the solution to (1.2) with u(0) = f . From

(1.12) and (1.13) we can easily see

KD∆(t, 0)f = G(t, τν−1)G(τν−1, τν−2) · · ·G(τ1, 0)f (1.16)

for f ∈ S(Rd)N . From (1.14) and (1.15) we will prove that

∥KD∆(t, 0)f − U(t, 0)f∥ = ∥G(t, τν−1) · · ·G(τ1, 0)f − U(t, τν−1) · · ·U(τ1, 0)f∥

7



for f ∈ L2(Rd)N converges to 0 uniformly in t ∈ [0, T ] as |∆| → 0 under

the assumption (1.7). The convergence of KD∆(t, 0)f in the weighted Sobolev

spaces as |∆| → 0 under (1.7) can be proved in the same way. We note that

the theory of pseudo-differential operators plays an important role to prove

(1.14), (1.15) and their generalizations.

The plan of the present paper is as follows. In §2 the main results in the

present paper, i.e. Theorems 2.1 and 2.2 are stated. In sections 3 and 4 the

stability and the consistency of G(t, s) are proved, respectively. In §5 we give

a complete proof of Theorems 2.1 and 2.2.

2 Main results

For an x = (x1, . . . , xd) ∈ Rd and a multi-index α = (α1, . . . ,αd) we write

|α| =
∑d

j=1 αj, xα = xα1
1 · · · xαd

d , ∂xj = ∂/∂xj and ∂αx = ∂α1
x1

· · · ∂αd
xd
. Let M and

a be positive integers. We introduce the weighted Sobolev spaces Ba
M(Rd)N :=

{f ∈ L2(Rd)N ; ∥f∥Ba
M

:= ∥f∥ +
∑

|α|=aM ∥xαf∥ +
∑

|α|=a ∥∂αx f∥ < ∞}. Let

B−a
M (Rd)N denote their dual spaces. We set B0

M(Rd)N := L2(Rd)N .

Throughout the present paper we always assume for electromagnetic po-

tentials (V,A) that V, ∂xjV, ∂tAk and ∂xjAk (j, k = 1, 2, . . . , d) are continuous

in [0, T ] × Rd. In the present paper we often use symbols C,Cα, Cα,β and Ca

to write down constants, though these values are different in general. We note

again that throughout the present paper constant matrices α̂(j) (j = 1, 2, . . . , d)

and β̂ in (1.2) are assumed to be only Hermitian. The following are the main

theorems in the present paper.

Theorem 2.1. Suppose that ∂αxEj(t, x) (j = 1, 2, . . . , d), ∂αxBjk(t, x) (1 ≤
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j < k ≤ d) and ∂tBjk(t, x) are continuous in [0, T ]×Rd for all α. We assume

|∂αxEj(t, x)| ≤ Cα, |α| ≥ 1, (2.1)

|∂αxBjk(t, x)| ≤ Cα < x >−(1+δα), |α| ≥ 1 (2.2)

in [0, T ]×Rd with constants δα > 0 for j, k = 1, 2, . . . , d. We define KD∆(t, 0)f

for f ∈ SN by (1.5). Then we have: (1) KD∆(t, 0) on SN can be extended to

a bounded operator on (L2)N . (2) Let f ∈ (L2)N and L0 ≥ 0 be an arbitrary

constant. Then, as |∆| → 0 under the assumption (1.7), the approximation

KD∆(t, 0)f converges to the Feynman path integral KD(t, 0)f in (L2)N inde-

pendent of the choice of L0 uniformly in t ∈ [0, T ]. (3) KD(t, 0)f for f ∈ (L2)N

belongs to E0
t ([0, T ]; (L

2)N) and is the solution to the Dirac equation (1.2) in

distribution sense with u(0) = f , where E j
t ([0, T ]; (L

2)N) (j = 0, 1, . . . ) denotes

the space of all (L2)N -valued j-times continuously differentiable functions in

t ∈ [0, T ]. (4) Let 0 < t1 < t. Then we have the rule for two events:

KD(t, 0)f = KD(t, t1)KD(t1, 0)f, KD(t, t1)f = KD(t, 0)KD(0, t1)f. (2.3)

(5) Let ψ(t, x) be a real-valued function such that ∂xj∂xk
ψ(t, x) and ∂t∂xjψ(t, x)

(j, k = 1, 2, . . . , d) are continuous in [0, T ]×Rd and consider the gauge trans-

formation

V ′ = V − ∂ψ

∂t
, A′

j = Aj +
∂ψ

∂xj
. (2.4)

We write (1.5) as K ′
D∆(t, 0)f for this (V ′, A′). Then we have the formula

K ′
D∆(t, 0)f = eiψ(t,·)KD∆(t, 0)

(
e−iψ(0,·)f

)
(2.5)

for all f ∈ (L2)N .

Remark 2.1. The rule for two events (2.3) in Theorem 2.1 is stated by

(2-31), p.37 of [9].
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Example 2.1. Let us state an example of the family of ∆ satisfying (1.7).

Let N ≥ 1 be an arbitrary integer. We consider the family of ∆ = {τj}ν−1
j=1 :

0 = τ0 < τ1 < · · · < τl1 > τl1+1 > . . . > τl′1 < τl′1+1 < . . . < τl2

> τl2+1 > . . . > τl′2 < . . . < τlN > . . . > τl′N < . . . < τν = t.

Then we have
∑ν

j=1 |τj − τj−1| ≤ (2N + 1)T . So (1.7) always holds.

Theorem 2.2. We assume (2.1) and (2.2). In addition, we suppose

|∂αxAj(t, x)| ≤ Cα, |α| ≥ 1, (2.6)

in [0, T ] × Rd for j = 1, 2, . . . , d and that there exists an integer M ≥ 1

satisfying

|∂αxV (t, x)| ≤ Cα < x >M , |α| ≥ 1 (2.7)

and

|∂αx∂tAj(t, x)| ≤ Cα < x >M (2.8)

for all α in [0, T ]× Rd. Then we have: (1) KD∆(t, 0) on SN can be extended

to a bounded operator on (Ba
M)N (a = 0, 1, . . . ). (2) Let f ∈ (Ba

M+1)
N and

L0 ≥ 0 an arbitrary constant. Then, as |∆| → 0 under the assumption (1.7),

KD∆(t, 0)f converges to KD(t, 0)f in (Ba
M+1)

N uniformly in t ∈ [0, T ].

Remark 2.2. We can easily see from (1.1) that under the assumptions of

Theorem 2.2 ∂αxEj(t, x), ∂αxBjk(t, x) and ∂tBjk(t, x) are continuous in [0, T ]×Rd

for all α and so that the assumptions of Theorem 2.1 hold.

Remark 2.3. Let q∆ = q∆(x(0), . . . , x(ν−1), x) and ξ∆ = ξ∆(ξ(0), . . . , ξ(ν−1))

be the broken line path and the piecewise constant path respectively defined

in §1. Let L(t, x, ξ) be the Lagrangian function defined by (1.4). Let us define
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F(θ, τj; q∆, ξ∆) for θ ∈ [τj, τj+1) or θ ∈ (τj+1, τj] (j = 0, 1, . . . , ν − 1) by the

solution to
d

dθ
F(θ, τj) = iL(θ, q∆(θ), ξ∆(θ))F(θ, τj) (2.9)

with F(τj, τj) = IN , where IN is an identity N ×N matrix. Then we get

exp ∗iS(t, q∆, ξ∆) = F(t, τν−1)F(τν−1, τν−2) · · · F(τ1, 0). (2.10)

For we have

F(τj+1, τj) = exp i

∫ τj+1

τj

{
ξ(j) · q̇∆(θ) + q̇∆(θ) · A(θ, q∆(θ))− V (θ, q∆(θ))

}
dθ

× exp−i(τj+1 − τj)(cα̂ · ξ(j) + β̂mc2)

from (1.4). Hence we obtain (2.10) from (1.6).

In [20] we determined the Feynman path integral for the Pauli equation.

There, to define the corresponding to exp ∗iS(t, q∆, ξ∆) we introduced the sim-

ilar equation (1.11) in [20] to (2.9).

3 Stability of G(t, s)

Hereafter, where no confusion can arise, we write SN , L2(Rd)N and Ba
M(Rd)N

as S, L2(Rd) and Ba
M(Rd), respectively for the sake of simplicity, omitting the

superscript N .

Lemma 3.1. Let A(w) (w ∈ Rd) be an N×N matrix whose all components

are continuously differentiable with respect to w. Then we have

∂

∂wj
eA(w) =

∫ 1

0

e(1−τ)A(w) ∂A

∂wj
(w)eτA(w)dτ. (3.1)
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Proof. We set u(t;w) = etA(w). Then

∂u

∂t
(t;w) = A(w)u(t;w).

So
d

dt

∂u

∂wj
(t;w) = A(w)

∂u

∂wj
(t;w) +

∂A

∂wj
(w)u(t;w)

with ∂u(0;w)/∂wj = 0. Consequently we have

∂u

∂wj
(t;w) =

∫ t

0

e(t−τ)A(w) ∂A

∂wj
(w)eτA(w)dτ,

which shows (3.1).

Let Gϵ(t, s) be the operator defined by (1.11).

Proposition 3.2. We assume (2.7) and that there exists a positive integer

M ′ satisfying

|∂αxAj(t, x)| ≤ Cα < x >M ′
, |α| ≥ 1

in [0, T ] × Rd for j = 1, 2, . . . , d. Then
{
Gϵ(t, s)

}
0<ϵ≤1

is a bounded fam-

ily of operators from S into itself and there exists an operator G(t, s) on S

independent of the choice of χ such that we have (1.13) in S for all f ∈ S.

Proof. We write S(t, s; x, ξ, y) defined by (1.10) as (x− y) · ξ + S0(t, s; x, ξ, y).

Let α and β be arbitrary multi-indices, and l0 and l1 arbitrary positive integers.

Let f ∈ S and ∆x =
∑d

j=1 ∂
2
xj
. Then we have

∫∫
eiS(t,s;x,ξ,y)xαξβf(y)χ(ϵξ)dyd̄ξ =

∫∫
eix·ξ < x >−2l0 xα(1−∆ξ)

l0

×
{
e−iy·ξξβ < ξ >−2l1 (1−∆y)

l1eiS0(t,s;x,ξ,y)f(y)χ(ϵξ)
}
dyd̄ξ.

Let l0 and l1 be large and note that α̂(j) (j = 1, 2, . . . , d) and β̂ are Hermitian

matrices. Then we can prove from the assumptions of Proposition 3.2 in terms
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of Lemma 3.1 that
{
Gϵ(t, s)

}
0<ϵ≤1

is a bounded family of operators from S

into itself and that as ϵ→ 0, this converges to a bounded function

∫∫
eix·ξ < x >−2l0 xα(1−∆ξ)

l0
{
e−iy·ξξβ

× < ξ >−2l1 (1−∆y)
l1eiS0(t,s;x,ξ,y)f(y)

}
dyd̄ξ

uniformly in Rd
x. In the same way we can easily complete the proof.

The main theorem in this section is the following.

Theorem 3.3. Let G(t, s) be the operator on S defined in Proposition 3.2.

Assume (2.1), (2.2) and (2.6). Then we have: (1) G(t, s) can be extended to

a bounded operator on L2. (2) There exists a constant K ≥ 0 such that (1.14)

holds for all f ∈ L2 and 0 ≤ s, t ≤ T .

Leu us write x = (t, x) ∈ Rd+1 and

qt,s
x,y : q

t,s
x,y(θ) = (θ, qt,sx,y(θ)) ∈ Rd+1 (s ≤ θ ≤ t or t ≤ θ ≤ s). (3.2)

Lemma 3.4. We have
(∫

qt,s
y,x

−
∫

qt,s
y,z

)
(A · dx− V dt) = (x− z) ·Ψ(t, s; x, y, z), (3.3)

where Ψ = (Ψ1, . . . ,Ψd) ∈ Rd and

Ψj(t, s; x, y, z) = −
∫ 1

0

Aj(s, z + θ(x− z))dθ

+ (t− s)

∫ 1

0

∫ 1

0

σ1Ej(t− σ1(t− s), y + σ1(z − y) + σ1σ2(x− z))dσ1dσ2

+
d∑

k=1

(yk − zk)

∫ 1

0

∫ 1

0

Bjk(t− σ1(t− s), y + σ1(z − y) + σ1σ2(x− z))dσ1dσ2.

(3.4)
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Proof. The Stokes theorem shows
(∫

qt,s
y,x

−
∫

qt,s
y,z

+

∫

qs,s
x,z

)
(A · dx− V dt) =

∫∫

Λ

d(A · dx− V dt), (3.5)

where Λ is the 2-dimensional plane with oriented boundary consisting of qt,s
y,x,−qt,s

y,z

and qs,s
x,z. We introduce coordinates σ = (σ1, σ2) (0 ≤ σ1, σ2 ≤ 1) with the pos-

itive orientation in Λ by

(τ(σ), ζ(σ))

= σ2{σ1(s, x) + (1− σ1)(t, y)}+ (1− σ2){σ1(s, z) + (1− σ1)(t, y)}

= (t− σ1(t− s), y + σ1(z − y) + σ1σ2(x− z)) ∈ Rd+1.

Since

d(A · dx− V dt) = −
d∑

j=1

Ej(t, x)dt ∧ dxj +
∑

1≤j<k≤d

Bjkdxj ∧ dxk

holds from (1.1), Lemma 3.4 can be proved from (3.5) as in the proof of Lemma

3.2 in [16].

To avoid the complexity we suppose hereafter that χ in (1.11) is real-valued.

Proposition 3.5. Let Ψ = Ψ(t, s; x, y, z) be the function defined by (3.4).

Then for f ∈ S we have

(Gϵ(t, s)
∗Gϵ(t, s)f) (x) =

∫∫
ei(x−z)·ξdzd̄ξ

∫∫
e−iη·wei(t−s)(cα̂·ξ+cα̂·Ψ+β̂mc2)

× e−i(t−s)(cα̂·ξ+cα̂·Ψ+β̂mc2−cα̂·η)χ(ϵ(ξ +Ψ))χ(ϵ(ξ +Ψ− η))f(z)dwd̄η (3.6)

with Ψ = Ψ(t, s; x, w + z, z), where η ∈ Rd, w ∈ Rd and Gϵ(t, s)∗ denotes the

formally adjoint operator of Gϵ(t, s).
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Proof. Since S(t, s; x, ξ, y) is a Hermitian matrix from (1.10), Gϵ(t, s)∗ is writ-

ten by

(Gϵ(t, s)
∗f)(x) =

∫∫
e−iS(t,s;y,ξ,x)f(y)χ(ϵξ)dyd̄ξ (3.7)

from (1.11). So from (1.10) we have

(Gϵ(t, s)
∗Gϵ(t, s)f) (x) =

∫∫ [
exp−i

{
ξ · (y − x) +

∫

qt,,s
y,x

(A · dx− V dt)

− (t− s)(cα̂ · ξ + β̂mc2)
}]
χ(ϵξ)dyd̄ξ

∫∫ [
exp i

{
η · (y − z) +

∫

qt,,s
y,z

(A · dx− V dt)

− (t− s)(cα̂ · η + β̂mc2)
}]
χ(ϵη)f(z)dzd̄η =

∫∫
ei(x−z)·ξei(t−s)(cα̂·ξ+β̂mc2)

× χ(ϵξ)dzd̄ξ

∫∫
e−i(ξ−η)·(y−z)

{
exp−i

(∫

qt,s
y,x

−
∫

qt,s
y,z

)
(A · dx− V dt)

}

× e−i(t−s)(cα̂·η+β̂mc2)χ(ϵη)f(z)dyd̄η.

Making the change of variables by η′ = ξ − η : η → η′ and w = y − z : y → w

and using (3.3), we get

(Gϵ(t, s)
∗Gϵ(t, s)f) (x) =

∫∫
ei(x−z)·ξei(t−s)(cα̂·ξ+β̂mc2)χ(ϵξ)dzd̄ξ

∫∫
e−iη′·w

× e−i(x−z)·Ψe−i(t−s)(cα̂·ξ+β̂mc2−cα̂·η′)χ(ϵ(ξ − η′))f(z)dwd̄η′

with Ψ = Ψ(t, s; x, w + z, z). Making the change of variables by ξ′ = ξ −

Ψ(t, s; x, w + z, z) : ξ → ξ′, we obtain (3.6).

Proposition 3.6. Under the assumptions of Theorem 3.3 we have

|∂αx∂βy ∂γzΨj(t, s; x, y, z)| ≤ Cα,β,γ, |α + β + γ| ≥ 1 (3.8)

in 0 ≤ s, t ≤ T and x, y, z ∈ Rd for j = 1, 2, . . . , d.

Proof. It follows from (2.6) and (2.1) that the first term and the second one in

(3.4) satisfy the relations (3.8), respectively. We can easily see from (2.2) that
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∂αxBjk(t, x) for all α are bounded in [0, T ]×Rd. So, using (ii) of Lemma 3.5 in

[16], we can see from (2.2) that the third term in (3.4) also satisfies (3.8).

Lemma 3.7. Let A and B be N ×N matrices. Then we have

eA+B = eA +

∫ 1

0

dθ

∫ 1

0

e(1−τ)(A+θB)Beτ(A+θB)dτ. (3.9)

Proof. Set u(θ) = eA+θB (θ ∈ R). Then we have

∂u

∂θ
(θ) =

∫ 1

0

e(1−τ)(A+θB)Beτ(A+θB)dτ

from (3.1). Because of

eA+B − eA = u(1)− u(0) =

∫ 1

0

∂u

∂θ
(θ)dθ

(3.9) follows from this.

Let us prove Theorem 3.3. Let f ∈ S. In terms of (3.9) we can write

e−i(t−s)(cα̂·ξ+cα̂·Ψ+β̂mc2−cα̂·η) = e−i(t−s)(cα̂·ξ+cα̂·Ψ+β̂mc2)

+

∫ 1

0

dθ

∫ 1

0

dτe−i(t−s)(1−τ)(cα̂·ξ+cα̂·Ψ+β̂mc2−θcα̂·η)

× i(t− s)cα̂ · ηe−i(t−s)τ(cα̂·ξ+cα̂·Ψ+β̂mc2−θcα̂·η).

Applying this to (3.6), we get

(Gϵ(t, s)
∗Gϵ(t, s)f) (x) =

∫∫
ei(x−z)·ξf(z)dzd̄ξ

∫∫
e−iη·wχ(ϵ(ξ +Ψ))

× χ(ϵ(ξ +Ψ− η))dwd̄η + c(t− s)

∫∫
ei(x−z)·ξdzd̄ξ

∫∫
e−iη·wei(t−s)(cα̂·ξ+cα̂·Ψ+β̂mc2)

×
{∫ 1

0

dθ

∫ 1

0

dτ e−i(t−s)(1−τ)(cα̂·ξ+cα̂·Ψ+β̂mc2−θcα̂·η)iα̂ · ηe−i(t−s)τ(cα̂·ξ+cα̂·Ψ+β̂mc2−θcα̂·η)
}

× χ(ϵ(ξ +Ψ))χ(ϵ(ξ +Ψ− η))f(z)dwd̄η.
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Consequently we obtain

(Gϵ(t, s)
∗Gϵ(t, s)f) (x) =

∫∫
ei(x−z)·ξf(z)dzd̄ξ

∫∫
e−iη·wχ(ϵ(ξ +Ψ))

× χ(ϵ(ξ +Ψ− η))dwd̄η + c(t− s)

∫∫
ei(x−z)·ξdzd̄ξ

∫ 1

0

dθ

∫ 1

0

dτ

×
∫∫

ei(t−s)(cα̂·ξ+cα̂·Ψ+β̂mc2)e−i(t−s)(1−τ)(cα̂·ξ+cα̂·Ψ+β̂mc2−θcα̂·η)e−iη·wiα̂ · η

× e−i(t−s)τ(cα̂·ξ+cα̂·Ψ+β̂mc2−θcα̂·η)χ(ϵ(ξ +Ψ))χ(ϵ(ξ +Ψ− η))f(z)dwd̄η, (3.10)

where Ψ = Ψ(t, s; x, w + z, z).

Let us consider the first term in (3.10). Let l0 be an integer such that

2l0 > d. Then we can write

∫∫
e−iη·wχ(ϵ(ξ +Ψ))χ(ϵ(ξ +Ψ− η))dwd̄η =

∫∫
e−iη·w < η >−2l0 (1−∆w)

l0

·
{
< w >−2l0 (1−∆η)

l0
}
χ(ϵ(ξ +Ψ))χ(ϵ(ξ +Ψ− η))dwd̄η.

Noting (3.8), we can see as in the proof of Proposition 3.2 that as ϵ → 0, the

first term in (3.10) converges to limϵ→0

∫∫
ei(x−z)·ξf(z)dzd̄ξ

∫∫
e−iη·wχ(ϵη)χ(ϵw)dwd̄η

= f(x) in S.

Let us consider the second term in (3.10). Noting (−∂wj)e
−iη·w = iηje−iη·w,

we first integrate by parts with respect to w. Next we use Lemma 3.1, (3.8)

and the fact that α̂(j) (j = 1, 2, . . . , d) and β̂ are Hermitian and integrate by

parts with respect to w and η as in the proof of the first term. Then we can

prove that as ϵ→ 0, the second term converges to a pseudo-differential operator

(t−s)2P (t, s)f = (t−s)2P (t, s;X,DX , X ′)f :=

∫∫
ei(x−z)·ξp(x, ξ, z)f(z)dzd̄ξ in

S, where the symbol pij(t, s; x, ξ, z) (i, j = 1, 2, . . . , N) of the (i, j)-component

of P (t, s) satisfies

|∂αξ ∂βx∂γz pij(t, s; x, ξ, z)| ≤ Cα,β,γ , 0 ≤ s, t ≤ T (3.11)
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in R3d for all α, β and γ. Consequently we get

lim
ϵ→0

Gϵ(t, s)
∗Gϵ(t, s)f = f + (t− s)2P (t, s)f (3.12)

in S, which shows

G(t, s)∗G(t, s)f = f + (t− s)2P (t, s)f (3.13)

from Proposition 3.2. Hence we obtain

∥G(t, s)f∥2 = (f, f) + (t− s)2(P (t, s)f, f)

≤ ∥f∥2 + 2K(t− s)2∥f∥2 ≤ e2K(t−s)2∥f∥2

for f ∈ S with a constant K ≥ 0 from the Calderón-Vaillancourt theorem (cf.

[2], Theorem 1.6, p.224 of [23]). Thus we could complete the proof of Theorem

3.3.

4 Consistency of G(t, s)

Let Gϵ(t, s) be the operator defined by (1.11).

Proposition 4.1. Let H(t) be the Dirac operator defined by (1.2). Then

for f ∈ S we have

[
i
∂

∂t
−H(t)

]
Gϵ(t, s)f = Rϵ(t, s)f

:=

∫∫
r(t, s; x, y)eiS(t,s;x,ξ,y)f(y)χ(ϵξ)dyd̄ξ, (4.1)
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where

r(t, s; x, y) = (x− y) ·
∫ 1

0

(1− θ)E(t− θ(t− s), x− θ(x− y))dθ

− c
d∑

j=1

α̂(j)

[∫ 1

0

{
Aj(t− θ(t− s), x− θ(x− y))− Aj(t, x)

}
dθ

+ (x− y) ·
∫ 1

0

(1− θ)
∂A

∂xj
(t− θ(t− s), x− θ(x− y))dθ

− (t− s)

∫ 1

0

(1− θ)
∂V

∂xj
(t− θ(t− s), x− θ(x− y))dθ

]
. (4.2)

Proof. We sometimes write ρ = t−s. The classical action S(t, s; x, ξ, y) defined

by (1.10) can be written as

S(t, s; x, ξ, y) = (x− y) · ξ + (x− y) ·
∫ 1

0

A(t− θ(t− s), x− θ(x− y))dθ

−
∫ t

s

V

(
θ, y +

θ − s

t− s
(x− y)

)
dθ − (t− s)(cα̂ · ξ + β̂mc2)

= (x− y) · ξ + (x− y) ·
∫ 1

0

A(t− θρ, x− θ(x− y))dθ

− (t− s)

∫ 1

0

V (t− θρ, x− θ(x− y))dθ − (t− s)(cα̂ · ξ + β̂mc2). (4.3)

So we have

∂tS(t, s; x, ξ, y) = (x− y) ·
∫ 1

0

(1− θ)
∂A

∂t
(t− θρ, x− θ(x− y))dθ − V (t, x)

+
1

t− s

∫ t

s

θ − s

t− s
(x− y) · ∂V

∂x

(
θ, y +

θ − s

t− s
(x− y)

)
dθ − (cα̂ · ξ + β̂mc2)

= (x− y) ·
∫ 1

0

(1− θ)
∂A

∂t
(t− θρ, x− θ(x− y))dθ − V (t, x)

+ (x− y) ·
∫ 1

0

(1− θ)
∂V

∂x
(t− θρ, x− θ(x− y))dθ − (cα̂ · ξ + β̂mc2),
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which shows

∂tS(t, s; x, ξ, y) = −V (t, x)− (cα̂ · ξ + β̂mc2)

− (x− y) ·
∫ 1

0

(1− θ)E(t− θρ, x− θ(x− y))dθ (4.4)

from (1.1). We should note

∂

∂t
eiS(t,s;x,ξ,y) = i

∂S

∂t
eiS(t,s;x,ξ,y) = ieiS(t,s;x,ξ,y)

∂S

∂t
(4.5)

because the matrix term in S is only −(t − s)(cα̂ · ξ + β̂mc2). From (4.3) we

have

∂xjS(t, s; x, ξ, y) = ξj +

∫ 1

0

Aj(t− θρ, x− θ(x− y))dθ

+ (x− y) ·
∫ 1

0

(1− θ)
∂A

∂xj
(t− θρ, x− θ(x− y))dθ

− ρ

∫ 1

0

(1− θ)
∂V

∂xj
(t− θρ, x− θ(x− y))dθ

and so

∂xjS(t, s; x, ξ, y)− Aj(t, x) = ξj +

∫ 1

0

{
Aj(t− θρ, x− θ(x− y))

− Aj(t, x)
}
dθ + (x− y) ·

∫ 1

0

(1− θ)
∂A

∂xj
(t− θρ, x− θ(x− y))dθ

− ρ

∫ 1

0

(1− θ)
∂V

∂xj
(t− θρ, x− θ(x− y))dθ. (4.6)

We also note

∂

∂xj
eiS(t,s;x,ξ,y) = i

∂S

∂xj
eiS(t,s;x,ξ,y) = ieiS(t,s;x,ξ,y)

∂S

∂xj
. (4.7)
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From (4.4)-(4.7) we have

[
i
∂

∂t
−H(t)

]
eiS(t,s;x,ξ,y) =

[
i
∂

∂t
−
{
c

d∑

j=1

α̂(j)

(
1

i

∂

∂xj
− Aj(t, x)

)

+ β̂mc2 + V (t, x)
}]

eiS = −
{
∂S

∂t
+ c

d∑

j=1

α̂(j)(∂xjS − Aj) + β̂mc2

+ V (t, x)

}
eiS = −

[
∂S

∂t
+ c

d∑

j=1

α̂(j)
{
ξj +

∫ 1

0

(
Aj(t− θρ, x− θ(x− y))

− Aj(t, x)
)
dθ + (x− y) ·

∫ 1

0

(1− θ)
∂A

∂xj
(t− θρ, x− θ(x− y))dθ

− ρ

∫ 1

0

(1− θ)
∂V

∂xj
(t− θρ, x− θ(x− y))dθ

}
+ β̂mc2 + V (t, x)

]
eiS

=
[
(x− y) ·

∫ 1

0

(1− θ)E(t− θρ, x− θ(x− y))dθ

− c
d∑

j=1

α̂(j)
{∫ 1

0

(
Aj(t− θρ, x− θ(x− y))− Aj(t, x)

)
dθ

+ (x− y) ·
∫ 1

0

(1− θ)
∂A

∂xj
(t− θρ, x− θ(x− y))dθ

− ρ

∫ 1

0

(1− θ)
∂V

∂xj
(t− θρ, x− θ(x− y))dθ

}]
eiS,

which shows (4.2).

Theorem 4.2. Let Rϵ(t, s) be the operator defined by (4.1). Then under

the assumptions of Theorem 2.2 there exists an operator R(t, s) independent

of the choice of χ on S such that

lim
ϵ→0

Rϵ(t, s)f = R(t, s)f (4.8)

in S for all f ∈ S. We also have

∥R(t, s)f∥ ≤ C|t− s|∥ < · >M f∥, 0 ≤ s, t ≤ T (4.9)

for f ∈ S with a constant C ≥ 0.
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Proof. Since we assume (2.1), (2.6) and (2.7), we can prove (4.8) in S for f ∈ S

from (4.1) and (4.2) as in the proof of Proposition 3.2.

We note that r(t, s; x, y) defined by (4.2) is a Hermitian matrix. So as in

the proof of (3.7) we have

(Rϵ(t, s)
∗f)(x) =

∫∫
e−iS(t,s;y,ξ,x)r(t, s; y, x)f(y)χ(ϵξ)dyd̄ξ. (4.10)

Hence we can prove

(Rϵ(t, s)
∗Rϵ(t, s)f) (x) =

∫∫
e−iS(t,s;y,ξ,x)r(t, s; y, x)χ(ϵξ)dyd̄ξ

×
∫∫

r(t, s; y, z)eiS(t,s;y,η,z)f(z)χ(ϵη)dzd̄η =

∫∫
ei(x−z)·ξdzd̄ξ

×
∫∫

e−iη·wei(t−s)(cα̂·ξ+cα̂·Ψ+β̂mc2)r(t, s;w + z, x)r(t, s;w + z, z)

× e−i(t−s)(cα̂·ξ+cα̂·Ψ+β̂mc2−cα̂·η)χ(ϵ(ξ +Ψ))χ(ϵ(ξ +Ψ− η))f(z)dwd̄η (4.11)

with Ψ = Ψ(t, s; x, w + z, z) as in the proof of (3.6).

We can write (4.2) as

r(t, s; x, y) = (x− y) ·
∫ 1

0

(1− θ)E(t− θρ, x− θ(x− y))dθ

+ c
d∑

j=1

α̂(j)

{
(t− s)

∫ 1

0

θdθ

∫ 1

0

∂Aj

∂t
(t− θ′θρ, x− θ(x− y))dθ′

+ (x− y) ·
∫ 1

0

θdθ

∫ 1

0

∂Aj

∂x
(t, x− θ′θ(x− y))dθ′

− (x− y) ·
∫ 1

0

(1− θ)
∂A

∂xj
(t− θρ, x− θ(x− y))dθ

+ (t− s)

∫ 1

0

(1− θ)
∂V

∂xj
(t− θρ, x− θ(x− y))dθ

}
. (4.12)

Let us apply (4.12) to r(t, s;w + z, x) and r(t, s;w + z, z) in (4.11). Noting

w + z − x = w − (x − z), w + z − z = w, iwje−iη·w = −∂ηje−iη·w and i(xj −
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zj)e−i(x−z)·ξ = ∂ξje
−i(x−z)·ξ, we integrate by parts with respect to ξ and η in

(4.11). Then from the assumptions of Theorem 4.2 we can prove

lim
ϵ→0

Rϵ(t, s)
∗Rϵ(t, s)f = (t− s)2Q(t, s)f (4.13)

as in the proof of (3.12), where Q(t, s) is a pseudo-differential operator with

symbol qij(t, s; x, ξ, z) (i, j = 1, 2, . . . , N) satisfying

|∂αξ ∂βx∂γz qij(t, s; x, ξ, z)| ≤ Cα,β,γ(< x >2M + < z >2M), 0 ≤ s, t ≤ T (4.14)

in R3d for all α, β and γ. Set

q̃ij(t, s; x, ξ) =< x >−M Os−
∫∫

e−iy·ηqij(t, s; x, ξ+η, x+y) < x+y >−M dyd̄η.

Then from (4.14) we have

|∂αξ ∂βx q̃ij(t, s; x, ξ)| ≤ Cα,β, 0 ≤ s, t ≤ T

in R2d for all α and β as in the proof of Proposition 3.2, which shows

∥Q̃ij(t, s;X,Dx)f∥ ≤ C∥f∥, 0 ≤ s, t ≤ T

for f ∈ L2 with a constant C ≥ 0 from the Calderón-Vaillancourt theorem.

We also have

Q(t, s)f =< · >M Q̃(t, s)
(
< · >M f

)

from Theorem 2.5, p.73 of [23]. Hence from (4.8) and (4.13) we get

∥R(t, s)f∥2 = (t− s)2(Q(t, s)f, f)

= (t− s)2(< · >M Q̃(t, s)
(
< · >M f

)
, f) ≤ C(t− s)2∥ < · >M f∥2

with another constant C ≥ 0. Thus we could complete the proof.
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Theorem 4.3. Under the assumptions of Theorem 2.2 we have

∥R(t, s)f∥Ba
M
≤ Ca|t− s|∥f∥Ba+1

M
, 0 ≤ s, t ≤ T (4.15)

for a = 0, 1, 2, . . . with constants Ca ≥ 0.

Proof. For a = 0 we proved (4.15) in Theorem 4.2. Let a = 1, 2, . . . . We can

easily have

< x >aM Rϵ(t, s)f =

∫∫
< x >aM r(t, s; x, y)eiS(t,s;x,ξ,y)f(y)χ(ϵξ)dyd̄ξ

from (4.1). So as in the proof of (4.9) we get

∥ < · >aM R(t, s)f∥ ≤ Ca|t− s|∥ < · >(a+1)M f∥, 0 ≤ s, t ≤ T. (4.16)

Let w ∈ Rd and set

φ(t, s; x, ξ, w) := −w · ξ − w ·
∫ 1

0

A(t− θρ, x+ θw)dθ

− ρ

∫ 1

0

V (t− θρ, x+ θw)dθ − ρ(cα̂ · ξ + β̂mc2). (4.17)

Then from (4.1) and (4.3) we can write

(Rϵ(t, s)f)(x) =

∫∫
r(t, s; x, x+ w)eiφ(t,s;x,ξ,w)f(x+ w)χ(ϵξ)dwd̄ξ. (4.18)

Let γ be a multi-index such that |γ| = a. Then it follows from (4.12), (4.17)

and (4.18) that

∂γx
(
Rϵ(t, s)f

)
=
∑

κ≤γ

Rκϵ(t, s)∂
κ
xf, (4.19)

rκ(t, s; x, y) = w · r(1)κ (t, s; x, y) + (t− s)r(2)κ (t, s; x, y), w = y − x, (4.20)

where r(1)κ ∈ Rd and we have

|∂αx∂βy r(j)κ (t, s; x, y)| ≤ Cα,β(< x >M + < y >M)|γ−κ|+1, 0 ≤ s, t ≤ T
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for all α, β and j = 1, 2 from (2.1) and (2.6)-(2.8). Hence as in the proof of

(4.9) we can see

∥∂γx
(
R(t, s)f

)
∥ ≤ Ca|t− s|

∑

κ≤γ

∥ < · >M(|γ−κ|+1) ∂κxf∥. (4.21)

Because of

s1s2 ≤
1

p
sp1 +

1

q
sq2,

1

p
+

1

q
= 1

for s1, s2 ≥ 0 and 1 < p it holds

< x >M(k+1−k′)< ξ >k′≤ 1

p
< x >M(k+1) +

1

q
< ξ >k+1 (4.22)

for integers 0 ≤ k′ ≤ k with some constants p > 1 and q = p/(1 − p)(> 1).

It follows from Lemma 2.3 in [15] that there exist a constant µa ≥ 0 and a

function pa,M(x, ξ) satisfying

|∂αξ ∂βxpa,M(x, ξ)| ≤ Cα,β(1+ < x >aM + < ξ >a)−1 (4.23)

in R2d for all α and β, and

Pa,M(x,Dx)f = Λ−1
a,Mf :=

(
µa+ < X >aM + < Dx >a

)−1
f (4.24)

for f ∈ S. Consequently we can easily see from (4.22) as in the proof of (4.9)

that < · >M(|γ−κ|+1) ∂κx · Pa+1,M(X,Dx) is a bounded operator on L2. Hence

from (4.21) and (4.24) we have

∥∂γx
(
R(t, s)f

)
∥ ≤ C ′

a|t− s|∥Λa+1,Mf∥,

which shows

∥∂γx
(
R(t, s)f

)
∥ ≤ Ca|t− s|∥f∥Ba+1

M
(4.25)

for |γ| = a with another constant Ca ≥ 0 from Lemma 2.4 in [15]. Thus we

can complete the proof together with (4.16).
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Corollary 4.4. Let G(t, s) be the operator defined in Proposition 3.2. We

assume (2.1), (2.2), (2.6) and (2.7). Then we have

∥G(t, s)f∥Ba
M
≤ Ca∥f∥Ba

M
, 0 ≤ s, t ≤ T (4.26)

for a = 0, 1, 2, . . . with constants Ca ≥ 0.

Proof. We proved (4.26) in Theorem 3.3 for a = 0. Let a ≥ 1. We can easily

see

∥ < · >aM G(t, s)f∥ ≤ Ca∥ < · >aM f∥

as in the proof of (4.16). We can also prove

∥∂γxG(t, s)f∥ ≤ Ca∥f∥Ba
M

for |γ| = a as in the proof of (4.25). Hence we can complete the proof.

5 Proof of the main results

Theorem 5.1. Let G(t, s) be the operator defined in Proposition 3.2. We

assume (2.1), (2.2), (2.6) and (2.7). Then, there exist constants Ka ≥ 0 (a =

1, 2, . . . ) such that

∥G(t, s)f∥Ba
M
≤ eKa|t−s|∥f∥Ba

M
, 0 ≤ s, t ≤ T (5.1)

for f ∈ S.

Proof. Letting φ(t, s; x, ξ, w) be the function defined by (4.17), we can write

(Gϵ(t, s)f)(x) =

∫∫
eiφ(t,s;x,ξ,w)f(x+ w)χ(ϵξ)dwd̄ξ (5.2)
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from (1.11) and (4.3) as in the way of (4.18). Let γ be a multi-index such that

|γ| = aM . Then it holds

xγGϵ(t, s)f −Gϵ(t, s)
(
xγf

)
= −

∫∫
eiφ(t,s;x,ξ,w)

{
(x+ w)γ − xγ

}

× f(x+ w)χ(ϵξ)dwd̄ξ =

∫∫
eiφ(t,s;x,ξ,w)w · q(x, w)f(x+ w)χ(ϵξ)dwd̄ξ

=

∫∫
eiS(t,s;x,ξ,y)(y − x) · q(x, y − x)f(y)χ(ϵξ)dyd̄ξ, (5.3)

where we have

|∂αx∂βwqj(x, w)| ≤ Cα,β(< x >aM−1 + < w >aM−1) (5.4)

for all α and β and j = 1, 2, . . . , d as in the proof of (4.22). Consequently as

in the proof of Theorem 4.2 we can prove

∥xγG(t, s)f −G(t, s)
(
xγf

)
∥ ≤ C|t− s|∥ < · >aM−1 f∥, (5.5)

which shows

∥xγG(t, s)f∥ ≤ ∥G(t, s)
(
xγf

)
∥+ C|t− s|∥ < · >aM−1 f∥

≤ eK(t−s)2∥xγf∥+ C|t− s|∥ < · >aM−1 f∥ (5.6)

for |γ| = aM from (1.14).

Let γ be a multi-index such that |γ| = a. From (4.17) and (5.2) we write

∂γx
(
Gϵ(t, s)f

)
= Gϵ(t, s)

(
∂γxf

)
+
∑

κ<γ

Pκ(t, s)∂
κ
xf, (5.7)

where we have

pκ(t, s; x, y) = w · p(1)κ (t, s; xy) + (t− s)p(2)κ (t, s; x, y), w = y − x (5.8)

and

|∂αx∂βy p(j)κ (t, s; x, y)| ≤ Cα,β(< x >M + < y >M)(a−|κ|), 0 ≤ s, t ≤ T (5.9)
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for all α and β and j = 1, 2 as in the proof of (4.19) and (4.20). Consequently

as in the proof of Theorem 4.2 or (4.21) we get

∥Pκ(t, s)∂κxf∥ ≤ C|t− s|∥ < · >M(a−|κ|) ∂κxf∥

and so as in the proof of (4.25)

∥Pκ(t, s)∂κxf∥ ≤ C ′|t− s|∥f∥Ba
M
,

which shows

∥∂γx
(
G(t, s)f

)
∥ ≤ ∥G(t, s)

(
∂γxf

)
∥+ C ′′|t− s|∥f∥Ba

M

≤ eK(t−s)2∥∂γxf∥+ C ′′|t− s|∥f∥Ba
M

(5.10)

from (1.14) and (5.7). Hence we obtain

∥G(t, s)f∥Ba
M
≤ eK(t−s)2∥f∥Ba

M
+ Ca|t− s|∥f∥Ba

M
≤ eKa|t−s|∥f∥Ba

M

together with (5.6), which completes the proof.

The theorem below has been proved in Example 1.1, p.329 of [15].

Theorem 5.2. We assume (2.6) and (2.7). Let 0 ≤ s ≤ T and consider

the Dirac equation (1.2) with u(s) = f ∈ Ba
M+1 (a = 0, 1, 2, . . . ). Then there

exists a unique solution U(t, s)f ∈ E0
t ([0, T ];B

a
M+1) ∩ E1

t ([0, T ];B
a−1
M+1), which

satisfies

∥U(t, s)f∥ = ∥f∥, ∥U(t, s)f∥Ba
M+1

≤ Ca(T )∥f∥Ba
M+1

(a = 1, 2, . . . ), 0 ≤ s, t ≤ T. (5.11)

Proposition 5.3. Under the assumptions of Theorem 2.2 we have

∥G(t, s)f − U(t, s)f∥Ba
M+1

≤ Ca(t− s)2∥f∥Ba+2
M+1

, 0 ≤ s, t ≤ T (5.12)

for a = 0, 1, 2, . . . and f ∈ S.

28



Proof. Let us write ρ = t− s as in §4. From (4.1) we have

i
Gϵ(s+ ρ, s)f − f

ρ
=

∫ 1

0

i
∂Gϵ

∂t
(s+ θρ, s)fdθ

=

∫ 1

0

{
H(s+ θρ)Gϵ(s+ θρ, s)f +Rϵ(s+ θρ, s)f

}
dθ (5.13)

and so

i
Gϵ(s+ ρ, s)f − f

ρ
−H(s)f =

∫ 1

0

Rϵ(s+ θρ, s)fdθ +

∫ 1

0

H(s+ θρ)

·
{
Gϵ(s+ θρ, s)f − f

}
dθ +

∫ 1

0

{
H(s+ θρ)−H(s)

}
fdθ.

In the same way we have

i
U(s+ ρ, s)f − f

ρ
−H(s)f =

∫ 1

0

H(s+ θρ)
{
U(s+ θρ, s)f − f

}
dθ

+

∫ 1

0

{
H(s+ θρ)−H(s)

}
fdθ.

Consequently we get

i
Gϵ(s+ ρ, s)f − U(s+ ρ, s)f

ρ
=

∫ 1

0

Rϵ(s+ θρ, s)fdθ +

∫ 1

0

H(s+ θρ)

·
{
Gϵ(s+ θρ, s)f − f

}
dθ −

∫ 1

0

H(s+ θρ)
{
U(s+ θρ, s)f − f

}
dθ,

which shows

i
G(s+ ρ, s)f − U(s+ ρ, s)f

ρ
=

∫ 1

0

R(s+ θρ, s)fdθ +

∫ 1

0

H(s+ θρ)

·
{
G(s+ θρ, s)f − f

}
dθ −

∫ 1

0

H(s+ θρ)
{
U(s+ θρ, s)f − f

}
dθ (5.14)

for f ∈ S from Proposition 3.2 and Theorem 4.2 as ϵ→ 0. Applying Theorem

4.3 to (5.14), we get

1

|ρ|∥G(t, s)f − U(t, s)f∥Ba
M+1

≤ Ca

(
|ρ|∥f∥Ba+1

M+1
+

∫ 1

0

∥G(s+ θρ, s)f

− f∥Ba+1
M+1

dθ +

∫ 1

0

∥U(s+ θρ, s)f − f∥Ba+1
M+1

dθ
)
. (5.15)
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Now we go back to (5.13). Then it follows from (4.15) and (4.26) that

1

|ρ|∥G(s+ ρ, s)f − f∥Ba+1
M+1

≤ Ca

∫ 1

0

(
∥G(s+ θρ, s)f∥Ba+2

M+1

+ ∥R(s+ θρ, s)f∥Ba+1
M+1

)
dθ ≤ C ′

a∥f∥Ba+2
M+1

. (5.16)

In the same way it follows from (5.11) that

1

|ρ|∥U(s+ ρ, s)f − f∥Ba+1
M+1

≤ C ′
a∥f∥Ba+2

M+1
.

Hence together with (5.15) we obtain

∥G(t, s)f − U(t, s)f∥Ba
M+1

≤ Caρ
2∥f∥Ba+2

M+1

with another constant Ca, which shows (5.12).

Let us prove Theorem 2.1. We first state the lemma below, which has been

proved in Lemma 6.1 of [17].

Lemma 5.4. Under the assumptions of Theorem 2.1 there exists an elec-

tromagnetic potential (V,A) such that V = 0 and

|∂αxAj(t, x)|+ |∂t∂αxAj(t, x)| ≤ Cα, |α| ≥ 1 (5.17)

in [0, T ]×Rd for j = 1, 2, . . . , d.

For a while we fix the electromagnetic potential (V,A) found in Lemma 5.4.

We note that this (V,A) satisfies (2.6), (2.7) and (2.8) for all α with M = 1.

Applying Proposition 3.2 to (1.12), we have (1.16) for f ∈ S. So we can see

from Theorem 3.3 that KD∆(t, 0) can be extended to a bounded operator on

L2.
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Let |∆| ≤ 1 and f ∈ B2
2 . From (1.16) we have

KD∆(t, 0)f − U(t, 0)f = G(t, τν−1) · · ·G(τ1, 0)f − U(t, τν−1) · · ·U(τ1, 0)f

=
ν∑

j=1

G(t, τν−1) · · ·G(τj+1, τj)
{
G(τj, τj−1)− U(τj, τj−1)

}
U(τj−1, 0)f. (5.18)

Applying (1.7), (1.14), (5.11) and (5.12) to (5.18), we get

∥KD∆(t, 0)f − U(t, 0)f∥ ≤ C
ν∑

j=1

eKL0(τj − τj−1)
2∥U(τj−1, 0)f∥B2

2

≤ C ′|∆|L0e
KL0∥f∥B2

2
(5.19)

with constants C and C ′.

Let f ∈ L2. For any ϵ > 0 we take a g ∈ B2
2 such that ∥g − f∥ < ϵ. Then

from (1.14), (5.11) and (5.19) we have

∥KD∆(t, 0)f − U(t, 0)f∥ ≤ ∥KD∆(t, 0)g − U(t, 0)g∥+ ∥KD∆(t, 0)(f − g)∥

+ ∥U(t, 0)(f − g)∥ ≤ C ′|∆|L0e
KL0∥g∥B2

2
+ eKL0∥f − g∥+ ∥f − g∥

≤ C ′|∆|L0e
KL0∥g∥B2

2
+ (1 + eKL0)ϵ.

Hence we can prove that as |∆| → 0 under the assumption (1.7), KD∆(t, 0)f

converges to the solution U(t, 0)f to (1.2) with u(0) = f in L2 uniformly in

t ∈ [0, T ].

Let 0 < t1 < t. We take arbitrary subdivisions ∆1 and ∆2 of [0, t1] and

[t1, t] respectively. Let us consider the subdivision ∆ = ∆1 ∪∆2 of [0, t]. The

point t1 is included in ∆ as a subdividing point. Then from (1.16) we have

KD∆(t, 0)f = KD∆2(t, t1)KD∆1(t1, 0)f

for f ∈ S and so f ∈ L2. So, letting |∆| → 0, we can prove the first equation

of the rule of two events (2.3) from the convergence of KD∆(t, 0)f to KD(t, 0)f
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proved above and the stability (1.14). In the same way we can also prove the

second equation of (2.3).

Let us consider the gauge transformation (2.4). Let us write S(t, s; x, ξ, y)

defined by (1.10) for (V ′, A′) as S ′(t, s; x, ξ, y). Then we have

S ′(t, s; x, ξ, y) = S(t, s; x, ξ, y) + ψ(t, x)− ψ(s, y). (5.20)

Since (G′
ϵ(t, s)f)(x) = eiψ(t,x)Gϵ(t, s)(e−iψ(s,·)f)(x) holds from (1.11),K ′

D∆(t, 0)f =

eiψ(t,·)KD∆(t, 0)(e−iψ(0,·)f) follows from (1.16). Hence we have (2.5) for f ∈ L2.

Thus we could complete the proof of Theorem 2.1 for (V,A) found in Lemma

5.4.

Let (V ′, A′) be a general electromagnetic potential for E and (B)1≤j<k≤d

in Theorem 2.1 such that V ′, ∂xjV
′, ∂tA′

k and ∂xjA
′
k (j, k = 1, 2, . . . , d) are

continuous in [0, T ] × Rd. Let (V,A) be the potential found in Lemma 5.4.

Then, as was proved in p. 1024 of [17], there exists a real-valued function

ψ(t, x) such that ∂xj∂xk
ψ and ∂t∂xk

ψ are continuous in [0, T ] × Rd and (2.4)

holds. We know in the above that (2.5) holds. We proved the results (1)-(5)

of Theorem 2.1 for (V,A). Thus we can easily complete the proof of Theorem

2.1 for (V ′, A′) from (2.5).

As in the proof of Theorem 2.1 we can prove Theorem 2.2 from Theorems

5.1, 5.2 and Proposition 5.3.

Remark 5.1. In the present paper, to prove Theorems 2.1 and 2.2 we used

the existence theorem of the solutions to the Dirac equation (1.2) stated in

Theorem 5.2. This idea is originated in [24]. Here we note that following the

proof of Theorem 1 in [19], we can prove directly Theorems 2.1 and 2.2 in the

present paper from Theorems 3.3, 4.3 and 5.1 without the existence theorem,

i.e. Theorem 5.2 to (1.2), though the proof is more complicated than ours.
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