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We investigated the electromagnetic properties of the metamaterials that consist of double-gap

split ring resonators (SRRs) in the terahertz region. We found that varying the position of one gap

with respect to the other causes the resonant frequency of the SRRs to shift over a broad range.

This frequency shift is attributed to the change in the combined capacitance that consists of two

capacitances of gaps connected in series and an additional capacitance connected in parallel to the

others. Our findings are also verified by obtaining good agreement between experiments and

simulations. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739945]

Manipulating and controlling light with metamaterials,1

which consist of subwavelength artificial structures, are very

attractive for the purpose of fabricating optical devices.

Attempts to produce extraordinary optical phenomena by

using metamaterials have been demonstrated, including neg-

ative refractive index materials2 and transformation optics.3

Many studies about metamaterials have used resonant ele-

ments as unit cells to induce electric and magnetic reso-

nance. A split ring resonator (SRR) is a promising structure

that can be used to obtain magnetic resonance.

The reflection and transmission characteristics of SRRs

are determined by their sizes and shapes. Until now, many

studies about tuning or switching the electromagnetic prop-

erties of SRRs have been reported.4–11 For example, Singh

et al. investigated the terahertz (THz) transmission character-

istics of asymmetric SRRs by varying the position of the

capacitive gap and found that the frequency of the resonant

dip can be modulated.10 Such a modulation of electromag-

netic properties is very useful not only for passive THz meta-

materials but also for THz active photoconductive antennas

loaded with SRRs.12 Recently, Takano et al. reported on res-

onant THz emissions from SRR-loaded photoconductive

antennas and demonstrated control of the emissions’ proper-

ties by pumping the capacitive gap of the SRR with femto-

second optical pulses.

In this paper, we investigate the transmission character-

istics of SRRs with double capacitive gaps. By varying the

position of one of the capacitive gaps with respect to the

other, we observe a broad range of frequency shifts of the

transmission dip. We simulate the current distributions for

our SRRs and attribute the mechanism of this frequency shift

to the change of the combined capacitance of the SRRs. This

characteristic of the double-gap SRRs makes possible the

fabrication of switchable THz photoconductive antennas

with broad range resonant frequency tuning.

Figure 1 shows diagrams of SRRs with the double

capacitive gaps used in our study. We set the length of one

side to a¼ 100 lm and the gap width to b¼ 20 lm for all

SRRs. The position of one of the gaps is varied with respect

to the other with displacement parameters dy and dx that are

measured from the top side for SRR1 (dy¼ 14 lm), SRR2

(dy¼ 50 lm), and SRR3 (dy¼ 86 lm); and the left side for

SRR4 (dx¼ 14 lm), SRR5 (dx¼ 50 lm), and SRR6

(dx¼ 86 lm), respectively. Both the line width and line

thickness are 2 lm. We simulate the transmission spectra of

the SRRs by using the finite difference time domain (FDTD)

method in three-dimensional space. SRRs are arranged with

square lattice structure (lattice constant p¼ 150 lm) in two

dimensions of the y� z or x� z plane depending on the prop-

agation direction k of the incident wave. When the incident

wave propagates along x (y) axis, SRRs are arranged periodi-

cally in y� z (x� z) plane. The incident magnetic field B is

directed perpendicular to the SRR plane in order to induce a

circular current and hence the magnetic resonance, while the

FIG. 1. Diagrams of double-gap SRRs used in our study. The geometrical

parameters are a¼ 100 lm and b¼ 20 lm for all SRRs.
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direction of the incident electric field E depends on the

propagation direction of the incident wave. In this simula-

tion, we assumed a perfect conductor for the material of the

SRRs.

Figures 2(a) and 2(b) show the simulated transmission

spectra of the double-gap SRRs for different propagation

directions of the incident wave as shown in inset of each fig-

ure. Each spectrum is shifted in the vertical direction for

clarity. For SRR1 in Fig. 2(a), the transmission dip is

observed at 0.45 THz, which is attributed to the LC reso-

nance of the SRR.11 The transmission dip shows a blue shift

as one of the capacitive gaps moves away from the other

fixed gap (from SRR1 to SRR6), and reaches approximately

0.75 THz for SRR6. The amount of this resonant frequency

shift is much larger than that observed in the case of the sin-

gle gap displacement.10 This characteristic could be very

useful for tuning the resonant frequency of THz emissions in

applications using double-gap SRRs as loaded elements for a

photoconductive THz antenna.12 The shape of the transmis-

sion dips looks asymmetric for SRR5 and SRR6. This is

because another resonant dip, which is attributed to the elec-

tric resonance, is near the LC resonant frequency.

In Fig. 2(b), the resonant frequency shows the similar

blue-shift to that observed in Fig. 2(a). However, some dis-

crepancies of the bandwidth and resonant frequency are

observed between Figs. 2(a) and 2(b). These discrepancies

might be attributed to the difference of the incident electric

field polarization. In an asymmetric optical configuration of

SRRs, the incident electric field induces the circular current

through the bianisotropic effect.11 In our SRRs, the strength

of this bianisotropic effect depends on the shape of the SRR

and the electric polarization. Additionally, the electrically

induced circular current interacts with the other circular cur-

rent that is induced by the incident magnetic field normal to

the SRR plane. As the result, the transmission dip shows dif-

ferent frequency and spectral shape depending on the inci-

dent electric field polarization.

Next, we investigate the mechanism of the frequency

shift of the SRRs in detail. In Fig. 3, we show the calculated

current (arrows) and electric charge (color image) distribu-

tions for SRR1-SRR6, respectively, at each resonant fre-

quency. For this calculation, we used the HFSS frequency

domain solver. All figures show the distributions at same

phase where both the current and electric charge distribu-

tions are clearly observed. Phase variations of the current

and electric charge distributions for each SRR are also given

as multimedia movie files. In SRR1, circular current flow

can be observed along the longer metallic segment. This

type of current distribution is also observed in SRR2 and

SRR3. Only very weak current is observed along the shorter

metallic segment in SRR3. With increasing dx for SRR4-

SRR6, and correspondingly as the lengths of the two metallic

segments become more similar, the magnitude of the current

flow along the shorter metallic segment increases gradually.

For SRR6, the lengths of the two metallic segments are the

same, and the current distribution becomes symmetric.

From the simulated results of the current distributions,

the mechanism of the frequency shift observed in Fig. 2 is

considered as follows. Figure 4(a) shows a diagram of the

equivalent capacitance of SRR3. In addition to C1 and C2,

which are connected in series, the additional capacitances C3

and C4 that are connected in parallel with respect to the other

capacitances should be considered. The current distributions

can be roughly classified into two cases, depending on C3

and the combined capacitance of C1 and C2, i.e., C12¼C1

C2/(C1þC2). For SRR1, SRR2, and SRR3, C3 is much

larger than the combined capacitance C12, and therefore, the

loop current is formed by the electric current along the lon-

ger metallic segment and displacement current through C3,

as observed in Fig. 3. As the distance between the gaps

increases from SRR3 to SRR6, the value of C3 decreases,

and the current in the short metallic segment increases owing

to the displacement current through C12. Although all the cir-

cuit parameters including C4 or the inductances of the

FIG. 2. Simulated transmission spectra for

SRR1-SRR6 shown in Fig. 1. Incident electro-

magnetic wave is illuminated from (a) left and

(b) bottom of SRRs as shown in inset. Direc-

tions of incident electric and magnetic field

are also shown in inset. Each spectrum is

shifted in the vertical direction for clarity.
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metallic segment are required to obtain the absolute value of

the resonant frequency, the blue shifts in the resonant fre-

quencies can be qualitatively explained by the decreases of

C3.

In order to verify the above discussion, we simulated the

transmission spectra of SRR3 with three different values of

C1 and C2, or C12. The calculated results are shown in Figs.

4(b) and 4(c) for each propagation direction of the incident

wave as shown in insets. The red curve in Fig. 4(b) indicates

the transmission spectrum of SRR3, which shows the trans-

mission dip at 0.43 THz. Even if we remove the smaller seg-

ment from this SRR3 (black curve in Figs. 4(b) and 4(c)), the

transmission spectrum is almost the same as the red curve.

Only a very slight blue shift can be observed. This indicates

that C3 is the dominant factor in the combined capacitance

for SRR3. When C12 increases, on the other hand, the reso-

nant frequency changes. The blue curves in Figs. 4(b) and

4(c) show the transmission spectrum of SRRs whose geomet-

rical parameters are shown in the insets of each figure. The

widths of both capacitive gaps are decreased to 4 lm by

increasing the length of the shorter metallic segment. This

means that only C12 increases, and C3 is fixed. Owing to the

increase of C12, and correspondingly the increase of the com-

bined capacitance, we can observe that the resonant fre-

quency shifts lower on the blue curve compared to the red

curve. This result indicates that C12 gives relatively large

contributions to the resonant characteristic. It is noted that

we should also consider the near-field coupling between two

metallic line segments as a contributing factor to the fre-

quency shift. When the two resonators are placed enough

closely with each other, the shift of each resonant frequency

occurs as a result of the near-field coupling.13 This effect

increases with decreasing the gap, and hence the distance

between two metallic line segments becomes closer as

observed in Figs. 4(b) and 4(c).

The contribution of C12 also becomes larger as the ge-

ometry of SRR changes from SRR1 to SRR6. Figure 5 shows

the frequency shift of the resonant dip between our original

FIG. 4. (a) Diagram of double-gap SRR with equivalent capacitances. (b)

and (c) Simulated transmission spectra for three types of SRRs. Inset of each

figure shows the diagrams of SRRs used in this simulation and the configura-

tion of the incident electromagnetic wave. For each figure, red line shows

the transmission spectrum of SRR3. Black line is for the SRR that consists

of only longer metallic segment of SRR3. Blue line is for the SRR that is

same with SRR3 except the gap width of 4 lm.

FIG. 3. Simulated distributions of surface current flow (arrow) and electric

charge (color image) for SRR1-SRR6 at each resonant frequency. All figures

are depicted at same phase for each resonant frequency (enhanced online)

[URL: http://dx.doi.org/10.1063/1.4739945.1] [URL: http://dx.doi.org/

10.1063/1.4739945.2] [URL: http://dx.doi.org/10.1063/1.4739945.3] [URL:

http://dx.doi.org/10.1063/1.4739945.4] [URL: http://dx.doi.org/10.1063/

1.4739945.5] [URL: http://dx.doi.org/10.1063/1.4739945.6].
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SRRs as shown in Fig. 1 (SRR1-SRR6) and SRRs that con-

sist of only longer metallic segment of each original SRRs as

a function of number of SRRs. For example, we plot the fre-

quency shift (0.007 THz) between dip frequencies of red

(0.563 THz) and black lines (0.570 THz) in Fig. 4(c) as a

value at SRR3. The propagation direction of the incident

electromagnetic wave is same to that of Fig. 4(c). As the ge-

ometry of SRR changes from SRR1 to SRR6, the value of

the frequency shift gradually increases, and reaches about

0.1 THz for SRR6. This result indicates that the contribu-

tions of C12 gradually increases, and give very large contri-

butions for SRR6.

Finally, we derive the experimental evidence for our

finding in simulations. As shown in the inset of Fig. 6(a), we

fabricated two metamaterials of double-gap SRRs with dif-

ferent gap positions on 100-lm-thick polyethylene tereph-

thalate (PET) films. The geometrical parameters of these

metamaterials are also shown in the figure. We used THz

time-domain spectroscopy14 to measure the transmission

spectrum with the incident THz wave propagating in the

direction normal to the SRR plane. In our simulation, the

incident magnetic field is directed normal to the SRR plane.

However, since the measurement of the transmission spec-

trum is difficult in the optical configuration as performed in

our simulation, we measure the transmission spectra at nor-

mal incidence in this experiment. In order to induce the LC

resonance efficiently with the bianisotropic effect at normal

incidence, the incident THz wave was polarized along the y-

axis indicated in the inset of the Fig. 6(a). The black and red

lines in Fig. 6(a) are transmission spectra for the metamateri-

als whose geometries are similar to those of SRR2 and SRR5

in Fig. 1, respectively. We can observe the apparent differ-

ence in the resonant dip frequency for the two samples. Fig-

ure 6(b) shows the simulated transmission spectra for two

metamaterials with the same geometrical parameters. Good

agreement between experiments and simulations is observed.

These results give the experimental evidence that the reso-

nant frequency of the double-gap SRR can be tuned by

changing the gap positions. However, the observed dip fre-

quencies of the LC resonance are lower than those observed

in Figs. 2(a) and 2(b). These discrepancies are mainly due to

the existence of PET film as substrate. They also are attrib-

uted to slight difference of the geometric parameters with

respect to those of simulations owing to the limit of precision

of our fabrication process.

In summary, we investigated the transmission character-

istics of double-gap SRRs in the THz region both theoreti-

cally and experimentally. We found that the resonant

frequency of the LC resonance can be shifted over a broad

range by changing the position of one capacitive gap with

respect to the other. From the results of the current distribu-

tion simulation, these results can be attributed to the varia-

tion of the combined capacitance that consists of two

capacitances of gaps connected in series and an additional

capacitance connected in parallel to the others. Such a broad-

band tuning of the LC resonant frequency is quite useful for

applications involving resonant emissions of THz radiation

from SRR-loaded photoconductive antenna devices.
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