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A Note on the Partition Function of ABJM Theory on S3
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We study the partition function Z of U(N)k × U(N)−k Chern-Simons matter theory
(ABJM theory) on S3 which is recently obtained by the localization method. We evaluate
the eigenvalue integral in Z exactly for the N = 2 case. We find that Z has a different
dependence on k for even k and odd k. We comment on the possible implication of this
result in the context of AdS/CFT correspondence.

Subject Index: 121, 125, 183

§1. Introduction

In the seminal paper,1) the theory on the N coincident M2-branes on the orbifold
R

8/Zk was identified as the d = 3 N = 6 U(N)k × U(N)−k Chern-Simons matter
theory (ABJM theory). Recently, the partition function ZN,k of ABJM theory on
S3 was obtained by the localization method,2) and ZN,k was given in the form of
a matrix integral. The behavior of ZN,k has been analyzed previously3)–6) in the ’t
Hooft limit

k, N → ∞, t =
N

k
= fixed , (1.1)

and it was shown that the free energy F = − log ZN,k exhibits the correct N
3
2 scaling

as predicted by the holographic dual gravity theory. The ABJM theory in the ’t Hooft
limit is holographically dual to the type IIA theory on AdS4 × CP

3, which appears
from the S1 reduction of the M-theory on AdS4 × S7/Zk when k � N

1
5 .

However, if we are interested in the dynamics of M2-branes in the truly M-theory
regime, or in the strong coupling regime of type IIA theory, we need to know the
behavior of ZN,k at finite k, since the IIA string coupling is inversely proportional
to k. Of particular interest is the ABJM theory at k = 1, which is conjectured to
describe the M2-branes on the flat eleven dimensional Minkowski space. Therefore
we might want to develop a technique to analyze the partition function ZN,k in the
M-theory regime where

N → ∞, k = finite . (1.2)

This regime was studied in 7) by the saddle point method for the eigenvalue integral.
In this paper we find the exact partition function ZN,k for N = 2 with finite k

by performing the eigenvalue integral explicitly for the N = 2 case. We find that
the result depends on the parity of k:

Z2, odd k =
1
k

k−1∑
s=1

(−1)s−1

(
1
2
− s

k

)
tan2 πs

k
+

(−1)
k−1
2

π
, (1.3)
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Z2, even k =
1
k

k−1∑
s=1

(−1)s−1

(
1
2
− s

k

)2

tan2 πs

k
. (1.4)

For both even k and odd k cases, the summation over s has a natural interpretation
as the effect of Zk orbifolding of R8/Zk.

This paper is organized as follows. In §2, we first rewrite the partition function of
ABJM theory on S3 in terms of the integrals associated with the cyclic permutations.
Then we consider the grand partition function of ABJM theory, following the similar
analysis of the matrix integrals which arise from the dimensional reduction of super
Yang-Mills theories to 0-dimension.8),9) We also comment on the mirror description
of the partition function of ABJM theory. In §3, we compute the partition function
of U(2)k ×U(2)−k ABJM theory and find that the result depends on the parity of k.
In §4, we speculate the possible implication of this result in the context of AdS/CFT
correspondence. In Appendices A and B, we present the details of the calculation of
integrals used in §3.

§2. Structure of the partition function of ABJM theory on S3

2.1. Grand partition function of ABJM theory

Recently, by applying the localization method of 10), the partition function of
general N = 2 Chern-Simons matter theories on S3 with the gauge group G and the
matter chiral multiplet in a representation R⊕R∗ was obtained in a form of matrix
integral2),∗)

Z =
1

|W |
∫

da e−iπka2 detAd(sinhπa)
detR(coshπa)

. (2.1)

Above, the integral of a is over the Cartan subalgebra of G, |W | is the order of the
Weyl group of G, and k is the Chern-Simons coupling which is quantized to be an
integer. Note that a originates from the constant mode of the real scalar field in the
vector multiplet.

Since the ABJM theory is the d = 3 U(N)k × U(N)−k Chern-Simons theory
with bi-fundamental matter multiplets, its partition function on S3 is given by

ZN,k =
1

(N !)2

∫
dNσdN σ̃ Δ(σ, σ̃)2 eiπk(σ2−eσ2) , (2.2)

where σ2 is the shorthand for
∑N

i=1 σ2
i , and similarly σ̃2 =

∑N
i=1 σ̃2

i , and Δ(σ, σ̃) is
given by

Δ(σ, σ̃) =

∏
i<j sinhπ(σi − σj) sinhπ(σ̃i − σ̃j)∏

i,j coshπ(σi − σ̃j)
. (2.3)

∗) The partition function of the theory with matter multiplet in the non-self-conjugate represen-

tation was obtained in 12) and 13). Note that (2·1) is valid only when the R-charge carried by the

matter multiplet is 1/2. The partition function for the case of non-canonical R-charge q was also

calculated in 12) and 13). See also 14) for a recent review on the localization technique in d = 3

theories.
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Using the Cauchy identity11)

Δ(σ, σ̃) =
∑

ρ∈SN

(−1)ρ
N∏

i=1

1
coshπ(σi − σ̃ρ(i))

, (2.4)

the partition function is rewritten as

ZN,k =
1

N !

∫
dNσdN σ̃ eiπk(σ2−eσ2)

∑
ρ∈SN

(−1)ρ
N∏

i=1

1
coshπ(σi − σ̃i) coshπ(σi − σ̃ρ(i))

.

(2.5)
The sum over permutations can be simplified by noting that the integral depends

only on the conjugacy class of permutation. The conjugacy class of permutation ρ
is labeled by the cycle of length � and the number d� of such cycles contained in ρ

[ρ] = [1d12d2 · · ·NdN ] ≡
[∏

�

�d�

]
, N =

∑
�

�d� . (2.6)

The number of elements in the conjugacy class [ρ] and the signature are given by

#[ρ] =
N !∏

� �d�d�!
, (−1)ρ = (−1)

P
� d�(�−1) . (2.7)

One can show that the integral in (2.5) is decomposed into the integral associated
with the cyclic permutation

ZN,k =
∑

d�≥0,
P

�d�=N

N∏
�=1

1
d�!

[
(−1)�−1A�,k

�

]d�

, (2.8)

where A�,k denotes the integral coming from the cycle of length �

A�,k =
∫

d�σd�σ̃ eiπk(σ2−eσ2)
�∏

i=1

1
coshπ(σi − σ̃i) coshπ(σi − σ̃i+1)

. (2.9)

Here the mod-� identification σ̃�+1 ≡ σ̃1 should be understood.
By introducing the chemical potential μ for N , the grand partition function is

defined by

Zk(μ) =
∞∑

N=0

eμNZN,k . (2.10)

From (2.8) one can easily see that Zk(μ) is exponentiated after summing over d�’s

Zk(μ) = exp

[ ∞∑
�=1

(−1)�−1

�
eμ�A�,k

]
. (2.11)

Once we know the grand partition function, we can recover the fixed N partition
function from the integral of Zk(μ) by analytically continuing the chemical potential
to a pure imaginary value μ = iθ

ZN,k =
∫ 2π

0

dθ

2π
e−iNθZk(iθ) . (2.12)
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It would be interesting to see whether the grand partition function of ABJM theory
has a hidden integrable structure as in 9).

2.2. Mirror description of ABJM theory

By the mirror symmetry, the ABJM theory is dual to a theory without Chern-
Simons term. More concretely, the mirror of ABJM theory is a U(N) super Yang-
Mills theory with matter hypermultiplets in certain representations of U(N). As
discussed in 11), the partition function on S3 is a useful tool to check this type of
mirror symmetry. The key relation to prove the equality of partition functions of
the original theory and its mirror is the following identity,∫

dx
e2πixσ

coshπx
=

1
coshπσ

. (2.13)

Using this relation, the partition function of ABJM theory ZN,k is rewritten as

ZN,k =
k2N

N !

∫
dNσdN σ̃dNxdNy

∑
ρ∈SN

(−1)ρ eiπk
PN

i=1[σ2
i −eσ2

i +2xi(σi−eσi)+2yi(σi−eσρ(i))]∏N
i=1 coshπkxi coshπkyi

.

(2.14)
After doing the Gaussian integral for σ, σ̃ and using the identity (2.13) again for the
y-integral, (2.14) becomes

ZN,k =
1

N !

∫ N∏
i=1

dxi

∑
ρ∈SN

(−1)ρ
N∏

i=1

1
coshπkxi coshπ(xi − xρ(i))

. (2.15)

Applying the Cauchy identity for the sum over permutations, we arrive at the mirror
expression of the partition function of ABJM theory

ZN,k =
1

N !

∫ N∏
i=1

dxi

∏
i<j sinh2 π(xi − xj)∏

i coshπkxi
∏

i,j coshπ(xi − xj)
. (2.16)

From this, we can read off the matter content of the mirror of ABJM theory. When
k = 1, the mirror theory is the U(N) super Yang-Mills theory with one adjoint
and one fundamental hypermultiplets, where the factors 1/

∏
i,j coshπ(xi − xj) and

1/
∏

i coshπxi in (2.16) are the 1-loop determinant of those hypermultiplets, respec-
tively.11) When k ≥ 2 it is not clear whether the factor 1/

∏
i cosh kπxi can be

interpreted as the 1-loop determinant of hypermultiplet in some representation R.
In particular it is different from the 1-loop determinant of hypermultiplet in the kth

symmetric product of fundamental representations.
The grand partition function of the mirror theory of ABJM theory has the

same form as (2.11), and the contribution from the cycle of length � in the mirror
description is given by

A�,k =
∫

d�x

�∏
i=1

1
coshπkxi coshπ(xi − xi+1)

. (2.17)
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§3. Partition function of U(2)k × U(2)`k ABJM theory

In this section, we study the partition function Z2,k of U(2)k × U(2)−k ABJM
theory. Since this model is conjecture to describe the dynamics of two M2-branes on
R

8/Zk, we expect that some information of the two-body interaction of M2-branes is
contained in the partition function Z2,k. Therefore, the study of the partition func-
tion of U(2)k×U(2)−k theory would be a modest first step toward the understanding
of the still mysterious multiple M2-brane dynamics.∗)

Here we evaluate the eigenvalue integral of ZN,k in (2.5) explicitly for the N = 2
case. To do that, we first rewrite Z2,k as a combination of the integral A�,k coming
from the cyclic permutation of length � as shown in (2.8)

Z2,k =
1
2

[
(A1,k)2 − A2,k

]
. (3.1)

Although A2,k is originally written as an integral over four variables (2.9), after some
computation this four-variable integral can be reduced to a single variable integral.
We find that A1,k and A2,k are given by (see Appendix A for details)

A1,k =
1
k

, (3.2)

A2,k =
∫ ∞

−∞
dλ

2λ

sinhπkλ cosh2 πλ
=

1
k2

−
∫ ∞

−∞
dλ

2λ

sinhπkλ

sinh2 πλ

cosh2 πλ
. (3.3)

Plugging this into (3.1), we obtain

Z2,k =
∫ ∞

−∞
dλ

λ

sinhπkλ

sinh2 πλ

cosh2 πλ
. (3.4)

Note that λ is related to the original variables (up to permutation) as

λ = σ1 − σ̃1 . (3.5)

As explained in Appendix B, the remaining λ-integral can be evaluated by picking
up the residues of the poles of 1

sinh πkλ and 1
cosh2 πλ

. It turns out that the result
depends on the parity of k

Z2, odd k =
1
k

k−1∑
s=1

(−1)s−1

(
1
2
− s

k

)
tan2 πs

k
+

(−1)
k−1
2

π
, (3.6)

Z2, even k =
1
k

k−1∑
s=1

(−1)s−1

(
1
2
− s

k

)2

tan2 πs

k
. (3.7)

In the above expression of Z2, even k, the s = k
2 term should be understood as the

limit

lim
s→ k

2

1
k
(−1)s−1

(
1
2
− s

k

)2

tan2 πs

k
=

(−1)
k
2
−1

kπ2
. (3.8)

∗) In a slightly different context, the exact evaluation of the partition function of U(2) IIB matrix

model was reported in 15) and 16).
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Let us consider the physical interpretation of this result (3.7). For both even
k and odd k cases, the sum over s comes from the poles at sinhπkλ = 0. It is
natural to interpret this sum as the effect of the Zk orbifolding of R

8/Zk. On the

other hand, the second term (−1)
k−1
2

π in Z2, odd k comes from the pole at coshπλ = 0.
This pole corresponds to the zero of the 1-loop determinant of the bi-fundamental
hypermultiplet, so it represents a singularity on the space of vector multiplet scalar
fields where one of the bi-fundamental hypermultiplet becomes massless. However,
the location of the singularity is at the imaginary value of the scalar field

σ1 − σ̃1 =
i

2
, (3.9)

and hence this singularity is not realized in the physical theory. We should also
mention that the poles coming from the 1

sinh πkλ factor do not correspond to the
zeros of the 1-loop determinant of the hypermultiplets in the original ABJM theory.
Those poles effectively show up only after integrating out some of the variables σi

and σ̃i, which are coupled via the Chern-Simons term eπik(σ2−eσ2).
From (3.3), we see that A2,k is positive. Therefore, we find the inequality∗)

Z2,k <
1
2
(Z1,k)2 , (3.13)

where Z1,k = A1,k = 1
k is the partition function of U(1)k × U(1)−k theory. From

this inequality (3.13), it is tempting to draw a conclusion that the binding energy of
two M2-branes is negative and M2-branes tend to dissociate into a configuration of
two separated M2-branes. However, we think this is not the correct interpretation.
When the ABJM theory is put on S3, the bi-fundamental matter multiplets acquire
a mass term from the coupling to the curvature of S3, and hence the moduli space
corresponding to the freely moving M2-branes on R

8/Zk is lifted. Therefore, the free
energy of ABJM theory on S3 is not a suitable measure of the binding energy of
M2-branes on flat R

1,2 × R
8/Zk. Rather, the partition function on S3 is a natural

quantity to consider in the context of the Euclidean version of AdS/CFT duality,
∗) The normalization of the partition function in 3) is different from ours by the factor of 2 in

the 1-loop determinant. Namely, the partition function in 3) is related to ours by the replacement

sinh → 2 sinh, cosh → 2 cosh

Z
(DMP)
N,k =

1

(N !)2

Z
dNσdN eσ eiπk(σ2−eσ2)

" Q
i<j 2 sinh π(σi − σj) · 2 sinhπ(eσi − eσj)Q

i,j 2 coshπ(σi − eσj)

#2

. (3.10)

One can easily see that the difference between Z
(DMP)
N,k and ours is just the overall factor 2−2N

Z
(DMP)
N,k = 2−2NZ

(ours)
N,k . (3.11)

However, this factor drops out when taking the ratio of (Z1,k)2 and Z2,k

(Z
(DMP)
1,k )2

Z
(DMP)
2,k

=
(Z

(ours)
1,k )2

Z
(ours)
2,k

. (3.12)

Therefore, the statement Z2,k < 1
2
(Z1,k)2 has a physical meaning regardless of the normalization

we choose.
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where S3 appears as the boundary of Euclidean AdS4. In the next concluding section
we discuss a possible implication of our result in the context of AdS4/CFT3 duality.

§4. Discussion

As discussed in 1), the ABJM theory is dual to the M-theory on AdS4 × S7/Zk

with the metric

ds2 =
R2

4
ds2

AdS4
+ R2ds2

S7/Zk
, (4.1)

where the radius of curvature R is given by(
R

lp

)6

= 32π2kN . (4.2)

The classical d = 11 supergravity description is valid when the radius of S7/Zk is
much larger than the eleven-dimensional Planck length lp

lp � R

k
→ k5 � N . (4.3)

In particular, the large N limit of ABJM theory with k fixed to a finite integer is in
the regime of (4.3).

On the ABJM theory side, it seems that the even/odd k difference of the behavior
of the partition function ZN,k persists for N > 2. This is because, in the integral of
A�,k in (A.6), the pole of the form 1

sinh πkλ related to the Zk orbifolding appears also
for general � > 2 in the same way as A2,k by integrating out some of the variables
in σi and σ̃i coupled through the Chern-Simons term, and the remaining integral
over λ depends on the parity of k. Since the partition function ZN,k is written
as a combination of A�,k (2.8), ZN,k also depends on the parity of k, unless some
miraculous cancellation happens. But we think that is unlikely and the dependence
on the parity of k is not an artifact of Z2,k but the general property of ZN,k for all
N ≥ 2.

If we believe in the duality between the ABJM theory and M-theory on AdS4 ×
S7/Zk, this difference of even/odd k must be encoded in the M-theory dual, perhaps
in a very subtle way. However, so far there is no known indication of this difference
in the supergravity approximation of M-theory on AdS4 × S7/Zk. Even if we take
account of the wrapped brane configuration in this background, the bulk theory
seems to be insensitive to the parity of k. In fact, the BPS configuration of M5-
branes wrapped on the 3-cycle in S7/Zk is characterized by the homology class

H3(S7/Zk) = Zk , (4.4)

which is interpreted as the fractional M2-brane charge.17) Clearly, this charge does
not distinguish the parity of k. It might be the case that the even/odd k difference
appears in the bulk theory as some sort of quantum effects in M-theory, which
cannot be seen in the supergravity approximation. If this is true, it would be nice
to understand this effect better.
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In the regime where
N

1
5 � k � N , (4.5)

the bulk theory is described by the type IIA string theory on AdS4 × CP
3. On the

CFT side, this regime is related to the ’t Hooft limit of ABJM theory (1.1), and the
classical type IIA supergravity description becomes good when the ’t Hooft coupling
t = N

k is large. When comparing the free energy F = − log ZN,k of ABJM theory and
the classical action of the bulk supergravity theory, we need to perform an analytic
continuation of ZN,k as a function of k and N . In particular, when determining the
eigenvalue distribution for the matrix integral (2.2) in the ’t Hooft limit, the analytic
continuation in k is implicitly assumed.

Our result suggests that the analyticity in k is not obvious a priori, even in
the large N regime. In some cases of Chern-Simons-matter theories, the analytic
continuation in k requires the deformation of integration contour. However, the
integral representation of Z2,k in (3.4) is well-defined for k ∈ R without changing the
integration contour of λ. From this integral representation (3.4), one can see that
Z2,k decreases monotonically as a function of k,∗) and the expression (3.4) for k ∈ R

serves as an interpolating function of our result (3.7) for integer k. It would be nice
to see if similar analytic continuation is possible for N > 2 without deforming the
integration contour.
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Appendix A
Computation of A�,k

In this appendix, by performing the integration of two variables, we rewrite the
2�-variable integral A�,k given in (2.9) into the integral of 2(� − 1) variables. Using
this expression, we find A1,k = 1

k . We also find the expression of A2,k as a single
variable integral.

A.1. Writing A�,k as the integral of 2(� − 1) variables

For readers convenience, we repeat the integral A�,k in (2.9)

A�,k =
∫

d�σd�σ̃ eiπk(σ2−eσ2)
�∏

i=1

1
coshπ(σi − σ̃i) coshπ(σi − σ̃i+1)

. (A.1)

This integral can be simplified by the following change of variables

(σ1, · · · , σ�, σ̃1, · · · , σ̃�) → (λ1, · · · , λ�, λ̃1, · · · , λ̃�−1, σ̃�) (A.2)

∗) We would like to thank the referee of Prog. Theor. Phys. for pointing this out.
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where

λi = σi − σ̃i (i = 1, · · · , �) , λ̃i = σi − σ̃i+1 (i = 1, · · · , � − 1) . (A.3)

In terms of these new variables, the integral becomes

A�,k =
∫

d�λd�−1λ̃dσ̃�

�∏
i=1

1
coshπλi

�−1∏
i=1

1

coshπλ̃i

· 1

coshπ(
∑�

i=1 λi −
∑�−1

i=1 λ̃i)

× exp

⎛⎝2πki

�−1∑
i=1

i∑
j=1

λjλ̃i + 2πki

�∑
i=1

λiσ̃�

⎞⎠ . (A.4)

Since the variable σ̃� appears only in the exponent, the σ̃� integral is just a δ-function∫
dσ̃� exp

(
2πki

�∑
i=1

λiσ̃�

)
=

1
k
δ

(
�∑

i=1

λi

)
. (A.5)

After integrating out λ� by setting λ� = −∑�−1
i=1 λi by the above δ-function, we

obtain

A�,k =
1
k

∫
d�−1λd�−1λ̃

�−1∏
i=1

1

coshπλi coshπλ̃i

· 1

coshπ(
∑�−1

i=1 λi) coshπ(
∑�−1

i=1 λ̃i)

× exp

⎛⎝2πki
�−1∑
i=1

i∑
j=1

λjλ̃i

⎞⎠ . (A.6)

A.2. A1,k and A2,k

Let us look closely at the expression (A.6) for � = 1, 2. For � = 1, there is no
integral and the result is simply

A1,k =
1
k

. (A.7)

For � = 2, the original four-variable integral is reduced to a two-variable integral

A2,k =
1
k

∫
dλdλ̃

e2πkiλeλ

cosh2 πλ cosh2 πλ̃
. (A.8)

The λ̃-integral can be done by closing the contour in the upper half plane when λ > 0,
or the lower half plane when λ < 0, and the result turns out to be independent of
the sign of λ

A2,k =
∫

dλ
1

cosh2 πλ

2λ

sinhπkλ
. (A.9)

Using the relation 1
cosh2 πλ

= 1 − tanh2 πλ, (A.9) can be further rewritten as

A2,k =
∫

dλ
2λ

sinhπkλ
−
∫

dλ
2λ

sinhπkλ
tanh2 πλ

=
1
k2

−
∫

dλ
2λ

sinhπkλ
tanh2 πλ . (A.10)
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Fig. 1. This is the contour C = C1+C2+C3+C4 used in Appendix B. C1 and C3 are the horizontal

lines at Imz = 0 and Imz = 1, respectively. C2 and C4 are the vertical segments at |Rez| = Λ,

and we will take the limit Λ → ∞ at the end of computation.

The partition function ZN,k is given by a combination of A�,k (2.8). For the
N = 2 case, we find

Z2,k =
1
2
[
(A1,k)2 − A2,k

]
=
∫ ∞

−∞
dλ

λ

sinhπkλ
tanh2 πλ . (A.11)

Note that from (A.3) the variable λ corresponds to σ1 − σ̃1.

Appendix B
Evaluation of Z2,k

In this appendix, we evaluate the partition function of the U(2)k×U(2)−k ABJM
theory found in Appendix A (A.11)

Z2,k =
∫ ∞

−∞
dλ

λ

sinhπkλ

sinh2 πλ

cosh2 πλ
. (B.1)

In order to evaluate this integral, we consider a contour integral of some holomorphic
functions along the contour C = C1+C2+C3+C4 depicted in Fig. 1. We will specify
the relevant holomorphic functions shortly, which are closely related to the integrand
of (B.1). It turns out that there are two types of poles inside C: the first type is the
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poles of 1
sinh πkz , and the second type is the pole of 1

cosh2 πz
. We call those poles the

“sh-type” poles and the “ch-type” pole, respectively. Namely,

sh-type poles : sinhπkz = 0 → z =
s

k
i , (s = 1, · · · , k − 1)

ch-type pole : coshπz = 0 → z =
i

2
. (B.2)

When k is odd, the pole z = i
2 does not appear in the set of sh-type poles. On the

other hand, when k is even, z = i
2 is also a pole of 1

sinh πkz . Therefore, we have to
analyze the even k case and the odd k case separately.

B.1. Odd k case

Let us consider the odd k case first. In order to evaluate the integral (B.1), we
introduce the holomorphic function

f(z) =
1
2

z − i
2

sinhπkz

sinh2 πz

cosh2 πz
. (B.3)

Since f(z) is regular at z = 0 and z = i, there is no pole on the contour C. Note
also that all poles in (B.2) are simple poles of f(z). In particular, z = i

2 is a simple
pole of f(z) due to the factor of z − i

2 in (B.3).
In the contour integral of f(z) along C, the contributions of C2 and C4 become

zero in the limit of Λ → ∞

lim
Λ→∞

∫
C2

dzf(z) = lim
Λ→∞

∫
C4

dzf(z) = 0 . (B.4)

As for the integral along C1 and C3, one can easily see that the limit Λ → ∞
exists and leads to a finite result. Hence, in what follows we will not indicate the
limit Λ → ∞ explicitly and we will only write the result of Λ = ∞. The integral
along C1 is ∫

C1

dzf(z) =
∫ ∞

−∞
dλf(λ) =

∫ ∞

−∞
dλ

1
2

λ − i
2

sinhπkλ

sinh2 πλ

cosh2 πλ

=
∫ ∞

−∞
dλ

1
2

λ

sinhπkλ

sinh2 πλ

cosh2 πλ
. (B.5)

Here the term proportional to − i
2 vanishes, because the integrand of that term is an

odd function of λ. Therefore, we find∫
C1

dzf(z) =
1
2
Z2,k . (B.6)

For the integral along C3, we parametrize z as

z = i − λ . (λ ∈ R,−∞ < λ < ∞) (B.7)

Using the following property of the function f(z)

f(i − λ) = −f(λ) , (B.8)
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we find ∫
C3

dzf(z) = −
∫ ∞

−∞
dλf(i − λ) =

∫ ∞

−∞
dλf(λ) =

1
2
Z2,k . (B.9)

Combining (B.4), (B.6) and (B.9), we find that the partition function Z2,k is equal
to the integral

∮
C dzf(z)∮

C
dzf(z) =

4∑
a=1

∫
Ca

dzf(z) = Z2,k . (B.10)

On the other hand, by the Cauchy residue theorem this integral
∮
C dzf(z) can be

written as a sum of residues of the poles inside C∮
C

dzf(z) = 2πiResz= i
2
f(z) + 2πi

k−1∑
s=1

Resz= s
k
if(z) . (B.11)

Putting everything together, we arrive at our final result

Z2,k = Z
(sh)
2,k + Z

(ch)
2,k , (B.12)

where

Z
(sh)
2,k = 2πi

k−1∑
s=1

Resz= s
k
if(z) =

1
k

k−1∑
s=1

(−1)s−1

(
1
2
− s

k

)
tan2 πs

k
,

Z
(ch)
2,k = 2πiResz= i

2
f(z) =

(−1)
k−1
2

π
. (B.13)

In the above expression of Z
(sh)
2,k , using the symmetry under s → k− s, one can show

that the sum over the latter half of s ∈ [k+1
2 , k − 1] is the same as the sum over the

first half of s ∈ [1, k−1
2 ]. Therefore, the sh-type part can be written as the twice of

the sum over s ∈ [1, k−1
2 ]

Z
(sh)
2,k =

2
k

k−1
2∑

s=1

(−1)s−1

(
1
2
− s

k

)
tan2 πs

k
. (B.14)

B.2. Even k case

Next we consider the even k case. When k is even, z = i
2 is a triple zero of the

function sinhπkz cosh2 πz which appears in the denominator of the integral (B.1).
Therefore, in order to make z = i

2 a simple pole, we consider a function h(z) with a
factor (z − i

2)2

h(z) =
i

2

(
z − i

2

)2
sinhπkz

sinh2 πz

cosh2 πz
. (B.15)

Let us consider the integral of h(z) along the contour C in Fig. 1. As in the previous
subsection, we can see that the contributions from the vertical segments C2 and C4

vanish
lim

Λ→∞

∫
C2

dz h(z) = lim
Λ→∞

∫
C4

dz h(z) = 0 . (B.16)
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For the integral along C1, from the parity of the integrand under λ → −λ, only
the term linear in λ survives∫

C1

dz h(z) =
∫ ∞

−∞
dλh(λ) =

∫ ∞

−∞
dλ

1
2

iλ2 + λ − i
4

sinhπkλ
· sinh2 πλ

cosh2 πλ
=

1
2
Z2,k . (B.17)

For the integral along C3, using the property

h(i − λ) = −h(λ) (B.18)

we find ∫
C3

dz h(z) = −
∫ ∞

−∞
dλh(i − λ) =

∫ ∞

−∞
dλh(λ) =

1
2
Z2,k . (B.19)

Therefore, the integral
∮
C dz h(z) is equal to the partition function Z2,k∮
C

dz h(z) =
4∑

a=1

∫
Ca

dz h(z) = Z2,k . (B.20)

By the Cauchy residue theorem, Z2,k is written as a sum of residues of the poles
inside C

Z2,k =
∮

C
dz h(z) = 2πi

k−1∑
s=1 (s�= k

2
)

Resz= s
k
ih(z) + 2πiResz= i

2
h(z) , (B.21)

where

2πi
k−1∑

s=1 (s�= k
2
)

Resz= s
k
ih(z) =

1
k

k−1∑
s=1 (s�= k

2
)

(−1)s−1

(
1
2
− s

k

)2

tan2 πs

k
,

2πiResz= i
2
h(z) =

(−1)
k
2
−1

kπ2
. (B.22)

The residue of the pole z = i
2 can be included in the sum of s as the s = k

2 term,
with the understanding of taking the limit

lim
s→ k

2

1
k
(−1)s−1

(
1
2
− s

k

)2

tan2 πs

k
=

(−1)
k
2
−1

kπ2
. (B.23)

Since this term scales as k−1, it seems natural to identify this term as a part of
sh-type contribution. Therefore, one can think that the partition function for even
k consists solely of the sh-type part

Z2,k =
1
k

k−1∑
s=1

(−1)s−1

(
1
2
− s

k

)2

tan2 πs

k
. (B.24)

As in the case of odd k, the sum over s can be reduced to the half range by using
the symmetry under s → k − s

Z2,k =
2
k

k
2
−1∑

s=1

(−1)s−1

(
1
2
− s

k

)2

tan2 πs

k
+

(−1)
k
2
−1

kπ2
. (B.25)
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B.3. Some examples of Z2,k for low k’s

To see the behavior of the partition function of U(2)k × U(2)−k ABJM theory,
here we list the values of Z2,k from k = 1 to k = 8

Z2,1 =
1
π

, Z2,2 =
1

2π2
,

Z2,3 =
1
3
− 1

π
, Z2,4 =

1
32

− 1
4π2

,

Z2,5 =
10 − 8

√
5

25
+

1
π

, Z2,6 = − 5
324

+
1

6π2
,

Z2,7 =
5 tan2 π

7 − 3 tan2 2π
7 + tan2 3π

7

49
− 1

π ,
Z2,8 =

13 − 8
√

2
128

− 1
8π2

.

It is curious to observe that the orbifold part of Z2,5 and Z2,8 are not rational
numbers, and Z2,7 cannot be written in a simple form as a combination of the
elementary functions of k(= 7), such as kα with some power α. It would be nice to
find a closed form expression of Z2,k as a function of k.

References

1) O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, J. High Energy Phys. 10
(2008), 091, arXiv:0806.1218.

2) A. Kapustin, B. Willett and I. Yaakov, J. High Energy Phys. 03 (2010), 089,
arXiv:0909.4559.

3) N. Drukker, M. Marino and P. Putrov, Commun. Math. Phys. 306 (2011), 511,
arXiv:1007.3837.

4) N. Drukker, M. Marino and P. Putrov, arXiv:1103.4844.
5) H. Fuji, S. Hirano and S. Moriyama, J. High Energy Phys. 08 (2011), 001,

arXiv:1106.4631.
6) R. C. Santamaria, M. Marino and P. Putrov, arXiv:1011.6281.
7) C. P. Herzog, I. R. Klebanov, S. S. Pufu and T. Tesileanu, Phys. Rev. D 83 (2011),

046001, arXiv:1011.5487.
8) G. W. Moore, N. Nekrasov and S. Shatashvili, Commun. Math. Phys. 209 (2000), 77,

hep-th/9803265.
9) V. A. Kazakov, I. K. Kostov and N. A. Nekrasov, Nucl. Phys. B 557 (1999), 413, hep-

th/9810035.
10) V. Pestun, arXiv:0712.2824.
11) A. Kapustin, B. Willett and I. Yaakov, J. High Energy Phys. 10 (2010), 013,

arXiv:1003.5694.
12) D. L. Jafferis, arXiv:1012.3210.
13) N. Hama, K. Hosomichi and S. Lee, J. High Energy Phys. 03 (2011), 127, arXiv:1012.3512.
14) M. Marino, arXiv:1104.0783.
15) T. Suyama and A. Tsuchiya, Prog. Theor. Phys. 99 (1998), 321, hep-th/9711073.
16) M. B. Green and M. Gutperle, Phys. Lett. B 398 (1997), 69, hep-th/9612127.
17) O. Aharony, O. Bergman and D. L. Jafferis, J. High Energy Phys. 11 (2008), 043,

arXiv:0807.4924.


