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The exceptional Racah and q-Racah polynomials are constructed. Together with the ex-
ceptional Laguerre, Jacobi, Wilson and Askey-Wilson polynomials discovered by the present
authors in 2009, they exhaust the generic exceptional orthogonal polynomials of a single
variable.

Subject Index: 010, 012, 064

§1. Introduction

The exceptional (X�) (q)-Racah polynomials and related exceptional orthogonal
polynomials are constructed as the main part of the eigenfunctions of the shape in-
variant and exactly solvable discrete quantum mechanics with real shifts,1) which are
deformations of those governing the corresponding orthogonal polynomials, i.e. the
(q)-Racah polynomials, etc.2)–5) The method of deformations is essentially the same
as that for the (X�) Wilson and Askey-Wilson polynomials derived by the present
authors in 2009.6) Namely, the potential functions of the original Hamiltonians are
multiplicatively deformed in terms of a degree � eigenpolynomial with twisted pa-
rameters. The exceptional (q)-Racah polynomials and the exceptional Wilson and
Askey-Wilson polynomials share many properties. One pronounced difference is that
there are only finitely many exceptional (q)-Racah polynomials in contrast with the
infinitely many types of the exceptional Wilson and Askey-Wilson polynomials. For
example, starting from the (q)-Racah polynomials of the highest degree N , there
exist N − 1 different types of the exceptional (q)-Racah polynomials, for which the
highest degree is always N . On the other hand, there are infinitely many different
types of the exceptional little q-Jacobi polynomials, since the degrees of the original
little q-Jacobi polynomials are not bounded. These exceptional (X�) polynomials
are exceptional in the sense that they form a complete set of orthogonal polynomials
in spite of the fact that the lowest member of the polynomials has degree � (≥ 1)
instead of a constant. Thus they do not satisfy the three term recurrence relations.

Historically the X1 Laguerre and Jacobi polynomials were discovered by Gómez-
Ullate et al.7) in 2008 within the framework of the Sturm-Liouville theory. Soon they
were rederived as the main part of the eigenfunctions of shape invariant quantum
mechanical Hamiltonians by Quesne and collaborators.8) In 2009 the present authors
derived the infinitely many X� Laguerre and Jacobi polynomials by deforming the
Hamiltonian systems of the radial oscillator and the Pöschl-Teller potential in terms
of the eigenpolynomials of degree �.9)–11) The examples of Gómez-Ullate et al. and
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Quesne et al. are the first members of the infinitely many exceptional polynomials.
For the recent developments of the exceptional orthogonal polynomials, see Refs. 12)–
16). It is worth remarking that the general knowledge of the solution spaces of exactly
solvable (discrete) quantum mechanical systems governed by Crum’s theorem17) and
its modifications18)–21) has been very helpful for the discovery of various exceptional
orthogonal polynomials.

The orthogonal polynomials of a discrete variable2) have played important roles
in many disciplines of physics and mathematics.2)–4) See Ref. 22) for recent appli-
cations. Let us comment on the birth and death processes, the typical examples of
Markov chains, which could be considered as a discrete version of the Fokker-Planck
equations.23) As shown in Ref. 24), the explicit examples of 18 orthogonal polynomi-
als in Ref. 1), the (q)-Racah, (q)-(dual)-Hahn etc., provide exactly solvable birth and
death processes.4),25) That is, for the given birth and death rates {B(x), D(x)} which
define the Hamiltonian (2.1), the corresponding transition probabilities are given ex-
plicitly, not in a general spectral representation form of Karlin-McGregor.26) The
exceptional versions presented here also provide ample examples of exactly solvable
birth and death processes.

The present paper is organised as follows. In §2, the basic principles of the dis-
crete quantum mechanics with real shifts are briefly reviewed with an emphasis on
the shape invariance. The details of the Racah and q-Racah polynomials are reca-
pitulated in §3. The exceptional Racah and q-Racah polynomials are introduced in
§4. The intertwining relations connecting the original (q)-Racah and the exceptional
(q)-Racah polynomials are explored in §5. These two sections are the main part of
this paper. Several exceptional orthogonal polynomials, the dual (q)-Hahn and the
little q-Jacobi polynomials are derived from the exceptional (q)-Racah polynomials
in §6 through certain limiting processes. The final section is for a summary and
comments.

§2. General setting — shape invariance

Let us recapitulate the essence of the discrete quantum mechanics with real shifts
developed in Ref. 1). The Hamiltonian H = (Hx,y) is a tridiagonal real symmetric
(Jacobi) matrix and its rows and columns are indexed by non-negative integers x
and y, x, y = 0, 1, . . . , xmax, either finite (xmax = N) or infinite (xmax = ∞). The
Hamiltonian H has a form

H def= −
√
B(x) e∂

√
D(x) −

√
D(x) e−∂

√
B(x) +B(x) +D(x), (2.1)

Hx,y = −
√
B(x)D(x+ 1) δx+1,y −

√
B(x− 1)D(x) δx−1,y +

(
B(x) +D(x)

)
δx,y,

(2.2)

in which the two functions B(x) and D(x) are real and positive but vanish at the
boundary:

B(x) > 0, D(x) > 0, D(0) = 0 ; B(xmax) = 0 for finite case. (2.3)
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The Schrödinger equation is the eigenvalue problem for a hermitian matrix H (nmax =
N or ∞),

Hφn(x) = Enφn(x) (n = 0, 1, . . . , nmax), 0 = E0 < E1 < E2 < · · · . (2.4)

The Hamiltonian (2.1) can be expressed in a factorised form:

H = A†A, A = (Ax,y), A† = ((A†)x,y) = (Ay,x), (x, y = 0, 1, . . . , xmax) (2.5)

A def=
√
B(x) − e∂

√
D(x), A† =

√
B(x) −

√
D(x) e−∂, (2.6)

Ax,y =
√
B(x) δx,y −

√
D(x+ 1) δx+1,y, (A†)x,y =

√
B(x) δx,y −

√
D(x) δx−1,y.

(2.7)

The zero mode Aφ0(x) = 0 (φ0(x) > 0) is easily obtained: φ0(x)2 =
∏x−1

y=0
B(y)

D(y+1) ,

with the normalization φ0(0) = 1 (convention:
∏n−1

k=n ∗ = 1). We adopt the stan-

dard euclidean inner product ( , ) of two real functions on the grid as
(
f, g

) def=∑xmax
x=0 f(x)g(x). Then the orthogonality relation reads(

φn, φm

)
=

1
d2

n

δnm. (n,m = 0, 1, . . . , nmax) (2.8)

Here 1/d2
n is the normalization constant to be specified later.

Shape invariance, a sufficient condition for the exact solvability,1),27)–29) is re-
alised by specific dependence of the potential functions on a set of parameters
λ = (λ1, λ2, . . .), to be denoted by B(x; λ), D(x; λ), A(λ), H(λ), En(λ), φn(x; λ)
etc. The shape invariance condition is

A(λ)A(λ)† = κA(λ + δ)†A(λ + δ) + E1(λ), (2.9)

where δ is a certain shift of parameters and κ is a positive constant. It should
be stressed that the above definition is much stronger than the original definition
by Gendenshtein.30) The shape invariance condition (2.9) combined with Crum’s
theorem17),19)–21) implies that the entire energy spectrum and the excited states
eigenfunctions are expressed in terms of E1(λ) and φ0(x; λ) as follows:

En(λ) =
n−1∑
s=0

κsE1(λ + sδ), (2.10)

φn(x; λ) ∝ A(λ)†A(λ + δ)†A(λ + 2δ)† · · · A(λ + (n− 1)δ)†φ0(x; λ + nδ). (2.11)

We have also

A(λ)φn(x; λ) =
1√

B(0; λ)
fn(λ)φn−1

(
x; λ + δ

)
, (2.12)

A(λ)†φn−1

(
x; λ + δ

)
=

√
B(0; λ) bn−1(λ)φn(x; λ), (2.13)

where fn(λ) and bn−1(λ) are the factors of the energy eigenvalue, En(λ) =
fn(λ)bn−1(λ).
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For the (q)-Racah and the other polynomials to be discussed in the present
paper, the eigenfunction has the following factorised form,

φn(x; λ) = φ0(x; λ)P̌n(x; λ), P̌n(x; λ) def= Pn(η(x; λ); λ), (2.14)

where Pn(η(x; λ); λ) is a polynomial of degree n in the sinusoidal coordinate η(x; λ).
The sinusoidal coordinate considered here is a monotone increasing function of x
satisfying the boundary condition η(0; λ) = 0.1),29) We choose the normalization

Pn(0; λ) = 1, (2.15)

and set P̌−1(x; λ) = 0. For later convenience, let us remark on the relation

Pn(η(1; λ); λ) = P̌n(1; λ) = 1 − En(λ)
B(0; λ)

. (2.16)

The orthogonality relation (2.8) becomes
xmax∑
x=0

φ0(x; λ)2P̌n(x; λ)P̌m(x; λ) =
1

dn(λ)2
δnm. (n,m = 0, 1, . . . , nmax) (2.17)

The forward shift operator F(λ) = (Fx,y(λ)), the backward shift operator B(λ) =
(Bx,y(λ)) and the similarity transformed Hamiltonian H̃(λ) = (H̃x,y(λ)) (x, y =
0, 1, . . . , xmax) are defined by

F(λ) def=
√
B(0; λ)φ0(x; λ + δ)−1 ◦ A(λ) ◦ φ0(x; λ)

= B(0; λ)ϕ(x; λ)−1(1 − e∂), (2.18)

B(λ) def=
1√

B(0; λ)
φ0(x; λ)−1 ◦ A(λ)† ◦ φ0(x; λ + δ)

=
1

B(0; λ)
(
B(x; λ) −D(x; λ)e−∂

)
ϕ(x; λ), (2.19)

H̃(λ) def= φ0(x; λ)−1 ◦ H(λ) ◦ φ0(x; λ) = B(λ)F(λ)

= B(x; λ)(1 − e∂) +D(x; λ)(1 − e−∂), (2.20)

where the auxiliary function ϕ(x) is defined by1)

ϕ(x; λ) def=

√
B(0; λ)
B(x; λ)

φ0(x; λ + δ)
φ0(x; λ)

=
η(x+ 1; λ) − η(x; λ)

η(1; λ)
, ϕ(0; λ) = 1. (2.21)

Their action on the polynomials is (n = 0, 1, . . . , nmax)

F(λ)P̌n(x; λ) = fn(λ)P̌n−1(x; λ + δ), (2.22)

B(λ)P̌n−1(x; λ + δ) = bn−1(λ)P̌n(x; λ), (2.23)

H̃(λ)P̌n(x; λ) = En(λ)P̌n(x; λ). (2.24)

The above difference equation (2.24) for the polynomial Pn reads explicitly as

B(x)
(
Pn(η(x)) − Pn(η(x+ 1))

)
+D(x)

(
Pn(η(x)) − Pn(η(x− 1))

)
= EnPn(η(x)),

(2.25)

in which the parameter dependence is suppressed for simplicity.
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§3. Original systems — (q)-Racah polynomials

Here we present various properties of the Racah (R) and the q-Racah (qR) poly-
nomials as explored in Ref. 1). In general there are four cases of possible parameter
choices indexed by (ε, ε′) = (±1,±1). Here we restrict ourselves to the (ε, ε′) = (1, 1)
case for simplicity of presentation.

The set of parameters λ, which is different from the standard one (α, β, γ, δ),5)

its shift δ and κ are

R : λ = (a, b, c, d), δ = (1, 1, 1, 1), κ = 1, (3.1)

qR : q– = (a, b, c, d), δ = (1, 1, 1, 1), κ = q−1, 0 < q < 1, (3.2)

where q– stands for q(λ1,λ2,...) = (qλ1 , qλ2 , . . .). We introduce a new parameter d̃
defined by

d̃
def=

{
a+ b+ c− d− 1 : R,
abcd−1q−1 : qR. (3.3)

The Hamiltonian is a finite dimensional matrix and the maximal values of x and n
are xmax = nmax = N and we could choose

R : a = −N or b = −N or c = −N,
qR : a = q−N or b = q−N or c = q−N , (3.4)

to ensure the boundary condition for B, B(xmax) = 0. The potential functions
B(x; λ) and D(x; λ) are

B(x; λ) =

⎧⎪⎪⎨⎪⎪⎩
−(x+ a)(x+ b)(x+ c)(x+ d)

(2x+ d)(2x+ 1 + d)
: R,

−(1 − aqx)(1 − bqx)(1 − cqx)(1 − dqx)
(1 − dq2x)(1 − dq2x+1)

: qR,
(3.5)

D(x; λ) =

⎧⎪⎪⎨⎪⎪⎩
−(x+ d− a)(x+ d− b)(x+ d− c)x

(2x− 1 + d)(2x+ d)
: R,

−d̃ (1 − a−1dqx)(1 − b−1dqx)(1 − c−1dqx)(1 − qx)
(1 − dq2x−1)(1 − dq2x)

: qR.
(3.6)

The parameter ranges are restricted by the positivity of B(x; λ) and D(x; λ). When
we need to specify them, we adopt the following choice of the parameter ranges:

R : a = −N, a+ b > d > 0, 0 < c < 1 + d,

qR : a = q−N , 0 < ab < d < 1, qd < c < 1. (3.7)

The energy eigenvalue and the sinusoidal coordinate are

En(λ) =
{
n(n+ d̃) : R,
(q−n − 1)(1 − d̃qn) : qR,

η(x; λ) =
{
x(x+ d) : R,
(q−x − 1)(1 − dqx) : qR.

(3.8)
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The eigenfunctions have the factorised form (2.14) and the orthogonal polynomials
are the Racah and the q-Racah polynomials:

P̌n(x; λ) = Pn(η(x; λ); λ) =

⎧⎪⎪⎨⎪⎪⎩
4F3

(−n, n+ d̃, −x, x+ d

a, b, c

∣∣∣ 1
)

: R,

4φ3

(q−n, d̃qn, q−x, dqx

a, b, c

∣∣∣ q ; q
)

: qR
(3.9)

=
{
Rn(η(x; λ); a− 1, d̃− a, c− 1, d− c) : R,
Rn(1 + d+ η(x; λ); aq−1, d̃a−1, cq−1, dc−1|q) : qR.

(3.10)

Here Rn(· · · ) are the standard notation in Ref. 5). The auxiliary function ϕ(x; λ)
(2.21) reads

ϕ(x; λ) =

⎧⎪⎪⎨⎪⎪⎩
2x+ d+ 1
d+ 1

: R,

q−x − dqx+1

1 − dq
: qR.

(3.11)

The constants fn(λ) and bn(λ) appearing in (2.12)–(2.13) are

fn(λ) = En(λ), bn(λ) = 1. (3.12)

The orthogonality measure φ0(x; λ)2 and the normalisation constants dn(λ)2 are

φ0(x; λ)2 =

⎧⎪⎪⎨⎪⎪⎩
(a, b, c, d)x

(1 + d− a, 1 + d− b, 1 + d− c, 1)x

2x+ d

d
: R,

(a, b, c, d ; q)x

(a−1dq, b−1dq, c−1dq, q ; q)x d̃x

1 − dq2x

1 − d
: qR,

(3.13)

dn(λ)2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, b, c, d̃)n

(1 + d̃− a, 1 + d̃− b, 1 + d̃− c, 1)n

2n+ d̃

d̃

×(−1)N (1 + d− a, 1 + d− b, 1 + d− c)N

(d̃+ 1)N (d+ 1)2N

: R,

(a, b, c, d̃ ; q)n

(a−1d̃q, b−1d̃q, c−1d̃q, q ; q)n dn

1 − d̃q2n

1 − d̃

×(−1)N (a−1dq, b−1dq, c−1dq ; q)N d̃Nq
1
2
N(N+1)

(d̃q ; q)N(dq ; q)2N

: qR.

(3.14)

§4. Deformed systems — X‘ (q)-Racah polynomials

For each positive integer � = 1, 2, . . . , N − 1, we can construct a shape invariant
system by deforming the original system (� = 0) in terms of a degree � eigenpolyno-
mial ξ� of twisted parameters.

We set
x�

max
def= N − �, n�

max
def= N − �, (4.1)

and take

R : a = −N or b = −N,
qR : a = q−N or b = q−N . (4.2)
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The deforming polynomial ξ�, which is a polynomial of degree � in η(x; λ + (�−
1)δ), is defined from the eigenpolynomial P̌�(x; λ):

ξ̌�(x; λ) def= ξ�(η(x; λ + (�− 1)δ); λ)
def= P̌�

(
x; t

(
λ + (�− 1)δ

))
: R, qR

=

⎧⎪⎪⎨⎪⎪⎩
4F3

(−�, �− a− b+ c+ d− 1, −x, x+ d+ �− 1
d− a, d− b, c+ �− 1

∣∣∣ 1
)

: R,

4φ3

(q−�, a−1b−1cdq�−1, q−x, dqx+�−1

a−1d, b−1d, cq�−1

∣∣∣ q ; q
)

: qR,
(4.3)

which satisfies the normalization

ξ�(0; λ) = 1. (4.4)

Here the twist operator t acting on the set of parameters λ = (λ1, λ2, λ3, λ4) is

t(λ) def= (λ4 − λ1, λ4 − λ2, λ3, λ4) : R, qR. (4.5)

This is the most important ingredient of the deformation. For the appropriate pa-
rameter ranges, for example as given in (3.7), the deforming polynomial ξ̌�(x; λ) is
positive at integer points x = 0, 1, . . . , x�

max + 1, because the polynomial ξ�(y; λ) has
no zeros in the interval 0 ≤ y ≤ η(x�

max + 1; λ + (� − 1)δ). It satisfies the following
two formulas, which will play important roles in the derivation of various results:

1
ϕ(x; λ + �δ + δ̃)

(
vB
1 (x; λ + �δ) − vD

1 (x; λ + �δ)e∂
)
ξ̌�(x; λ) = f̂�,0(λ)ξ̌�(x; λ + δ),

(4.6)
1

ϕ(x; λ + (�− 1)δ + δ̃)

(
vB
2 (x; λ + (�− 1)δ) − vD

2 (x; λ + (�− 1)δ)e−∂
)
ξ̌�(x; λ + δ)

= b̂�,0(λ)ξ̌�(x; λ). (4.7)

Here vB
1 (x; λ), vB

2 (x; λ), vD
1 (x; λ), vD

2 (x; λ) are the factors of the potential functions
B(x; λ) and D(x; λ):

vB
1 (x; λ) def=

⎧⎨⎩ d−1(x+ a)(x+ b) : R,
q−x

1 − d
(1 − aqx)(1 − bqx) : qR,

(4.8)

vB
2 (x; λ) def=

⎧⎨⎩ d−1(x+ c)(x+ d) : R,
q−x

1 − d
(1 − cqx)(1 − dqx) : qR,

(4.9)

vD
1 (x; λ) def=

⎧⎨⎩ d−1(x+ d− a)(x+ d− b) : R,
q−x

1 − d
abd−1(1 − a−1dqx)(1 − b−1dqx) : qR,

(4.10)

vD
2 (x; λ) def=

⎧⎨⎩ d−1(x+ d− c)x : R,
q−x

1 − d
c(1 − c−1dqx)(1 − qx) : qR,

(4.11)
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B(x; λ) = −√
κ

vB
1 (x; λ)vB

2 (x; λ)
ϕ(x; λ + δ̃)ϕ(x+ 1

2 ; λ + δ̃)
, (4.12)

D(x; λ) = −√
κ

vD
1 (x; λ)vD

2 (x; λ)
ϕ(x; λ + δ̃)ϕ(x− 1

2 ; λ + δ̃)
, (4.13)

where δ̃ is
δ̃

def= (0, 0,−1,−1) : R, qR. (4.14)

The constants f̂�,n(λ) and b̂�,n(λ) are given by

f̂�,n(λ) def=

⎧⎪⎨⎪⎩
(a+ b− d+ n)

c+ 2�+ n− 1
c+ �− 1

: R,

q−n(1 − abd−1qn)
1 − cq2�+n−1

1 − cq�−1
: qR,

b̂�,n(λ) def=
{
c+ �− 1 : R,
1 − cq�−1 : qR.

(4.15)
Equations (4.6)–(4.7) are identities relating ξ̌�(x; λ) and ξ̌�(x; λ + δ). They are
reduced to the identities satisfied by the (basic) hypergeometric functions, (2.74)–
(2.75) in Ref. 15). Note that these two equations (4.6)–(4.7) imply the difference
equation for the deforming polynomial,(

B
(
x; t(λ + (�− 1)δ)

)
(1 − e∂) +D

(
x; t(λ + (�− 1)δ)

)
(1 − e−∂)

)
ξ̌�(x; λ)

= E�(t(λ))ξ̌�(x; λ), (4.16)

which corresponds to (2.24).
Let us introduce new potential functions B�(x; λ) and D�(x; λ) by multiplica-

tively deforming the original ones in terms of the polynomial ξ̌�(x; λ):

B�(x; λ) def= B(x; λ + �δ)
ξ̌�(x; λ)

ξ̌�(x+ 1; λ)
ξ̌�(x+ 1; λ + δ)
ξ̌�(x; λ + δ)

, (4.17)

D�(x; λ) def= D(x; λ + �δ)
ξ̌�(x+ 1; λ)
ξ̌�(x; λ)

ξ̌�(x− 1; λ + δ)
ξ̌�(x; λ + δ)

. (4.18)

See the corresponding expressions for the exceptional Wilson and Askey-Wilson
polynomials (30)–(31) of Ref. 6) and (2.42)–(2.43) of Ref. 15). They define a de-
formed Hamiltonian H�(λ) = (H�;x,y(λ)) and other operators A�(λ) = (A�;x,y(λ))
and A�(λ)† = ((A�(λ)†)x,y) = (A�;y,x(λ)) (x, y = 0, 1, . . . , x�

max) by

H�(λ) def= A�(λ)†A�(λ), (4.19)

A�(λ) def=
√
B�(x; λ) − e∂

√
D�(x; λ), A�(λ)† =

√
B�(x; λ) −

√
D�(x; λ) e−∂ . (4.20)

We have D�(0; λ) = 0 and B�(x�
max; λ) = 0. The parameter ranges are restricted by

the positivity of B�(x; λ) and D�(x; λ). When we need to specify them, we consider
the parameter ranges (3.7).

The deformed system is shape invariant, too:

A�(λ)A�(λ)† = κA�(λ + δ)†A�(λ + δ) + E�,1(λ), (4.21)
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or equivalently,√
B�(x+ 1; λ)D�(x+ 1; λ) = κ

√
B�(x; λ + δ)D�(x+ 1; λ + δ), (4.22)

B�(x; λ) +D�(x+ 1; λ) = κ
(
B�(x; λ + δ) +D�(x; λ + δ)

)
+ E�,1(λ). (4.23)

The proof is straightforward by direct calculation. In order to verify (4.23), use is
made of the two properties of the deforming polynomial ξ̌�(x; λ) (4.6)–(4.7).

The Schrödinger equation of the modified system is (n = 0, 1, . . . , n�
max)

H�(λ)φ�,n(x; λ) = E�,n(λ)φ�,n(x; λ), E�,n(λ) def= En(λ + �δ). (4.24)

The ground state φ�,0(x; λ), which is annihilated by A�(λ), is

φ�,0(x; λ) =

√√√√x−1∏
y=0

B�(y; λ)
D�(y + 1; λ)

= ψ�(x; λ)ξ̌�(x; λ + δ), (4.25)

ψ�(x; λ) def= φ0(x; λ + �δ)

√
ξ̌�(1; λ)

ξ̌�(x; λ)ξ̌�(x+ 1; λ)
, (4.26)

with the normalisation φ�,0(0; λ) = 1 and ψ�(0; λ) = 1. The excited states wavefunc-
tions have the factorised form as (2.14):

φ�,n(x; λ) = ψ�(x; λ)P̌�,n(x; λ). (4.27)

The exceptional (X�) (q)-Racah polynomial P̌�,n(x; λ) is bilinear in the deforming
polynomial ξ̌� and the original polynomial P̌n:

P̌�,n(x; λ) def= P�,n(η(x; λ + �δ); λ)
def=

1

f̂�,n(λ)

1
ϕ(x; λ + �δ + δ̃)

(
vB
1 (x; λ + �δ)ξ̌�(x; λ)P̌n(x+ 1; λ + �δ + δ̃)

− vD
1 (x; λ + �δ)ξ̌�(x+ 1; λ)P̌n(x; λ + �δ + δ̃)

)
. (4.28)

This is one of the main results of the present paper to be compared with the similar
expressions for the exceptional Laguerre & Jacobi polynomials (2.1)–(2.4) in Ref. 12),
(2.31),(2.33) & (3.37),(3.40) of Ref. 14), for the exceptional Wilson & Askey-Wilson
polynomials (2.52) in Ref. 15). The overall multiplicative factor is so chosen as to
realise the normalisation condition

P�,n(0; λ) = 1, (4.29)

which can be shown by using (2.16). This is a polynomial of degree �+n in η(x; λ+
�δ). Note that P̌�,0(x; λ) = ξ̌�(x; λ+δ) due to (4.6), which is obviously a polynomial
of degree � in η(x; λ + �δ). The exceptional orthogonal polynomial P�,n(y; λ) has
n real zeros in the interval 0 ≤ y ≤ η(x�

max; λ + �δ) for the appropriate parameter
ranges, for example the range (3.7). It has � extra zeros which are usually complex
and lie outside the above interval.
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The action of the operators A�(λ) and A�(λ)† on the eigenfunctions is

A�(λ)φ�,n(x; λ) =
1√

B�(0; λ)
f�,n(λ)φ�,n−1

(
x; λ + δ

)
, (4.30)

A�(λ)†φ�,n−1

(
x; λ + δ

)
=

√
B�(0; λ) b�,n−1(λ)φ�,n(x; λ), (4.31)

f�,n(λ) = fn(λ + �δ), b�,n−1(λ) = bn−1(λ + �δ). (4.32)

Like the corresponding formulas of the original systems (2.12)–(2.13), these are sim-
ple consequences of the shape invariance and the normalisation of the eigenfunc-
tions. In the next section, we will derive these formulas through the intertwin-
ing relations and without recourse to the shape invariance of the deformed system
(4.21). The forward shift operator F�(λ) = (F�;x,y(λ)), the backward shift operator
B�(λ) = (B�;x,y(λ)) and the similarity transformed Hamiltonian H̃�(λ) = (H̃�;x,y(λ))
(x, y = 0, 1, . . . , x�

max) are defined by

F�(λ) def=
√
B�(0; λ)ψ�(x; λ + δ)−1 ◦ A�(λ) ◦ ψ�(x; λ)

=
B(0,λ + �δ)

ϕ(x; λ + �δ)ξ̌�(x+ 1; λ)

(
ξ̌�(x+ 1; λ + δ) − ξ̌�(x; λ + δ)e∂

)
, (4.33)

B�(λ) def=
1√

B�(0; λ)
ψ�(x; λ)−1 ◦ A�(λ)† ◦ ψ�

(
x; λ + δ

)
=

1
B(0; λ + �δ)

1
ξ̌�(x; λ + δ)

×
(
B(x; λ + �δ)ξ̌�(x; λ) −D(x; λ + �δ)ξ̌�(x+ 1; λ)e−∂

)
ϕ(x; λ + �δ), (4.34)

H̃�(λ) def= ψ�(x; λ)−1 ◦ H�(λ) ◦ ψ�(x; λ) = B�(λ)F�(λ)

= B(x; λ + �δ)
ξ̌�(x; λ)

ξ̌�(x+ 1; λ)

( ξ̌�(x+ 1; λ + δ)
ξ̌�(x; λ + δ)

− e∂
)

+D(x; λ + �δ)
ξ̌�(x+ 1; λ)
ξ̌�(x; λ)

( ξ̌�(x− 1; λ + δ)
ξ̌�(x; λ + δ)

− e−∂
)
. (4.35)

Compare with the similar expressions for the X� Laguerre & Jacobi polynomials
(3.2)–(3.5) in Ref. 12), and for the X� Wilson & Askey-Wilson polynomials (2.58)–
(2.63) in Ref. 15). Their action on the polynomials is (n = 0, 1, . . . , n�

max)

F�(λ)P̌�,n(x; λ) = f�,n(λ)P̌�,n−1(x; λ + δ), (4.36)

B�(λ)P̌�,n−1(x; λ + δ) = b�,n−1(λ)P̌�,n(x; λ), (4.37)

H̃�(λ)P̌�,n(x; λ) = E�,n(λ)P̌�,n(x; λ), E�,n(λ) = En(λ + �δ). (4.38)

The orthogonality relation is

x�
max∑

x=0

ψ�(x; λ)2

ξ̌�(1; λ)
P̌�,n(x; λ)P̌�,m(x; λ) =

δnm

d�,n(λ)2
. (n,m = 0, 1, . . . , n�

max) (4.39)
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The normalisation constants d�,n(λ)2 are

d�,n(λ)2 = dn(λ+�δ+δ̃)2
f̂�,n(λ)

b̂�,n(λ)

1
s�(λ)

= dn(λ+�δ)2
f̂�,n(λ)

b̂�,n(λ)

b̂0,n(λ + �δ)

f̂0,n(λ + �δ)

s0(λ + �δ)
s�(λ)

,

(4.40)
where s�(λ) is defined by

s�(λ) def=

⎧⎪⎪⎨⎪⎪⎩
− (d− a)(d− b)

(c+ �− 1)(d+ �)
: R,

−abd−1q� (1 − a−1d)(1 − b−1d)
(1 − cq�−1)(1 − dq�)

: qR.
(4.41)

This will be proved in the next section. In the second equality of (4.40) use is
made of the explicit forms of dn(λ)2 (3.14). Note the positivity of the quantities,
f̂�,n(λ), b̂�,n(λ), s�(λ) > 0.

§5. Intertwining relations

Here we demonstrate that the Hamiltonian systems of the original polynomials
reviewed in §3 and the deformation summarised in §4 are intertwined by a discrete
version of the Darboux-Crum transformation. This provides simple expressions of the
eigenfunctions of the deformed systems (4.28) in terms of those of the original system,
which is exactly solvable. It also delivers a simple proof of the shape invariance of
the deformed system. The line of arguments goes parallel with those for the other
exceptional orthogonal polynomials.14),15)

First let us discuss the general scheme. For an adjoint pair of well-defined
operators Â�(λ) and Â�(λ)†, let us define a pair of Hamiltonians Ĥ(±)

� (λ)

Ĥ(+)
� (λ) def= Â�(λ)†Â�(λ), Ĥ(−)

� (λ) def= Â�(λ)Â�(λ)†, (5.1)

and consider their Schrödinger equations, that is, the eigenvalue problems:

Ĥ(±)
� (λ)φ̂(±)

�,n (x; λ) = Ê(±)
�,n (λ)φ̂(±)

�,n (x; λ). (n = 0, 1, 2, . . .) (5.2)

Obviously the pair of Hamiltonians are intertwined:

Ĥ(+)
� (λ)Â�(λ)† = Â�(λ)†Â�(λ)Â�(λ)† = Â�(λ)†Ĥ(−)

� (λ), (5.3)

Â�(λ)Ĥ(+)
� (λ) = Â�(λ)Â�(λ)†Â�(λ) = Ĥ(−)

� (λ)Â�(λ). (5.4)

If Â�(λ)φ̂(+)
�,n (x; λ) 	= 0 and Â�(λ)†φ̂(−)

�,n (x; λ) 	= 0, then the two systems are exactly
iso-spectral and there is one-to-one correspondence between the eigenfunctions:

Ê(+)
�,n (λ) = Ê(−)

�,n (λ), (5.5)

φ̂
(−)
�,n (x; λ) ∝ Â�(λ)φ̂(+)

�,n (x; λ), φ̂
(+)
�,n (x; λ) ∝ Â�(λ)†φ̂(−)

�,n (x; λ). (5.6)

In the following we will present the explicit forms of the operators Â�(λ) and
Â�(λ)†, which intertwine the original systems in §3 and the deformed systems in
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§4. The operators Â�(λ) = (Â�;x,y(λ)) and Â�(λ)† = ((Â�(λ)†)x,y) = (Â�;y,x(λ))
(x, y = 0, 1, . . . , x�

max) are defined by

Â�(λ) def=
√
B̂�(x; λ)−e∂

√
D̂�(x; λ), Â�(λ)† =

√
B̂�(x; λ)−

√
D̂�(x; λ) e−∂ , (5.7)

where B̂�(x; λ) and D̂�(x; λ) are given by

B̂�(x; λ) def= B
(
x; t(λ + (�− 1)δ)

) ξ̌�(x+ 1; λ)
ξ̌�(x; λ)

, (5.8)

D̂�(x; λ) def= D
(
x; t(λ + (�− 1)δ)

) ξ̌�(x− 1; λ)
ξ̌�(x; λ)

. (5.9)

Compare with the similar expressions for the X� Laguerre & Jacobi polynomials
(2.10)–(2.15) & (3.13)–(3.18) in Ref. 14), and for the X� Wilson & Askey-Wilson
polynomials (3.7)–(3.9) in Ref. 15).

Since det Â�(λ) =
∏x�

max
x=0

√
B̂�(x; λ) 	= 0 for the parameter range under con-

sideration, the operators Â�(λ) and Â�(λ)† have no zero modes. By using the two
formulas (4.6)–(4.7), we can show that

Ĥ(+)
� (λ) = κ̂�(λ)

(H(λ + �δ + δ̃) + f̂�,0(λ)b̂�,0(λ)
)
, (5.10)

Ĥ(−)
� (λ) = κ̂�(λ)

(H�(λ) + f̂�,0(λ)b̂�,0(λ)
)
, (5.11)

where κ̂�(λ) is

κ̂�(λ) def=
{

1 : R,
(abd−1q�)−1 : qR.

(5.12)

Therefore the original system with the shifted parameters (H(λ + �δ + δ̃)) and the
deformed system (H�(λ)) are exactly isospectral. Note that the maximal value of x
for H(λ + �δ + δ̃) is N − � (= x�

max). On the basis of the results (5.10)–(5.11), we
have

φ̂
(+)
�,n (x; λ) = φn(x; λ + �δ + δ̃), φ̂

(−)
�,n (x; λ) = φ�,n(x; λ), (5.13)

Ê(±)
�,n (λ) = κ̂�(λ)

(En(λ + �δ + δ̃) + f̂�,0(λ)b̂�,0(λ)
)

= κ̂�(λ)
(E�,n(λ) + f̂�,0(λ)b̂�,0(λ)

)
.

(5.14)

The correspondence of the pair of eigenfunctions φ̂(±)
�,n (x) with their own normalisa-

tion specified in the preceding sections is related by

φ̂
(−)
�,n (x; λ) =

√
ξ̌�(1; λ)s�(λ)

Â�(λ)φ̂(+)
�,n (x; λ)√

κ̂�(λ) f̂�,n(λ)
, (5.15)

φ̂
(+)
�,n (x; λ) =

1√
ξ̌�(1; λ)s�(λ)

Â�(λ)†φ̂(−)
�,n (x; λ)√

κ̂�(λ) b̂�,n(λ)
. (5.16)
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Let us introduce the operators F̂�(λ) = (F̂�;x,y(λ)) and B̂�(λ) = (B̂�;x,y(λ)) (x, y =
0, 1, . . . , x�

max) defined by

F̂�(λ) def=
√
ξ̌�(1; λ)s�(λ)ψ�(x; λ)−1 ◦ Â�(λ)√

κ̂�(λ)
◦ φ0(x; λ + �δ + δ̃), (5.17)

B̂�(λ) def=
1√

ξ̌�(1; λ)s�(λ)
φ0(x; λ + �δ + δ̃)−1 ◦ Â�(λ)†√

κ̂�(λ)
◦ ψ�(x; λ). (5.18)

Their explicit forms are

F̂�(λ) =
1

ϕ(x; λ + �δ + δ̃)

(
vB
1 (x; λ + �δ)ξ̌�(x; λ)e∂ − vD

1 (x; λ + �δ)ξ̌�(x+ 1; λ)
)
,

(5.19)

B̂�(λ) =
1

ξ̌�(x; λ)
1

ϕ(x; λ + (�− 1)λ + δ̃)

×
(
vB
2 (x; λ + (�− 1)δ) − vD

2 (x; λ + (�− 1)δ)e−∂
)
. (5.20)

Compare with the similar expressions for theX� Wilson & Askey-Wilson polynomials
(3.20)–(3.21) in Ref. 15). The operators F̂�(λ) and B̂�(λ) act as the forward and
backward shift operators connecting the original polynomials Pn and the exceptional
polynomials P�,n:

F̂�(λ)P̌n(x; λ + �δ + δ̃) = f̂�,n(λ)P̌�,n(x; λ), (5.21)

B̂�(λ)P̌�,n(x; λ) = b̂�,n(λ)P̌n(x; λ + �δ + δ̃). (5.22)

The former relation (5.21) with the explicit form of F̂�(λ) (5.19) provides the explicit
expression (4.28) of the exceptional orthogonal polynomials. In terms of F̂�(λ) and
B̂�(λ), the relations (5.10)–(5.11) become

B̂�(λ)F̂�(λ) = H̃(λ + �δ + δ̃) + f̂�,0(λ)b̂�,0(λ), (5.23)

F̂�(λ)B̂�(λ) = H̃�(λ) + f̂�,0(λ)b̂�,0(λ). (5.24)

The other simple consequences of these relations are

Ê(±)
�,n (λ) = κ̂�(λ)f̂�,n(λ)b̂�,n(λ), En(λ+�δ) = f̂�,n(λ)b̂�,n(λ)−f̂�,0(λ)b̂�,0(λ). (5.25)

The �2 inner product for φ�,n and φ�,m can be calculated in the following way:(
φ�,n( · ; λ), φ�,m( · ; λ)

)
=

1
f̂�,m(λ)

√
ξ̌�(1; λ)s�(λ)

κ̂�(λ)
(
φ�,n( · ; λ), Â�(λ)φm( · ; λ + �δ + δ̃)

)
=

1
f̂�,m(λ)

√
ξ̌�(1; λ)s�(λ)

κ̂�(λ)
(Â�(λ)†φ�,n( · ; λ), φm( · ; λ + �δ + δ̃)

)
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=
b̂�,n(λ)

f̂�,m(λ)
ξ̌�(1; λ)s�(λ)

(
φn( · ; λ + �δ + δ̃), φm( · ; λ + �δ + δ̃)

)
= ξ̌�(1; λ)

δnm

dn(λ + �δ + δ̃)2
b̂�,n(λ)

f̂�,n(λ)
s�(λ), (5.26)

where we have used (5.13), (5.16) and (2.8). This gives a proof of (4.40).
It is interesting to note that the operator Â�(λ) intertwines those of the original

and deformed systems A(λ) and A�(λ):

Â�(λ + δ)A(λ + �δ + δ̃) = A�(λ)Â�(λ), (5.27)

Â�(λ)A(λ + �δ + δ̃)† = A�(λ)†Â�(λ + δ). (5.28)

In terms of the definitions of the forward shift operators F(λ) (2.18), F�(λ) (4.33),
F̂�(λ) (5.17), and B(λ) (2.19), B�(λ) (4.34), the above relations are rewritten as

ŝ�(λ + δ)F̂�(λ + δ)F(λ + �δ + δ̃) = ŝ�(λ)F�(λ)F̂�(λ), (5.29)

ŝ�(λ)F̂�(λ)B(λ + �δ + δ̃) = ŝ�(λ + δ)B�(λ)F̂�(λ + δ), (5.30)

where ŝ�(λ) is

ŝ�(λ) def= κ̂�(λ) ×
{
c+ �− 1 : R,
1 − cq�−1 : qR.

(5.31)

These relations can be proven by explicit calculation with the help of the two formulas
of the deforming polynomial ξ̌�(x; λ) (4.6)–(4.7).

By applying Â�(λ + δ) and Â�(λ) to (2.12) and (2.13) (with replacement λ →
λ+ �δ + δ̃) respectively, together with the use of (5.27), (5.28) and (5.16), we obtain

A�(λ)φ�,n(x; λ)

=

√
κ̂�(λ + δ)
κ̂�(λ)

s�(λ)
s�(λ + δ)

ξ̌�(1; λ)
ξ̌�(1; λ + δ)

1
B(0; λ + �δ + δ̃)

f̂�,n−1(λ + δ)

f̂�,n(λ)

× fn(λ + �δ + δ̃)φ�,n−1(x; λ + δ)

=
1√

B�(0; λ)
fn(λ + �δ)φ�,n−1(x; λ + δ), (5.32)

A�(λ)†φ�,n−1(x; λ + δ)

=

√
κ̂�(λ)

κ̂�(λ + δ)
s�(λ + δ)
s�(λ)

ξ̌�(1; λ + δ)
ξ̌�(1; λ)

B(0; λ + �δ + δ̃)
f̂�,n(λ)

f̂�,n−1(λ + δ)

× bn−1(λ + �δ + δ̃)φ�,n(x; λ)

=
√
B�(0; λ) bn−1(λ + �δ)φ�,n(x; λ + δ). (5.33)

In the calculation use is made of the explicit forms of κ̂�(λ), s�(λ), B�(x; λ), f̂�,n(λ),
fn(λ) and bn(λ) in the second equalities. This provides a proof of (4.30)–(4.32)
without recourse to the shape invariance of the deformed system. Likewise the above
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intertwining relations of the forward-backward shift operators (5.29)–(5.30) give a
proof of (4.36)–(4.37), respectively, again without recourse to the shape invariance.

Since the q-Racah polynomial P̌ qR
n (x; λ) (3.10) is related to the Askey-Wilson

polynomial pn(cosx; a, b, c, d|q) as5)

P̌ qR
n (x; λ) =

d
n
2

(a, b, c ; q)n
pn

(
1
2(d

1
2 qx + d−

1
2 q−x); ad−

1
2 , bd−

1
2 , cd−

1
2 , d

1
2 | q), (5.34)

many formulas for the q-Racah case in §§4 and 5 are obtained essentially from those
for the Askey-Wilson case15) by the following replacement:

eixAW
= d

1
2 qx+ 1

2
�, q–AW

= (ad−
1
2 , bd−

1
2 , cd−

1
2 , d

1
2 ). (5.35)

§6. Other X‘ polynomials — dual (q)-Hahn, little q-Jacobi

In §§3–5 we have derived the exceptional Racah and q-Racah Hamiltonian sys-
tems by deforming those of the Racah and q-Racah in parallel in terms of a degree
� polynomial with twisted parameters. It is well known that the Racah polynomi-
als can be obtained from the q-Racah polynomials by taking the standard q → 1
limit with an appropriate overall rescaling. The same limiting procedure could be
applied to derive the exceptional Racah polynomials from the exceptional q-Racah
polynomials.

Likewise various orthogonal polynomials of a discrete variable can be obtained
from the q-Racah polynomials by many different limiting procedures with/without
the q → 1 limit. Here we present two such examples: the dual (q)-Hahn and the little
q-Jacobi polynomials and the corresponding exceptional polynomials. The former
is a finite dimensional example and the latter is infinite dimensional. It should be
stressed, however, that there is no guarantee that the limiting procedure among the
undeformed polynomials could be lifted to produce the corresponding exceptional
polynomials. For example, the Hermite polynomials are known to be obtained from
the Jacobi or the Laguerre polynomials by a certain limit procedure. But that does
not produce exceptional Hermite polynomials from the known exceptional Jacobi or
Laguerre polynomials.

6.1. Dual (q)-Hahn

In this subsection we present the ordinary and the exceptional dual Hahn (dH)
and the dual q-Hahn (dqH) polynomials. Like as (q)-Racah cases, these are finite
dimensional: xmax = nmax = N and x�

max = n�
max = N − �. The dual q-Hahn case is

obtained from the q-Racah case by the following limit:

q–qR

= (q−N , a, t, abq−1), qR t→0−−→ dqH. (6.1)

The dual Hahn case is obtained from the dual q-Hahn case by taking q → 1 limit
with an appropriate overall rescaling.
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6.1.1. Original systems
The Hamiltonian systems thus obtained belong to the ε = 1 case of Ref. 1) and

they are listed as follows:{
λ = (a, b,N) : dH,
q– = (a, b, qN ) : dqH,

δ = (1, 0,−1) : dH, dqH, κ =
{

1 : dH,
q−1 : dqH, (6.2){

a > 0, b > 0 : dH,
0 < a < 1, 0 < b < 1, : dqH, (6.3)

B(x; λ) =

⎧⎪⎪⎨⎪⎪⎩
(x+ a)(x+ a+ b− 1)(N − x)
(2x− 1 + a+ b)(2x+ a+ b)

: dH,

(qx−N − 1)(1 − aqx)(1 − abqx−1)
(1 − abq2x−1)(1 − abq2x)

: dqH,
(6.4)

D(x; λ) =

⎧⎪⎪⎨⎪⎪⎩
x(x+ b− 1)(x+ a+ b+N − 1)
(2x− 2 + a+ b)(2x− 1 + a+ b)

: dH,

aqx−N−1 (1 − qx)(1 − abqx+N−1)(1 − bqx−1)
(1 − abq2x−2)(1 − abq2x−1)

: dqH,
(6.5)

En(λ) =
{
n : dH,
q−n − 1 : dqH, η(x; λ) =

{
x(x+ a+ b− 1) : dH,
(q−x − 1)(1 − abqx−1) : dqH, (6.6)

P̌n(x; λ) = Pn(η(x; λ); λ) =

⎧⎪⎪⎨⎪⎪⎩
3F2

(−n, x+ a+ b− 1, −x
a, −N

∣∣∣ 1
)

: dH,

3φ2

(q−n, abqx−1, q−x

a, q−N

∣∣∣ q ; q
)

: dqH

=

{
Rn(η(x; λ) ; a− 1, b− 1, N) : dH,

Rn(1 + abq−1 + η(x; λ) ; aq−1, bq−1, N |q) : dqH,
(6.7)

φ0(x; λ)2 =

⎧⎪⎪⎨⎪⎪⎩
N !

x! (N − x)!
(a)x (2x+ a+ b− 1)(a+ b)N

(b)x (x+ a+ b− 1)N+1
: dH,

(q ; q)N

(q ; q)x (q ; q)N−x

(a, abq−1 ; q)x

(abqN , b ; q)x ax

1 − abq2x−1

1 − abq−1
: dqH,

(6.8)

dn(λ)2 =

⎧⎪⎪⎨⎪⎪⎩
N !

n! (N − n)!
(a)n (b)N−n

(b)N
× (b)N

(a+ b)N
: dH,

(q ; q)N

(q ; q)n (q ; q)N−n

(a ; q)n(b ; q)N−n

(b; q)N an
× (b ; q)N aN

(ab; q)N
: dqH,

(6.9)

ϕ(x; λ) =

⎧⎪⎨⎪⎩
2x+ a+ b

a+ b
: dH,

q−x − abqx

1 − ab
: dqH,

fn(λ) = En(λ), bn(λ) = 1 : dH, dqH. (6.10)

6.1.2. Deformed systems
We restrict the parameter range of (6.3) as follows:{

a > 0, b > 1 : dH,
0 < a < 1, 0 < b < q, : dqH. (6.11)
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The data for the Hamiltonian systems of the exceptional dual (q)-Hahn polynomials
are as follows:

ξ̌�(x; λ) = ξ�(η(x; λ + (�− 1)δ); λ)

= P̌�

(
x; t

(
λ + (�− 1)δ

))
, t(λ) def= (λ1 + λ2 + λ3 − 1, 1 − λ3, 1 − λ2) : dH, dqH

=

⎧⎪⎪⎨⎪⎪⎩
3F2

(−�, a+ b+ x+ �− 2, −x
a+ b+N − 1, b− 1

∣∣∣ 1
)

: dH,

3φ2

(q−�, abqx+�−2, q−x

abqN−1, bq−1

∣∣∣ q ; q
)

: dqH,
(6.12)

vB
1 (x; λ) =

⎧⎪⎪⎨⎪⎪⎩
(x−N)(x+ a)

a+ b− 1
: dH,

q−x (1 − qx−N )(1 − aqx)
1 − abq−1

: dqH,
(6.13)

vB
2 (x; λ) =

⎧⎪⎪⎨⎪⎪⎩
x+ a+ b− 1
a+ b− 1

: dH,

q−x 1 − abqx−1

1 − abq−1
: dqH,

(6.14)

vD
1 (x; λ) =

⎧⎪⎪⎨⎪⎪⎩
(x+ a+ b+N − 1)(x+ b− 1)

a+ b− 1
: dH,

q−xb−1q1−N (1 − abqx+N−1)(1 − bqx−1)
1 − abq−1

: dqH,
(6.15)

vD
2 (x; λ) =

⎧⎪⎨⎪⎩
− x

a+ b− 1
: dH,

−abq−1 1 − qx

1 − abq−1
: dqH,

(6.16)

δ̃ = (0,−1, 0) : dH, dqH, (6.17)

f̂�,n(λ) =

{
−b−N + n+ 1 : dH,
−b−1q1−N (1 − bqN−n−1) : dqH,

b̂�,n(λ) = 1 : dH, dqH, (6.18)

κ̂�(λ) =
{

1 : dH,
bqN−�−1 : dqH,

s�(λ) =

⎧⎪⎪⎨⎪⎪⎩
(1 − b)

a+ b+N − 1
a+ b+ �− 1

: dH,

q�−N(1 − b−1q)
1 − abqN−1

1 − abq�−1
: dqH,

(6.19)

ŝ�(λ) = κ̂�(λ) : dH, dqH. (6.20)

Note that f̂�,n(λ), s�(λ) < 0 and b̂�,n(λ) > 0. All the formulas in §§3–5 are satisfied.

6.2. Little q-Jacobi

In this subsection we present the ordinary and the exceptional little q-Jacobi
(lqJ) polynomials. They are infinite dimensional: xmax = nmax = ∞ and x�

max =
n�

max = ∞. The Hamiltonian system of the little q-Jacobi polynomials is obtained
from that of the q-Racah polynomials by the following limit:

q–qR

= (q−N , aqN+1t−1, bq, t−1), qR t→0−−→ alqH N→∞−−−−→ lqJ, (6.21)
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where alqH stands for the alternative q-Hahn system (with λ = (aq, bq,N)) in §5.3.1
of Ref. 1).

6.2.1. Original system
The data of the shape invariant Hamiltonian system whose eigenfunctions are

described by the little q-Jacobi polynomials are as follows:1)

q– = (a, b), δ = (1, 1), κ = q−1, 0 < a < q−1, 0 < b < q−1, (6.22)

B(x; λ) = a(q−x − bq), D(x; λ) = q−x − 1, (6.23)

En(λ) = (q−n − 1)(1 − abqn+1), η(x; λ) = 1 − qx, (6.24)

P̌n(x; λ) = Pn(η(x; λ); λ) = 3φ1

(q−n, abqn+1, q−x

bq

∣∣∣ q ; a−1qx
)

= (−a)−nq−
1
2
n(n+1) (aq ; q)n

(bq ; q)n
2φ1

(q−n, abqn+1

aq

∣∣∣ q ; qx+1
)

= (−a)−nq−
1
2
n(n+1) (aq ; q)n

(bq ; q)n
pn(1 − η(x; λ); a, b|q), (6.25)

φ0(x; λ)2 =
(bq ; q)x

(q ; q)x
(aq)x, (6.26)

dn(λ)2 =
(bq, abq ; q)n a

nqn2

(q, aq ; q)n

1 − abq2n+1

1 − abq
× (aq ; q)∞

(abq2 ; q)∞
, (6.27)

ϕ(x; λ) = qx, fn(λ) = En(λ), bn(λ) = 1. (6.28)

6.2.2. Deformed system
The data for the exceptional little q-Jacobi polynomials are as follows:

ξ̌�(x; λ) = ξ�(η(x; λ + (�− 1)δ); λ)

= P̌�(x; t(λ + (�− 1)δ)), t(λ) def= (−λ1 − 2, λ2)

= 3φ1

(q−�, a−1bq�−1, q−x

bq�

∣∣∣ q ; aqx+�+1
)
, (6.29)

vB
1 (x; λ) = −aqx+1, vB

2 (x; λ) = 1 − bqx+1, (6.30)

vD
1 (x; λ) = −qx, vD

2 (x; λ) = 1 − qx, (6.31)

δ̃ = (1,−1), (6.32)

f̂�,n(λ) = q−n(1 − aqn+1)
1 − bq2�+n

1 − bq�
, b̂�,n(λ) = 1 − bq�, (6.33)

κ̂�(λ) = (aq�+1)−1, s�(λ) =
1

1 − bq�
, (6.34)

ŝ�(λ) = κ̂�(λ)(1 − bq�). (6.35)

Note that f̂�,n(λ), b̂�,n(λ), s�(λ) > 0. All the formulas in §§3–5 are satisfied.
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§7. Summary and comments

The Racah and the q-Racah polynomials are the most generic members of the
orthogonal polynomials of a discrete variable satisfying second order difference equa-
tions. By deforming the discrete quantum mechanical systems governing these poly-
nomials in terms of degree � eigenpolynomials, the exceptional Racah and q-Racah
polynomials are obtained as the main part of eigenfunctions of the deformed systems,
which are shape invariant and exactly solvable. By certain limiting procedures, the
exceptional dual (q)-Hahn polynomials and the exceptional little q-Jacobi polynomi-
als are derived. The deformation process goes parallel with that for the exceptional
Wilson and Askey-Wilson polynomials. Some of the characteristics of the quantum
mechanics with real shifts are the cause of complications which led to the delayed
discovery. The method of deriving the exceptional polynomials is new to the theory
of orthogonal polynomials. As for the parameter ranges in which the orthogonality
weight functions are positive, we have made a quite conservative arguments. It is
quite possible that for a fixed � the valid parameter range could be enlarged than
those given in the text. On the other hand, the difference equations for the orig-
inal and the exceptional orthogonal polynomials, (2.22)–(2.25), (4.36)–(4.38) and
(5.21)–(5.22) are purely algebraic and they hold for any parameter values.

With the understanding of all the generic exceptional orthogonal polynomials as
solutions of exactly solvable quantum mechanical systems, the next challenge would
be the construction of the exceptionals of various reduced cases, for example, the
Morse potential, the Meixner-Pollaczek and the Krawtchouk cases, etc. Finding
multivariable generalisation is truly interesting but its feasibility is as yet unclear.
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