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The coupling-constant expression and virial relation for the exchange-correlation energy functional of the
extended-constrained search theldvly Higuchi and K. Higuchi, Phys. Rev. B9, 035113(2004] are derived.
These provide the guideline for developing and testing the approximate form of the exchange-correlation
energy functional.
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[. INTRODUCTION toward the development of the approximate form of the ECS
exchange-correlation energy functional.
Recently we have proposed the extended constrained-
search(ECS theory in which arbitrary physical quantities

can be chosen as basic variables in addition to the electron Il. COUPLING-CONSTANT EXPRESSION
density!2 The validity of this theory has been confirmed by FOR THE EXCHANGE-CORRELATION
revisiting on the basis of it the spin-density functional theory ENERGY FUNCTIONAL

(SDFT), the current-density functional theoCDFT), the In this section, the coupling-constant integration tech-

LDA+U method, and the Hartree—Fock—Kohn—Sham . . . .
schemé-? The ECS theory has two advantages over the con'due 1S applied to the ECS theory so as to derive the exact

ventional density functional theorDFT), as stated in pre- expression for the exchange-correlation energy functional.

ceding papers? One is that the ground-state values of quan-The starting point is the Hamiltonian,

tities which are characteristic of the system can be o

reproduced directly by means of the Kohn-Sham orbitals if H=T+W+V, (1)

they are chosen as basic variables. Another is that the ap-

proximate form_of the exchange-cqrrelation energy funCyyhere T, W, and V are operators of the kinetic energy,

tional may be given in a more effective form than the con-gjectron—electron interaction, and external potential energy,

ventional DFTS-° respectively. In the ECS theok# we can choose the arbi-
However, in order to perform the actual energy-band calyary physical quantities as basic variables in addition to the

culation within the ECS theory, a tractable form of the glectron density(r). Here, suppose that the basic variable

exchange-correlation energy functional is indispensable, i.e5n0sen is denoted BY(r). The exchange-correlation energy
some approximation has to be made on the exchanggntional is defined by

correlation energy functional. Generally, there exist two

strategies for developing such an approximate functional. _

One is to devise the approximate form on the basis of the Exdp. X]=Flp, X]=Tdp, X]-Ulp] (2)
coupling-constant expression for the exchange-correlation

energy functional. The examples are the average-densifﬂy'th

approximatiori© and weighted-density approximatién'? o

Another is to utilize some exact relations which should be Flp, X]= Min (¥|T+WWP), (3)
satisfied for the exchange-correlation energy functional. Y=(p.X)

Virial theorem and scaling relations have been first discussed

by Lowdin!3 In the DFT, virial and scaling relations are _ -

utilized in devising the density-moment expansion of density Tdp, X]= ¢EA('”X)<CD|T|‘D% (4)
functionals such as the exchange and correlation energy 7

functionals!4-18

In Sec. Il, we shall give the exact expression for the e? p(r)p(r’) )
exchange-correlation energy functional by means of the U[P]:Effﬁdfdr (5)
coupling-constant integration technique. In Sec. Ill, an exact

relation for the exchange-correlation energy functional is dein Eq. (3) (Eq. (4)), the minimizing is performed among
rived with the aid of the virial theorem of the ECS theory. anitisymmetric wave function¥ (single Slater determinants

Both expressions are expected to be a good starting poir) which yield the prescribed(r) and X(r).

1098-0121/2005/48)/0351167)/$23.00 035116-1 ©2005 The American Physical Society



K. HIGUCHI AND M. HIGUCHI PHYSICAL REVIEW B 71, 035116(2005

Let us consider the following new functional: eigenstates. This assumption has been used in most of actual
- - calculations of DFT, and has empirically provided the rea-
Filp, X]= Min (W[T+AWW) sonable results as compared with the experiments. Therefore,
F=pX) we shall adopt this assumption in the ECS theory. It will be
=(W,[p, X]IT+\WIW,[p, X, (6)  mentioned again in Sec. IV.

E.lp, X]is equal toE,p, X] due to Eq(8), so that we
need to evaluatéF,[p, X]/d\ in Eq. (7). Let us start with
the constrained-search of E@). Define Q[¥, V"] by

where\ is the parameter which scales up or down the mag-
nitude of the electron-electron interaction, adg[p, X]
means the function that gives the minimum expectation
value of T+AW among the antisymmetric wave functions . - - N

that yield p(r) and X(r). If A is unity, F\[p, X] coincides QL. ¥ ]=<‘I’|T+)\W|‘I'>+fUx(r){<‘I’|P(r)|‘I’>—P(F)}dF
with Eq. (3), i.e.,Fi[p, X]=F[p, X]. On the other hand i

is zero, then we shall degote it dgp, X], i.e., Tdp, X] +fak(r) -{<\If|>A((r)|\If>—X(r)}dr
=Fo[p, X]=Miny_(,x(¥|T|¥). For the later discussion,
we defineE,[p, X] as +E\{N-(P|W)}, (12)

~ B = _ whereu, (r) anda,(r) are the Lagrange multiplier functions
Bulp, XJ:=Flp, X]=Tdp, X]=Ulp] for the conditions that the minimizing wave function, respec-
B L ooRp, X] tively, yield p(r) and X(r), andE, the Lagrange multiplier
/1, i o Ulp]. () for the condition that the minimizing wave function is nor-
malized. Then, minimizing conditioaQ)/ s¥" =0 yields

Next let us consider the case thdt) and X (r) are non- R
interactingv-representable, that is to sgyr) and X(r) are Hy W\ [p, X]) = E\|W,\[p, X]), (12
constructed from the ground state of the nomnteractln%v
Hamllton|anT+VS, whereV stands for some external poten-
tial energy. Then, an important relation

Tdp, X1=Tdp, X] ®)
is found. As will be shown in the following, the proof is With the aid of the Hellmann-Feynman theorem, we have
similar to the usual constrained-search formulali®dimhe “

A= F A f o ()3()dr + f a(r) -X(r)dr. (13

functionalrl's[p, X] is decomposed by some potent{ég as 9B =(¥,[p, x]|a—Hk|\pA[p, X1
follows: IN 2
" vy (r)
\PM(lnx)(‘I’|T|\I’>— Mln <‘I’|T+V|‘I’)—fp(r)vs(r)dr, =(W\[p, XIWW,[p, X]>+f Tp(r)dr
—p
) : © o[ 2 xar, (14
where V;=Zv4r;). Let Vg be the potential for whickp(r)
andX(r) are noninteracting ground-state values. Swiigis ~ On the other hand, if one uses
nothing other than the potential which have already appeared
in Ref. 1, i.e., E,=F\[p, X]+Jv}\(r)p(r)dr +f ay(r) - X(r)dr,
V=2 {k[p, X](ri) +fu[p, X](r") -i(r’,ri)dr’}, (15
|

th
(10 en

where X(r)=SX(r,r;). In Eq. (10) A[p, X](r) and %, _ R, X]+f avk(r)p(r)dHJ&a#(r)-x(lf)df-
mlp, X](r) are determined so that the prescribhgd) and 28 28 2
X(r) are reproduced from the single Slater determinant (16)
which consists of\ lowest eigenstates of the canonical form . .
of Eq. (3.7 in Ref. 1. In this case the minimizing wave Comparing Eq(14) with Eq. (16) leads to
function of Eq.(9) exactly coincides with the ground state of aF,[p, X] R
T+V, and is given by the single Slater determinant. Conse- N (Wilp, XIWWALp, XD)- (17)
quently, Eq.(8) holds.

Noninteractingu-representability is equivalent to the as- Substituting Eq.(17) into Eq. (7), we finally get the
sumption that basic variables can be reproduced from theoupling-constant expression for the exchange-correlation
single Slater determinant which is constructed fidriowest  energy functional:
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e Np(r’) _ . d - . d -
Bl X1=5 | [ arar 22 g, X)) - im AN, = lim < (W e)o)
2 Ir=r’| —10d¢ ¢ o1dg
(18) = (Yo WWe)g, (24
where the coupling-constant-averaged pair correlation func-
tion g(r,r’;[p, X]) is defined as o d - o d
lim —(WEVWE)a, = lim — [ po(r)vex(r/)dr

gr.r';lp, X -1 dg -1d0)q
— fl d)\<q,)\[p1 X]|ﬁ(r)ﬁ(r,)(|:I;AEf:)x]> B 5(" =-r ’)P(r) . = _f po(r)r . {Vvext(r)}dr, (25)
0 pr)p Q

(19)  wherepy(r) is the ground-state value of the electron density,

The expressiofil8) is quite analogous to that of the conven- @nd V=Ze(r ). In the derivation of Eq(25), we use the
tional DFT. If the basic variable is an electron density alonefollowing relation:
it corresponds to the expression of the conventional ESFT.

the spin density or the paramagnetic current density is cho- lim doex(r/d) = =1 Vo). (26)
sen asX(r), then Eq.(18) is identical with the coupling- 1 dg
H 22 _
constgnt expression of the SDRRef. 21) or CDFT? re Substituting Eqs(23), (24), and (25) into Eq. (21), we get
spectively.
Il VIRIAL RELATIONS AW |TWe)o + (P WP g)g = JQ po(N)r {Vue,(r)tdr =0.
A. Virial relation in the real system of the ECS theory 27

Let us consider the ground-state wave functionjaygh it coincides with the virial relation for the isolated

We(ry,...,ry) for an extended system. Suppose thatgygrenp324gq. (27) holds for the extended system on which
Wg(ry,...,ry) is periodic in the coordinates of electrons with 14 periodic boundary condition is imposed.

period L, and is normalized to unity in the cube of site In the ECS theor};? the energy functional is given by
(volumeL3=:Q)). The scaled wave function is defined as

‘Pé(l’l,---,rN)’zéBN/Z\I’G(gr 1 dTN), (20) Elp, X]=F[p, X]+ fQ PN )vexdr)dr
where{ is the scaling factor and takes a positive value. The
normalization constant in Eq20) is determined so that the =T[p, X]+Wp, X] +f p(Nvex(r)dr, (28)
probability of finding the electron somewhere in the cube of Q

sideL is unity (volumeL3/ £%:=0,). The details are shown _ _
in Appendix A. The Rayleigh—Ritz variational principle en- WhereT[p, X] andWp, X] are, respectively, defined as the
sures that expectation values of andW with respect to the minimizing
wave function of Eq(3). According to the variational prin-
lim E(\If5|'i'+\7v+f/|\P5>Q -0 (21) ciple of the ECS theonyE[p, X] takes the minimum value
1 de © G for the correct ground-state values of basic variabig§,)

. . Xo(r).t We
where the subscript of the angular bracket means that mtealnd olr) e get

grals are performed over the volunfy. By using Eq.(20) S
and the transformation of the integration variables, the ex- %(T[P, X1+ Wp, X]) p=p, +Vex(r) =0, (29

. oo X=X
pectation value ofl is calculated as 0

Tl 5
(We[TIV6)a, ——(Tlp, X]+Wp, X]) p=p, =0. (30)
oX(r) X=X,
= | WA, ) TWE(r, . r)dr g dr N
fﬂg o, 6Ny TN TG(T, o Ty iy The ECS theory also ensures that the minimizing wave func-
~ tion for py(r) and Xy(r) is identical with Wg(rq,...,ry).t
= H(We[T|¥e)a. (22)  Therefore, Eq(27) can be rewritten as

Then, we obtain
2T po, Xol + W po, Xol ‘f po(r)r - Vuegr)dr =0.
Q

. d - >
lngl d—§<‘1’é|'|'|‘1’é>ng = 2AVe[TIWg)q. (23) (31

In the same way as the above derivation, we have Substituting Eq(29) into Eq. (31), we have
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1)
2T[po, Xol + Wlpo, Xo] +f po()F - V3 ——(T[p, X1+ Wp, X]) p=p, (dr =0. (32)
Q op(r) X=X,
[
Equation(31) or (32) is the virial relation in the real system Pé(r)==<¢’[po, Xolép(r)|®[ po, Xo]§>g
of the ECS theory. Of course, these relations are applicable ¢
to the extended system. = po(Lr). (34)

As for the expectation value of((r) with respect to

®[py, Xo)¢, we assume the following form:
Next we shall derive the property of the kinetic energy [P0, Xo] 9

B. Virial relation in the reference system of the ECS theory

functional T pg, Xg] in the reference system. Suppose that 7 4% ¢
the minimizing single Slater determinant of E@) is de- X§(r)=(P[pg, XoJ|X(r)|®[po, Xo] >9§
noted by ®[py, Xo] for po(r) and Xy(r). Similarly to Eq. = 9Xo(2r), (35)

(20), the scaled Slater determinabfp,, X]¢ is defined as
whered is the real numbe®® As shown in Appendix B, the

®Lpo, XoJi(r 1., 1= N?®[po, XoJ(Lry, ..., LrN). relation betweer{py, Xo] and Tdp§, X§] is
(33) [ 1= 72
. o Tdpo, X3l = Tdpo, Xol- (36)
The expectation value of the electron density with respect to
®[pg, Xl¢ is calculated as Letting lim,_, d/dZ act on the both sides of E(B6), we get
|
oTdp, X] oTdp, X]
—J po(r)r -V % =70 dr—f Xo(r) - (r-V-d+3) % p=ro dr+f po(r)
Q X=X @ X=Xg S
oTdp, X oTdp, X
% p=po (" .dS+f Xo(r) - % o (T - dS=2TJ pg, Xol: (37
P X=X, S0 X=X

where S, stands for the surface of the cuble Subtracting Eq(37) from Eq. (32), and using both Eq.30) and the relation
Exdp, X]=Tlp, X]+Wp, X]-Tdp, X]-U[p], we finally get

SE,p, X
Tlpo, Xol = Td o, Xol + Exd po. Xol + fﬂ po(r)r - V % ),()z;z dr
SEy [ p, X] f 6Tdp, X]
+ | Xo(r)-{(r-V=-d+3) —————| _ dr + po(r){ ————| _ r-ds
fg ’ x| S 3p(r) | #7ro
5Tdp, X]

X . — _ -dS=0. 38

+Lﬂ olr) X(r) | o r (38)

This is the virial relation of the ECS theory, which is normalized to unity in the whole space instead hfas men-

expressed with the use of functionals defined in the referend®ed in Appendix A. Then, volume integrals through6bit
system. It gives the relation betwe&q|py, Xol, its kinetic 1N the above derivation are entirely changgd into mFegraIs
part T[po, Xol=Tdpo, Xol and Tdpo, Xol- throughout the whole space. The surface integrals in Egs.

Equation(38) is applicable to the extended system, but we(37) and (38) vanish because they become integrals over an
can easily reduce it to the virial relation for the isolated sys-nfinitely distant surface. Accordingly, the virial relation for
tem. In the case of the isolated system, the wave function ithe isolated system is given by
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OE,dp, X
Tlpo: Xol = Tdpos Xol + Exdpos Xol + JQ po(r)r - V —@EZ) ] ;()z;% dr
_ SEdp, X] _
+ fQXO(r) A (r-V-d+3) —5X(r) ;(Jf)p(o dr=0. (39

0

Choosing the paramagnetic current denjify) asX(r) and  rule does not always guarantee to make a good functional.
substitutingd=4 into Eq.(39), we revisit the virial relation However, to say the least of it, the sum rule may fairly get rid
for Exlpo, jpo] Of CDFT. This relation exactly coincides of the difficulties which lead to the nonphysical results, from
with the previous result that has been derived for an isolatethe approximate functional.

system in the absence of the external magnetic field.

APPENDIX A: NORMALIZATION OF THE SCALED
IV. CONCLUDING REMARKS FUNCTION

In the first half of this paper, we present the coupling- Let us consider the case such that the coordinates of elec-
constant expression for the exchange-correlation energlyons are scaled witlf, where ¢ is the scaling factor and
functional under the assumption that basic variables are noriakes a positive value. Suppose that the scaled function of the
interactingu-representable. This expression is similar to thatwave function W(ry,...,ry) is given by Wi(rq,...,ry)
of the conventional DFT except that the arbitrary physical:==AW({r4,...,{ry), whereA is a normalization constant. In
quantityX(r) is added to it as the basic variable. The expresthe following, we consider two kinds of systems, i.e., ex-
sion is expected to be useful for developing the approximatéended and isolated systems.
form of the exchange-correlation energy functional, because We first consider an extended system. In this case
various kinds of approximations have been proposed on th#(rq,...,ry) is usually required to be periodic in coordinates
basis of the coupling-constant expression in the previousf electrons with period., and to be normalized in the cube
theories such as DF{Ref. 7-12 and CDFT22 Noninteract-  of sidel, i.e.,
ing v-representability introduced here is just an assumption,
but may be reasonable_evgn in the_ ECS theory. The reason is Wyl I =W, T+ Le,, . ry), (AL
a lot of successful applications which have been done within
the conventional DF¥® Furthermore, from the practical
viewpoint, the noninteracting-representability is advanta- _
geous in permiting easier calculations such that basic vari- fnn‘fn [W(ry,..,ry)fdry-dry =1, (A2)
ables are simply constructed fraslowest eigenstates of the
ECS single-particle equation. _ .

In the latter half, we discuss the virial theorem of the ECSWheree“ (=X,y,2) stands for the unit vector of, y, or z

: . jrection. The integral is taken throughout the cube whose
theory. The result has an advantage of being applicable to thcgreC ; 3 L "
. : . yolume is Q=L°. Due to the periodic conditiofAl) of
extended system, as compared with the previous one Whlc},ff(rl, ...T), the scaled function<(r,, ...r) has the pe-

is restricted to the isolated systéd?* The present virial -
relation is expected to be a good starting point toward thé!°d ¢ L
approximation of the exchange-correlation energy functional,
since the density-moment expansion for the conventional Wy, e Uy IN) TPy, T+ LB TN
exchange-correlation energy functional is based on its virial (A3)
relation!4~18 Also, the virial relation can be regarded as a
sum rule for CheCking the Valldlty of the apprOXimate form. A\Ccordingh/,\Ifg(rl7 ,rN) should reasonab|y be normalized
If the exchange-correlation energy functional is expandedy nity in the cube of sidé L. We have
with respect top(r) and X(r), then the sum rule can be
utilized to determine the expansion coefficients. We know
that such an approach had already been used in the develop- f f [ We(ry,...,rp)|2dr - --dry = 1, (A4)
ment of the density-gradient expansion for the exchange- 9, Jo,
correlation energy functiondl—2°

At the end of this section, we shall give a comment on thevhere (), is the volume of the scaled cube of side'L.
meaning of the above sum rule. Even though the approxiUsing Eg.(A4), we obtain the normalization factok as
mate functional is satisfied with some of sum rules, it wouldZ®V2.
not necessarily give the quantitatively better results than the In the case of the isolated systeW(r,...,ry) must de-
functional which is not satisfied with sum rules. The sumcay to zero at infinity becaus®(r,, ...,ry)|? is a probability
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distribution function. ThusW(r4,...,ry) is normalized to ; 5
unity in the whole space of the system: ff [Wi(ry,...,r\)[Pdr g odry = 1. (AB)

f f v 2 A5) Equation(A6) leads to the normalization facteéy= V2.
\I’rl,...,l’N dl’l"'dl’N:l. A5
APPENDIX B: PROOF OF EQ. (36)

From the definiton of the scaled wave function, In the ECS theory, the kinetic energy functional of the
Wi(ry,...,ry) also vanishes at infinity. Therefore, reference system is defined by Ef). The minimizing
W(rq,...,ry) should be normalized to unity in the whole single Slater determinanb[p,, Xo] consists ofN orbitals

space. We have which satisfy the following equatioh.
|
I Mpor XD O+ | ulpo Xl (‘”(O—M)d S (B1)
om pos Xol(r) { elr Qﬂ Por Rolll) - 5 (1) r —j:18kj¢jr,

where\[pg, Xol(r) andu[pg, Xol(r) are determined by requirin®[py, Xo] to reproducepy(r) andXq(r).t After the changes
of variables, we get the equation fth((r)g:g%k(gr) which are constituent orbitals of the scaled single Slater determinant
P[po, Xol4

A » o (2E) s 2
= Vo Xallen) [ RO+ | g Xallar) | S8 Jar =3 eggn) 82
o k()¢ j=1
!
Owing to Egs.(34) and (35), solutions of Eq.(B2) yield Blpb, XE)(r1, ... 1) = PLpg, Xl 1, ..., T )
p§(r) and X§(r). This means that{?\[po, Xo](r) and e
B 9ulpo, Xol(Zr) in Eq. (B2) can be regarded as the poten- = ®lpo, Xol(dra, LT
tials which reproduce(r) andX§(r). In addition to the fact (B5)
thatA[p, X](r) and ulp, X](r) are uniquely determined by Similarly to the derivation of Eq(22), Eq. (B5) leads to Eq.
p(r) and X(r),* we obtain (36), i.e
4 4 — 2 ~
AP Xl = Ehlpo Xoller, (B9 T, X§1=(@lob, X§1ITlolof, X{Do,
mlp§, X§1(r) = ulpo, Xol(Lr). (B4) = AP po, Xol|T|PLpo, XoDa

Accordingly, ®[p§, X§] is given by = 2Td po, Xol. (B6)
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