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We study the magnitude of D-components in a generic supersymmetric field theory.
There exists F -component whose vacuum expectation value is comparable to or higher than
that of D-component, in the absence of the Fayet-Iliopoulos term, the large hierarchy in
the charge spectrum and strongly interacting higher-dimensional couplings in the Kähler
potential, if contributions from terms other than the F - and D-terms are negligible.

Subject Index: 111, 112

§1. Introduction

Much effort has been devoted to constructing a realistic model beyond the stan-
dard model (SM) based on supersymmetry (SUSY), which is broken softly in our
visible world. The SUSY is broken by nonvanishing vacuum expectation values
(VEVs) of some auxiliary fields (F and/or D) in a SUSY-breaking sector. The
breakdown of SUSY is mediated to our visible world by some messengers. Then,
soft SUSY-breaking parameters depend on the VEVs of F and D, reflecting on how
to break SUSY and how to mediate the breakdown of SUSY.

Recently, the role of D-terms in the breakdown of SUSY has been attracting
attention for general gauge mediation.1),2) The D-terms have also played an impor-
tant role through the D-term contribution to scalar masses,3),4) in various models,
e.g., SUSY grand unified theories,5),6) effective theories from string models,7)–12)

effects due to the kinetic mixing,13) the gauge mediation,14),15) the anomaly medi-
ation,16),17) the mirage mediation18) and models with Dirac gauginos.19),20) Hence,
it would be useful to set a course of model building if we obtain constraints on the
VEVs of F and D model-independently.

There is the theorem that if the VEVs of all F -components vanish, i.e., 〈FI〉 =
〈∂W/∂φI〉 = 0, where W is the superpotential and φI are scalar fields, there exists
a SUSY-preserving solution satisfying the D-flat conditions, 〈Dα〉 = 〈φ†

I(T
αφ)I〉 =

0.21),22) It is known that the VEV of the dominant F -component is comparable to
or higher than that of any D-components in most SUSY breaking solutions through
the analysis of explicit models. There are models that the VEV of the dominant
D-component can be bigger than that of any F -components in the presence of the
Fayet-Iliopoulos (FI) term23) or the large hierarchy in the charge spectrum.24) It is
interesting to know whether these features hold in a more generic framework of the
SUSY field theory. This is the motivation of our work.

In this paper, we study the magnitude of D-components model-independently,
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510 Y. Kawamura

that is, without specifying the form of the Kähler potential (matter kinetic function),
superpotential and gauge kinetic function. In the next section, we consider a generic
global SUSY field theory in the absence of the FI term. In §3, we extend our
discussion to the case with the FI term, soft SUSY-breaking terms and the local
SUSY in order. In §4, we present conclusions and a discussion.

§2. Magnitude of D-component in global SUSY field theory

Let us consider the global SUSY Lagrangian density,

LSUSY =
∫

d2θd2θK(ΦI , Φ†
J , V ) +

[∫
d2θW (ΦI) + h.c.

]

+
[
1
4

∫
d2θfαβ(ΦI)WαW β + h.c.

]
, (2.1)

where ΦI , Φ†
J and V = V αTα are chiral scalar superfields, anti-chiral scalar super-

fields and vector superfields, respectively, Tα are gauge transformation generators,
h.c. stands for the hermitian conjugate and Wα are chiral spinor superfields con-
structed from V α. K(ΦI , Φ†

J , V ), W (ΦI) and fαβ(ΦI) are Kähler potential (mat-
ter kinetic function), superpotential and gauge kinetic function, respectively. Both
K(ΦI , Φ†

J , V ) and W (ΦI) are gauge invariant. The last terms on the right-hand side
of (2.1) come from the following terms,[

1
2

∫
d2θtr

(
f(ΦI)(WαTα)(W βT β)

)
+ h.c.

]
, (2.2)

where tr represents the trace over the gauge generators.
The scalar potential is given by

VSUSY = −F IKJ
I FJ − F I ∂W

∂φI
− FJ

∂W

∂φ†
J

− 1
2
RefαβDαDβ − Dα(KI(Tαφ)I)

=
∂W

∂φ†
J

(
K−1

)I
J

∂W

∂φI
+

1
2
(
Ref−1

)
αβ

(KI(Tαφ)I)(KJ(T βφ)J) , (2.3)

where F I , FJ and Dα are auxiliary components in ΦI , Φ†
J and V α. Here, K =

K(φI , φ†
J), W = W (φI), W = W (φ†

J), fαβ = fαβ(φI), KI = ∂K/∂φI , KJ
I =

∂2K/∂φI∂φ†
J etc. The φI and φ†

J are scalar components in ΦI and Φ†
J , respectively.

(Ref−1)αβ and (K−1)I
J are the inverse matrices of Refαβ and KJ

I , respectively. The
last equality in (2.3) is derived using the equations of motion,

F IKJ
I +

∂W

∂φ†
J

= 0 , KJ
I FJ +

∂W

∂φI
= 0 , (2.4)

RefαβDβ + KI(Tαφ)I = 0 . (2.5)

The scalar potential is rewritten as

VSUSY = F IKJ
I FJ +

1
2
RefαβDαDβ , (2.6)
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Limitation on Magnitude of D-Components 511

where F I = −(K−1)I
J∂W/∂φ†

J , FJ = −(K−1)I
J∂W/∂φI and Dα = −(Ref−1)αβ

(KI(T βφ)I).
The derivative of VSUSY by φI′ is given by

∂VSUSY

∂φI′ = −F IKJ
II′FJ − F I ∂2W

∂φI∂φI′

− 1
2
(Refαβ)I′D

αDβ − (φ†Tα)IK
I
I′D

α , (2.7)

using the identity derived from the gauge invariance of Kähler potential,

KI(Tαφ)I = (φ†Tα)IK
I . (2.8)

From the stationary condition 〈∂VSUSY/∂φI′〉 = 0, we derive the formula:

〈F I〉〈KJ
II′〉〈FJ〉 + μII′〈F I〉
+

1
2
〈(Refαβ)I′〉〈Dα〉〈Dβ〉 + 〈(φ†Tα)I〉〈KI

I′〉〈Dα〉 = 0 , (2.9)

where μII′ ≡ 〈∂2W/∂φI∂φI′〉 is the SUSY mass coming from the superpotential.
By multiplying (Tα′

φ)I′ with (2.7), we obtain

∂VSUSY

∂φI′ (Tα′
φ)I′ = −F I(KI′(Tα′

φ)I′)J
I FJ

− 1
2
(Refαβ)I′(Tα′

φ)I′DαDβ − (φ†Tα)IK
I
I′(T

α′
φ)I′Dα , (2.10)

where we use (2.8) and the identities derived from the gauge invariance of the su-
perpotential,

∂W

∂φI′ (T
α′

φ)I′ = 0 ,
∂W

∂φI∂φI′ (T
α′

φ)I′ +
∂W

∂φI′ (T
α′

)I′
I = 0 . (2.11)

Taking its VEV and using the stationary condition, we derive the formula:

〈F I〉
〈
(KI′(Tα′

φ)I′)J
I

〉
〈FJ〉

+
1
2
〈(Refαβ)I′〉〈(Tα′

φ)I′〉〈Dα〉〈Dβ〉 + (M̂2
V )αα′〈Dα〉 = 0 , (2.12)

where (M̂2
V )αα′

= 〈(φ†Tα)IK
I
I′(T

α′
φ)I′〉 is the mass matrix of the gauge bosons up

to the normalization due to the gauge coupling constants. The formula (2.12) is a
counterpart of (B.13) in Ref. 25).

By multiplying (K−1)I′
I′′K

I′′ with (2.7), we obtain

∂VSUSY

∂φI′ (K−1)I′
I′′K

I′′

= −F IKJ
II′FJ(K−1)I′

I′′K
I′′ − F I ∂2W

∂φI∂φI′ (K
−1)I′

I′′K
I′′

− 1
2
(Refαβ)I′(K−1)I′

I′′K
I′′DαDβ + RefαβDαDβ . (2.13)
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512 Y. Kawamura

The relation (2.13) is a counterpart of the identity (4.5) in Ref. 2). Taking its VEV
and using the stationary condition, we derive the formula:

〈F I〉〈KJ
II′〉〈FJ〉〈(K−1)I′

I′′〉〈KI′′〉 + μII′〈F I〉〈(K−1)I′
I′′〉〈KI′′〉

+
1
2
〈(Refαβ)I′〉〈(K−1)I′

I′′〉〈KI′′〉〈Dα〉〈Dβ〉 = 〈Refαβ〉〈Dα〉〈Dβ〉 . (2.14)

We rearrange the fields into those forming irreducible representations such as
(Tα)J

I = Tα
(I)δ

J
I under gauge groups where Tα

(I) is the representation matrix for ΦI

and the same notation for ΦI is used. In K = K(φI , φ†
J), the fields with the same

representation can be mixed such that

K = aJ
I φ†

JφI +
aJ

II′

Λ
φ†

JφIφI′ + · · · , (2.15)

where aJ
I and aJ

II′ are coefficients and Λ is a high-energy scale. The VEV of KJ
I is

estimated as

〈KJ
I 〉 = aJ

I +
aJ

II′

Λ
〈φI′〉 +

aJ
I′I
Λ

〈φI′〉 + · · ·
= aJ

I + O(〈φI′〉/Λ) , (2.16)

where we assume that the magnitudes of aJ
II′ and other higher coefficients are at

most O(1) and the magnitude of 〈φI′〉 is comparable to or less than Λ.
The nonvanishing VEV of D-component implies the breakdown of gauge symme-

try by the VEV of some gauge nonsinglet scalar fields, in the absence of the FI term.
The nonvanishing components in 〈D〉 ≡ 〈Dα〉Tα are those for diagonal generators
T a because 〈D〉 is transformed into 〈Da〉T a by some unitary matrix U . Because the
fields forming the same representation change in the same manner under the unitary
transformation, the form of K is invariant after the redefinition of fields by U and
we use the same notation for fields to avoid confusion. The VEV of Da is written as

〈Da〉 = −〈(Ref−1)aa〉〈KI(T aφ)I〉 = −g2
aq

a
(φI)〈KIφ

I〉

= −g2
aq

a
(φI)

(
aJ

I 〈φ†
J〉〈φI〉 +

aJ
II′

Λ
〈φ†

J〉〈φI〉〈φI′〉 + · · ·
)

= −g2
aq

a
(φI)

((
〈KJ

I 〉 + O(〈φI′〉/Λ)
)
〈φ†

J〉〈φI〉 +
aJ

II′

Λ
〈φ†

J〉〈φI〉〈φI′〉 + · · ·
)

, (2.17)

where qa
(φI)

is the value of T a
(I) for the nonvanishing component of φI and the gauge

coupling constant ga is given by g2
a = 〈(Ref−1)aa〉. We assume that the magnitude

of 〈KJ
I 〉 is O(1). After the diagonalization of 〈KJ

I 〉, 〈Da〉 is written as

〈Da〉 = −g2
aq

a
(φI)

∣∣〈φI〉∣∣2 (1 + O(〈φI′〉/Λ)
)

, (2.18)

where we also use the same notation for fields after their redefinition. Then the mass
matrix of gauge bosons is diagonalized and the mass of gauge boson for T a is given
by

(M2
V )a = g2

a(M̂
2
V )a = g2

a(q
a
(φI))

2
∣∣〈φI〉∣∣2 . (2.19)
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Limitation on Magnitude of D-Components 513

The first term on the left-hand side of (2.12) for the diagonal generator T a is
written as

〈F I〉
〈
(KI′(T aφ)I′)J

I

〉
〈FJ〉

= 〈F I〉〈KJ
I′〉(T a)J

I′〈FJ〉 + 〈F I〉〈KJ
I′I〉〈(T aφ)I′〉〈FJ〉

= qa
(F I)

∣∣〈F I〉∣∣2 + 〈F I〉〈KJ
I′I〉qa

(φI′)〈φI′〉〈FJ〉

= qa
(F I)

∣∣〈F I〉∣∣2
(

1 + O

(
qa
(φI′)

qa
(F I)

〈φI′〉
Λ

))
, (2.20)

where qa
(F I)

is the value of T a
(I) for the nonvanishing component of F I .

The second term on the left-hand side of (2.12) vanishes for T a because the
relation 〈(Refbc)I〉〈(T aφ)I〉 = 0 holds from the gauge invariance of fbc(ΦI). Here, a,
b and c are indices for the Cartan subalgebra. Notice that fbc(ΦI), Db and Dc are
neutral under the U(1) charges relating the Cartan subalgebra.

Using (2.18) and (2.20), the magnitudes of 〈Da〉 and 〈F I〉
〈
(KI′(T aφ)I′)J

I

〉
〈FJ〉

are bounded as

|〈Da〉| ≤ g2
a|qa

(φI)|
∣∣〈φI〉∣∣2 ∣∣∣1 + O(〈φI′〉/Λ)

∣∣∣ (2.21)

and

〈F I〉
〈
(KI′(T aφ)I′)J

I

〉
〈FJ〉 ≤ |qa

(F I)|
∣∣〈F I〉∣∣2

∣∣∣∣∣1 + O

(
qa
(φI′)

qa
(F I)

〈φI′〉
Λ

)∣∣∣∣∣ , (2.22)

respectively. Using (2.12), (2.19), (2.21) and (2.22), the magnitude of 〈Da〉2 is
bounded as

qa
(φ)〈Da〉2 ≤ (M2

V )a|〈Da〉|
∣∣∣1 + O(〈φI′〉/Λ)

∣∣∣
≤ g2

a|qa
(F I)|

∣∣〈F I〉∣∣2
∣∣∣∣∣1 + O(〈φI′〉/Λ) + O

(
qa
(φI′)

qa
(F I)

〈φI′〉
Λ

)∣∣∣∣∣ , (2.23)

where qa
(φ) is defined by

qa
(φ) ≡

(M̂2
V )a

|qa
(I)(φ)| |〈φI〉|2 =

(qa
(φI)

)2
∣∣〈φI〉∣∣2

|qa
(I)(φ)| |〈φI〉|2 . (2.24)

Equation (2.23) is our master formula and, from (2.23), we find that the magnitude
of 〈Da〉 is comparable to∗) or smaller than that of dominant 〈F I〉∗∗) if the condition
qa
(φ) ≥ O(g2

a|qa
(F I)

|) is fulfilled. Here, we restate our basic assumptions:

∣∣〈φI〉∣∣ ≤ Λ ,
∣∣∣〈KJ1J2···Jm

I1I2···In
〉
∣∣∣ = O

(
1

Λn+m−2

)
. (n + m ≥ 2) (2.25)

∗) There are several models that generate comparable 〈Da〉 and 〈F I〉.2), 26)–28)
∗∗) We assume that the number of 〈F I〉 contributing SUSY breaking dominantly is not so large.
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514 Y. Kawamura

These mean that the breakdown of gauge symmetry occurs below the scale Λ and
there are no strongly interacting higher-dimensional couplings in K, respectively.

In the case of g2
a|qa

(F I)
| � qa

(φ), the magnitude of 〈Da〉 can be much bigger than
that of 〈F I〉 if the equalities in (2.23) hold approximately. Actually, an explicit model
has been constructed with the large hierarchy in the charge spectrum.24) We explain
it briefly. Let us take the O’ Raifertaigh model with the following superpotential W ,

W = λ1Φ0(Φ1Φ
N
−1/N − 1) + λ2Φ1Φ−1 + λ3Φ

′
0Φ1/NΦ−1/N , (2.26)

where Φ0, Φ′
0, Φ1, Φ−1 Φ1/N and Φ−1/N are chiral superfields with U(1) charges 0,

0, 1, −1, 1/N and −1/N . The relation |〈D〉|2 ∼ N |〈F I〉|2 is derived, and it leads to
|〈D〉| � |〈F I〉| if

√
N � 1. Here, D is the D-component of U(1). As the relation

suggests, 〈F1〉 dominates in 〈F I〉 and 〈φ−1/N 〉 dominates in 〈D〉.
In the case of |〈KJ

I′I〉〈φI′〉| � O(1), the term 〈F I〉〈KJ
I′I〉〈(T aφ)I′〉〈FJ〉 dominates

in 〈F I〉
〈
(KI′(T aφ)I′)J

I

〉
〈FJ〉 and 〈Da〉2 is bounded as

qa
(φ)〈Da〉2 ≤ g2

a

∣∣∣〈KJ
I′I〉qa

(φI′)〈φI′〉〈F I〉〈FJ〉
∣∣∣ . (2.27)

Then the magnitude of 〈Da〉 can be much bigger than that of 〈F I〉 if the equality in
(2.27) holds approximately and g2

a|〈KJ
I′I〉qa

(φI′)〈φI′〉| � qa
(φ).

In the case that all F -components vanish, we obtain the relation

1
2
〈(Refαβ)I′〉〈Dα〉〈Dβ〉 + 〈(φ†Tα)I〉〈KI

I′〉〈Dα〉 = 0 , (2.28)

from (2.9) or

1
2
〈(Refαβ)I′〉〈(K−1)I′

I′′〉〈KI′′〉〈Dα〉〈Dβ〉 = 〈Refαβ〉〈Dα〉〈Dβ〉 , (2.29)

from (2.14). Unless 〈Refαβ〉 equals to 1
2〈(Refαβ)I′〉〈(K−1)I′

I′′〉〈KI′′〉,∗) the D-flat
conditions, 〈Dα〉 = 0, are derived and then the SUSY is unbroken.

In this way, we obtain the following results.
(1) The magnitude of 〈Dα〉 is comparable to or smaller than that of dominant 〈F I〉

under the assumptions (2.25), unless the magnitude of the broken charge of
F -components that contribute SUSY breaking is much bigger than that of the
broken charge of scalar components that contribute gauge symmetry breaking.

(2) There always exists a SUSY vacuum in the case that all F -components vanish
and 〈Refαβ〉 is different from 1

2〈(Refαβ)I′〉〈(K−1)I′
I′′〉〈KI′′〉.

§3. Several extensions

We extend our discussion to several cases.
∗) As an example, the relation 〈Refαβ〉 = 1

2
〈(Refαβ)I′〉〈(K−1)I′

I′′〉〈KI′′〉 holds for the canonical

Kähler potential K = |φI |2 and the nonminimal gauge kinetic function fαβ = cαβ(φI)2.
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3.1. Case with FI term

For U(1) gauge symmetries, the following term called Fayet-Iliopoulos term can
be added to LSUSY,

LFI =
∫

d2θd2θξrV
r = ξrD

r , (3.1)

where ξr are constants, V r are U(1) vector superfields and Dr are the auxiliary
components in V r. The equations of motions for D-components are modified as

RefαβDβ + KI(Tαφ)I + ξrδ
αr = 0 . (3.2)

Then the scalar potential is modified as

VSUSY = −F IKJ
I FJ − F I ∂W

∂φI
− FJ

∂W

∂φ†
J

− 1
2
RefαβDαDβ − Dα

(
KI(Tαφ)I + ξrδ

αr
)

=
∂W

∂φ†
J

(
K−1

)I
J

∂W

∂φI

+
1
2
(
Ref−1

)
αβ

(KI(Tαφ)I + ξrδ
αr)(KI(T βφ)I + ξrδ

βr) . (3.3)

Although the same types of formulae (2.9) and (2.12) are derived, the inequalities
on 〈Dr〉2 are different from (2.23) such that

qr
(φ)〈Dr〉2 ≤ ηr(M2

V )r|〈Dr〉|
∣∣∣1 + O(〈φI′〉/Λ)

∣∣∣
≤ ηrg

2
r |qr

(F I)|
∣∣〈F I〉∣∣2

∣∣∣∣∣1 + O(〈φI′〉/Λ) + O

(
qr
(φI′ )

qr
(F I)

〈φI′〉
Λ

)∣∣∣∣∣ , (3.4)

where g2
r = 〈(Ref−1)rr〉, and qr

(φ) and ηr are defined by

qr
(φ)

≡ (M̂2
V )r

|qr
(I)(φ)| |〈φI〉|2 =

(qr
(φI)

)2
∣∣〈φI〉∣∣2

|qr
(φI)

| |〈φI〉|2 (3.5)

and

ηr ≡
|qr

(φI)
| ∣∣〈φI〉∣∣2 + |ξr|

|qr
(φI)

| |〈φI〉|2 , (3.6)

respectively. Here, qr
(φI)

and qr
(F I)

are values of T r
(I) for the nonvanishing components

of φI and F I , respectively. In the case of ηr = O(1), the same result (1) is obtained.
If ηr � 1∗) and the equalities in (3.4) hold approximately, the magnitude of 〈Dr〉

∗) In an extreme case, there is a possibility that the VEV of Dr is ξr itself and nonvanishing

but the U(1) gauge symmetry is not broken with 〈(T rφ)I〉 = 0 and 〈F I〉 = 0, where T r is the U(1)

charge operator.
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516 Y. Kawamura

can be much bigger than that of 〈F I〉 such that

|〈Dr〉| = O(|ξr|) � |〈F I〉| . (3.7)

In the case that all F -components vanish, we obtain the relation (2.28) or

1
2
〈(Refαβ)I′〉〈(K−1)I′

I′′〉〈KI′′〉〈Dα〉〈Dβ〉 + 〈(φ†Tα)IK
I〉〈Dα〉 = 0 . (3.8)

There can appear a non-SUSY vacuum with 〈Dr〉 
= 0, in which the gauge sym-
metry is unbroken with 〈(φ†T r)I〉 = 0, in the case that 〈(Refrr′)I′〉 = 0 and all
F -components vanish with 〈(φ†T r)I〉 = 0.

3.2. Case with soft SUSY-breaking terms

In the case that SUSY is broken in another sector at some high-energy scale, soft
SUSY-breaking terms can appear after mediation by some messengers. We consider
the following type of soft SUSY breaking terms for the scalar potential,∗)

Vsoft = (m2)J
I φ†

JφI +
[
U(φI) + h.c.

]
. (3.9)

In the presence of Vsoft, (2.9) and (2.12) are modified as

〈F I〉〈KJ
II′〉〈FJ〉 + μII′〈F I〉 +

1
2
〈(Refαβ)I′〉〈Dα〉〈Dβ〉

+ 〈(φ†Tα)I〉〈KI
I′〉〈Dα〉 = (m2)J

I′〈φ†
J〉 + 〈UI′〉 (3.10)

and

〈F I〉
〈
(KI′(Tα′

φ)I′)J
I

〉
〈FJ〉 +

1
2
〈(Refαβ)I′〉〈(Tα′

φ)I′〉〈Dα〉〈Dβ〉
+ (M̂2

V )αα′〈Dα〉 = (m2)J
I′〈φ†

J〉〈(Tα′
φ)I′〉 , (3.11)

respectively. The formula (3.11) is a counterpart of (3.54) in Ref. 6).
If the soft SUSY-breaking terms are related to the SUSY extension of SM di-

rectly, the magnitude of (m2)J
I′ should be the same size as or less than O(1) TeV2.

In this case with (M̂2
V )a � (m2)J

I′ , the soft SUSY-breaking terms are treated as
a perturbation. Then the same argument as that in the previous section is ap-
plied, and the same result (1) is obtained if 〈F I〉

〈
(KI′(T aφ)I′)J

I

〉
〈FJ〉 is bigger

than (m2)J
I′〈φ†

J〉〈(T aφ)I′〉.
3.3. Case with local SUSY

In the Einstein supergravity, the scalar potential is given by29),30)

VSG = M2eG/M2
(GI(G−1)J

I GJ − 3M2) +
1
2
RefαβDαDβ , (3.12)

∗) The form of U(φI) is constrained by requiring that the gauge hierarchy achieved by a fine-

tuning in the superpotential should not be violated by soft SUSY breaking terms.6)
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where M is a gravitational scale defined by M ≡ MPl/
√

8π using the Planck scale
MPl, G(φI , φ†

J) is the total Kähler potential defined by

G(φI , φ†
J) ≡ K(φI , φ†

J) + M2 ln
|W (φI)|2

M6
(3.13)

and D-auxiliary fields are defined by

Dα ≡ −(Ref−1)αβGI(T βφ)I = −(Ref−1)αβ(φ†T β)JGJ . (3.14)

The F -auxiliary fields are given by

FJ = −MeG/2M2
(G−1)I

JGI . (3.15)

The scalar potential is rewritten as

VSG = F IKJ
I FJ − 3M4eG/M2

+
1
2
RefαβDαDβ , (3.16)

where Dα and F I are given by (3.14) and (3.15), respectively.
The derivative of V by φI′ is given by

∂VSG

∂φI′ = GI′

(
VF

M2
+ M2eG/M2

)
− F IKJ

II′FJ − MeG/2M2
GII′F

I

− 1
2
(Refαβ)I′D

αDβ − (φ†Tα)IG
I
I′D

α , (3.17)

where VF ≡ F IKJ
I FJ − 3M4eG/M2

. Taking its VEV and using the stationary con-
dition, we derive the formula:

〈F I〉〈KJ
II′〉〈FJ〉 + m3/2〈GII′〉〈F I〉 +

1
2
〈(Refαβ)I′〉〈Dα〉〈Dβ〉

+ 〈(φ†Tα)I〉〈GI
I′〉〈Dα〉 = 〈GI′〉

(〈VF 〉
M2

+ m2
3/2

)
, (3.18)

where m3/2 is the gravitino mass given by

m3/2 = 〈MeG/2M2〉 = |〈eK/2M2
W/M2〉| . (3.19)

By multiplying (Tα′
φ)I′ with (3.17) and using the identities derived from the

gauge invariance of the total Kähler potential,

GII′(Tα′
φ)I′ + GI′(Tα′

)I′
I − KJ

I (φ†Tα′
)J = 0 , (3.20)

KJ
II′(T

α′
φ)I′ + KJ

I′(T
α′

)I′
I − ((φ†Tα′

)J ′GJ ′
)J
I = 0 , (3.21)

we obtain

∂V

∂φI′ (T
α′

φ)I′ =
(

VF

M2
+ 2M2eG/M2

)
GI′(Tα′

φ)I′ − F I(GI′(Tα′
φ)I′)J

I FJ

− 1
2
(Refαβ)I′(Tα′

φ)I′DαDβ − (φ†Tα)IG
I
I′(T

α′
φ)I′Dα . (3.22)
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Taking its VEV and using the stationary condition, we derive the formula:31)

〈F I〉
〈
(GI′(Tα′

φ)I′)J
I

〉
〈FJ〉 +

1
2
〈(Refαβ)I′〉〈(Tα′

φ)I′〉〈Dα〉〈Dβ〉

+
(

(M̂2
V )αα′

+
(〈VF 〉

M2
+ 2m2

3/2

)
〈Refαα′〉

)
〈Dα〉 = 0 . (3.23)

The VEV of VSG is given by

〈VSG〉 ≡ 〈F I〉〈KJ
I 〉〈FJ〉 − 3m2

3/2M
2 +

1
2
〈Refαβ〉〈Dα〉〈Dβ〉 . (3.24)

By the requirement of 〈VSG〉 = 0, the relations 〈F I〉 = O(m3/2M) and/or 〈Dα〉 =
O(m3/2M) are derived for some components. If the soft SUSY-breaking terms are
related to the SUSY extension of SM directly, the magnitude of m3/2 should be the
same size as or less than O(1) TeV. In this case with (M̂2

V )a � m2
3/2, the soft SUSY

breaking terms are treated as a perturbation and the same result (1) is obtained
with the following upper bound for the magnitude of dominant SUSY breaking F
component,

〈Da〉 ≤ O(〈F I〉) ≤ O(m3/2M) . (3.25)

If the gauge symmetry breaking scale is O(M), the following strong constraint is
derived,31)

〈Da〉 ≤ O(m2
3/2) . (3.26)

In this case, the relation m2
3/2 = 〈F I〉〈KJ

I 〉〈FJ 〉
3M2 holds.

By multiplying (K−1)I′
I′′G

I′′ with (3.17), taking its VEV and using the stationary
condition, we derive the formula:

〈F I〉〈KJ
II′〉〈FJ〉〈(K−1)I′

I′′〉〈GI′′〉 − 〈GII′〉〈F I〉〈F I′〉
+

1
2m3/2

〈(Refαβ)I′〉〈F I′〉〈Dα〉〈Dβ〉

=
〈F I〉〈KJ

I 〉〈FJ〉
m2

3/2

(〈VF 〉
M2

+ m2
3/2

)
+ 〈Refαβ〉〈Dα〉〈Dβ〉 . (3.27)

If the VEVs of all F -components vanish and m3/2 
= 0, i.e., 〈W 〉 
= 0, we obtain the
relation

〈Refαβ〉〈Dα〉〈Dβ〉 = 0 , (3.28)

which means the D-flat conditions, 〈Dα〉 = 0. There exists a SUSY AdS vacuum if
〈F I〉 = 0 and 〈W 〉 
= 0. This fact is directly understood from the definition (3.14) as
follows. From (3.15), the conditions 〈F I〉 = 〈FJ〉 = 0 for all species are equivalent to
〈GI〉 = 〈GJ〉 = 0 for 〈W 〉 
= 0. Then the D-flat conditions are derived from (3.14).
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Finally, we comment on models with the Kachru-Kallosh-Linde-Trivedi (KKLT)
moduli stabilization. In the KKLT compactification, the extra potential Vlift is in-
troduced in order to uplift SUSY AdS vacua to dS vacua.32) In this case, (3.23) is
modified as

〈F I〉
〈
(GI′(Tα′

φ)I′)J
I

〉
〈FJ〉 +

1
2
〈(Refαβ)I′〉〈(Tα′

φ)I′〉〈Dα〉〈Dβ〉

+
(

(M̂2
V )αα′

+
(〈VF 〉

M2
+ 2m2

3/2

)
〈Refαα′〉

)
〈Dα〉

= 〈∂Vlift/∂φI′〉〈(Tα′
φ)I′〉 . (3.29)

The formula (3.29) is a counterpart of (3.7) in Ref. 18). If the magnitude of the new
term 〈∂Vlift/∂φI′〉〈(Tα′

φ)I′〉 is negligibly small compared with those of other terms,
the same result (1) holds.

§4. Conclusions and discussion

We have studied the magnitude of D-components in a generic framework of
SUSY field theory. We have found that there exists F -component whose VEV is
comparable to or higher than that of D-component in the absence of the FI term, the
large hierarchy in the charge spectrum and strongly interacting higher-dimensional
couplings in the Kähler potential, if contributions from terms other than F - and D-
terms, such as soft SUSY-breaking terms or the uplifting potential, are negligible. If
all F -components vanish, the SUSY is unbroken in most cases. Hence, F -components
have the initiative in the breakdown of SUSY.

We have shown that the features of magnitude on 〈Dα〉 and 〈F I〉, which are
obtained through explicit models, also hold in models with a generic Kähler potential
and a generic gauge kinetic function if the Kähler potential contains no strongly
interacting couplings and contributions from terms other than the F - and D-terms
are negligibly small. Although we do not obtain completely new constraints, it would
be meaningful to report our results and clarify our statement because it is applicable
to a broad class of SUSY field theory, including effective theories derived from a
fundamental theory.
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