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I. INTRODUCTION

Recently we have proposed the extended constrained-
searchsECSd theory in which arbitrary physical quantities
can be chosen as basic variables in addition to the electron
density.1,2 The validity of this theory has been confirmed by
revisiting on the basis of it the spin-density functional theory
sSDFTd, the current-density functional theorysCDFTd, the
LDA+U method, and the Hartree–Fock–Kohn–Sham
scheme.1,2 The ECS theory has two advantages over the con-
ventional density functional theorysDFTd, as stated in pre-
ceding papers.1,2 One is that the ground-state values of quan-
tities which are characteristic of the system can be
reproduced directly by means of the Kohn-Sham orbitals if
they are chosen as basic variables. Another is that the ap-
proximate form of the exchange-correlation energy func-
tional may be given in a more effective form than the con-
ventional DFT.3–6

However, in order to perform the actual energy-band cal-
culation within the ECS theory, a tractable form of the
exchange-correlation energy functional is indispensable, i.e.,
some approximation has to be made on the exchange-
correlation energy functional. Generally, there exist two
strategies for developing such an approximate functional.
One is to devise the approximate form on the basis of the
coupling-constant expression for the exchange-correlation
energy functional. The examples are the average-density
approximation7–10 and weighted-density approximation.8–12

Another is to utilize some exact relations which should be
satisfied for the exchange-correlation energy functional.
Virial theorem and scaling relations have been first discussed
by Löwdin.13 In the DFT, virial and scaling relations are
utilized in devising the density-moment expansion of density
functionals such as the exchange and correlation energy
functionals.14–18

In Sec. II, we shall give the exact expression for the
exchange-correlation energy functional by means of the
coupling-constant integration technique. In Sec. III, an exact
relation for the exchange-correlation energy functional is de-
rived with the aid of the virial theorem of the ECS theory.
Both expressions are expected to be a good starting point

toward the development of the approximate form of the ECS
exchange-correlation energy functional.

II. COUPLING-CONSTANT EXPRESSION
FOR THE EXCHANGE-CORRELATION

ENERGY FUNCTIONAL

In this section, the coupling-constant integration tech-
nique is applied to the ECS theory so as to derive the exact
expression for the exchange-correlation energy functional.
The starting point is the Hamiltonian,

Ĥ = T̂ + Ŵ+ V̂, s1d

where T̂, Ŵ, and V̂ are operators of the kinetic energy,
electron–electron interaction, and external potential energy,
respectively. In the ECS theory,1,2 we can choose the arbi-
trary physical quantities as basic variables in addition to the
electron densityrsr d. Here, suppose that the basic variable
chosen is denoted byXsr d. The exchange-correlation energy
functional is defined by1

Excfr, Xg = Ffr, Xg − Tsfr, Xg − Ufrg s2d

with

Ffr, Xg = Min
C→sr,Xd

kCuT̂ + ŴuCl, s3d

Tsfr, Xg = Min
F→sr,Xd

kFuT̂uFl, s4d

Ufrg =
e2

2
E E rsr drsr 8d

ur − r 8u
drdr 8. s5d

In Eq. s3d (Eq. s4d), the minimizing is performed among
anitisymmetric wave functionsC ssingle Slater determinants
Fd which yield the prescribedrsr d andXsr d.
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Let us consider the following new functional:

Flfr, Xg = Min
C→sr,Xd

kCuT̂ + lŴuCl

= kClfr, XguT̂ + lŴuClfr, Xgl, s6d

wherel is the parameter which scales up or down the mag-
nitude of the electron-electron interaction, andClfr , Xg
means the function that gives the minimum expectation

value of T̂+lŴ among the antisymmetric wave functions
that yield rsr d and Xsr d. If l is unity, Flfr , Xg coincides
with Eq. s3d, i.e.,F1fr , Xg=Ffr , Xg. On the other hand ifl

is zero, then we shall denote it asT̃sfr , Xg, i.e., T̃sfr , Xg
ªF0fr , Xg=MinC→sr,XdkCuT̂uCl. For the later discussion,

we defineẼxcfr , Xg as

Ẽxcfr, XgªFfr, Xg − T̃sfr, Xg − Ufrg

=E
0

1

dl
]Flfr, Xg

]l
− Ufrg. s7d

Next let us consider the case thatrsr d andXsr d are non-
interactingv-representable, that is to say,rsr d andXsr d are
constructed from the ground state of the noninteracting

HamiltonianT̂+V̂s, whereV̂s stands for some external poten-
tial energy. Then, an important relation

T̃sfr, Xg = Tsfr, Xg s8d

is found. As will be shown in the following, the proof is
similar to the usual constrained-search formulation.19 The

functional T̃sfr , Xg is decomposed by some potentialV̂s as
follows:

Min
C→sr,Xd

kCuT̂uCl = Min
C→sr,Xd

kCuT̂ + V̂suCl −E rsr dvssr ddr ,

s9d

where V̂s=oivssr id. Let V̂s be the potential for whichrsr d
andXsr d are noninteracting ground-state values. SuchV̂s is
nothing other than the potential which have already appeared
in Ref. 1, i.e.,

V̂s = o
i
Hlfr, Xgsr id +E mfr, Xgsr 8d · x̂sr 8,r iddr 8J ,

s10d

where X̂sr d=oix̂sr ,r id. In Eq. s10d lfr , Xgsr d and
mfr , Xgsr d are determined so that the prescribedrsr d and
Xsr d are reproduced from the single Slater determinant
which consists ofN lowest eigenstates of the canonical form
of Eq. s3.7d in Ref. 1. In this case the minimizing wave
function of Eq.s9d exactly coincides with the ground state of

T̂+V̂s and is given by the single Slater determinant. Conse-
quently, Eq.s8d holds.

Noninteractingv-representability is equivalent to the as-
sumption that basic variables can be reproduced from the
single Slater determinant which is constructed fromN lowest

eigenstates. This assumption has been used in most of actual
calculations of DFT, and has empirically provided the rea-
sonable results as compared with the experiments. Therefore,
we shall adopt this assumption in the ECS theory. It will be
mentioned again in Sec. IV.

Ẽxcfr , Xg is equal toExcfr , Xg due to Eq.s8d, so that we
need to evaluate]Flfr , Xg /]l in Eq. s7d. Let us start with
the constrained-search of Eq.s6d. DefineVfC ,C*g by

VfC,C*g = kCuT̂ + lŴuCl +E vlsr dhkCur̂sr duCl − rsr djdr

+E alsr d · hkCuX̂sr duCl − Xsr djdr

+ ElhN − kCuClj, s11d

wherevlsr d andalsr d are the Lagrange multiplier functions
for the conditions that the minimizing wave function, respec-
tively, yield rsr d and Xsr d, andEl the Lagrange multiplier
for the condition that the minimizing wave function is nor-
malized. Then, minimizing conditiondV /dC* =0 yields

ĤluClfr, Xgl = EluClfr, Xgl, s12d

where

Ĥl = T̂ + lŴ+E vlsr dr̂sr ddr +E alsr d · X̂sr ddr . s13d

With the aid of the Hellmann–Feynman theorem, we have

]El

]l
= kClfr, Xgu

]Ĥl

]l
uClfr, Xgl

= kClfr, XguŴuClfr, Xgl +E ]vlsr d
]l

rsr ddr

+E ]alsr d
]l

·Xsr ddr . s14d

On the other hand, if one uses

El = Flfr, Xg +E vlsr drsr ddr +E alsr d ·Xsr ddr ,

s15d

then

]El

]l
=

]Flfr, Xg
]l

+E ]vlsr d
]l

rsr ddr +E ]alsr d
]l

·Xsr ddr .

s16d

Comparing Eq.s14d with Eq. s16d leads to

]Flfr, Xg
]l

= kClfr, XguŴuClfr, Xgl. s17d

Substituting Eq. s17d into Eq. s7d, we finally get the
coupling-constant expression for the exchange-correlation
energy functional:
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Excfr, Xg =
e2

2
E E drdr 8

rsr drsr 8d
ur − r 8u

hgsr ,r 8;fr, Xgd − 1j,

s18d

where the coupling-constant-averaged pair correlation func-
tion gsr ,r 8 ; fr , Xgd is defined as

gsr ,r 8;fr, Xgd

=E
0

1

dl
kClfr, Xgur̂sr dr̂sr 8duClfr, Xgl − dsr − r 8drsr d

rsr drsr 8d
.

s19d

The expressions18d is quite analogous to that of the conven-
tional DFT. If the basic variable is an electron density alone,
it corresponds to the expression of the conventional DFT.20 If
the spin density or the paramagnetic current density is cho-
sen asXsr d, then Eq.s18d is identical with the coupling-
constant expression of the SDFTsRef. 21d or CDFT,22 re-
spectively.

III. VIRIAL RELATIONS

A. Virial relation in the real system of the ECS theory

Let us consider the ground-state wave function
CGsr 1,… ,r Nd for an extended system. Suppose that
CGsr 1,… ,r Nd is periodic in the coordinates of electrons with
period L, and is normalized to unity in the cube of sideL
svolumeL3

¬Vd. The scaled wave function is defined as

CG
z sr 1,…,r Ndªz3N/2CGszr 1,…,zr Nd, s20d

wherez is the scaling factor and takes a positive value. The
normalization constant in Eq.s20d is determined so that the
probability of finding the electron somewhere in the cube of
sidez−1L is unity svolumeL3/z3

ªVzd. The details are shown
in Appendix A. The Rayleigh–Ritz variational principle en-
sures that

lim
z→1

d

dz
kCG

z uT̂ + Ŵ+ V̂uCG
z lVz

= 0, s21d

where the subscript of the angular bracket means that inte-
grals are performed over the volumeVz. By using Eq.s20d
and the transformation of the integration variables, the ex-

pectation value ofT̂ is calculated as

kCG
z uT̂uCG

z lVz

=E
Vz

¯E
Vz

CG
z sr 18,…,r N8 d*T̂CG

z sr 18,…,r N8 ddr 18¯dr N8

= z2kCGuT̂uCGlV. s22d

Then, we obtain

lim
z→1

d

dz
kCG

z uT̂uCG
z lVz

= 2kCGuT̂uCGlV. s23d

In the same way as the above derivation, we have

lim
z→1

d

dz
kCG

z uŴuCG
z lVz

= lim
z→1

d

dz
szkCGuŴuCGlVd

= kCGuŴuCGlV, s24d

lim
z→1

d

dz
kCG

z uV̂uCG
z lVz

= lim
z→1

d

dz
E

V

r0sr dvextsr /zddr

= −E
V

r0sr dr · h¹vextsr djdr , s25d

wherer0sr d is the ground-state value of the electron density,

and V̂=oivextsr id. In the derivation of Eq.s25d, we use the
following relation:

lim
z→1

dvextsr /zd
dz

= − r · ¹ vextsr d. s26d

Substituting Eqs.s23d, s24d, ands25d into Eq. s21d, we get

2kCGuT̂uCGlV + kCGuŴuCGlV −E
V

r0sr dr · h¹vextsr djdr = 0.

s27d

Although it coincides with the virial relation for the isolated
system,23,24Eq. s27d holds for the extended system on which
the periodic boundary condition is imposed.

In the ECS theory,1,2 the energy functional is given by

Efr, Xg = Ffr, Xg +E
V

rsr dvextsr ddr

= Tfr, Xg + Wfr, Xg +E
V

rsr dvextsr ddr , s28d

whereTfr , Xg andWfr , Xg are, respectively, defined as the

expectation values ofT̂ andŴ with respect to the minimizing
wave function of Eq.s3d. According to the variational prin-
ciple of the ECS theory,Efr , Xg takes the minimum value
for the correct ground-state values of basic variables,r0sr d
andX0sr d.1 We get

d

drsr d
sTfr, Xg + Wfr, Xgd r=r0

X=X0

+ vextsr d = 0, s29d

d

dXsr d
sTfr, Xg + Wfr, Xgd r=r0

X=X0

= 0. s30d

The ECS theory also ensures that the minimizing wave func-
tion for r0sr d and X0sr d is identical with CGsr 1,… ,r Nd.1
Therefore, Eq.s27d can be rewritten as

2Tfr0, X0g + Wfr0, X0g −E
V

r0sr dr · ¹ vextsr ddr = 0.

s31d

Substituting Eq.s29d into Eq. s31d, we have
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2Tfr0, X0g + Wfr0, X0g +E
V

r0sr dr · ¹ H d

drsr d
sTfr, Xg + Wfr, Xgd r=r0

X=X0

Jdr = 0. s32d

Equations31d or s32d is the virial relation in the real system
of the ECS theory. Of course, these relations are applicable
to the extended system.

B. Virial relation in the reference system of the ECS theory

Next we shall derive the property of the kinetic energy
functional Tsfr0, X0g in the reference system. Suppose that
the minimizing single Slater determinant of Eq.s4d is de-
noted byFfr0, X0g for r0sr d and X0sr d. Similarly to Eq.
s20d, the scaled Slater determinantFfr0, X0gz is defined as

Ffr0, X0gzsr 1,…,r Ndªz3N/2Ffr0, X0gszr 1,…,zr Nd.

s33d

The expectation value of the electron density with respect to
Ffr0, X0gz is calculated as

r0
zsr dªkFfr0, X0gzur̂sr duFfr0, X0gzlVz

= z3r0szr d. s34d

As for the expectation value ofX̂sr d with respect to
Ffr0, X0gz, we assume the following form:

X0
zsr dªkFfr0, X0gzuX̂sr duFfr0, X0gzlVz

= zdX0szr d, s35d

whered is the real number.25 As shown in Appendix B, the
relation betweenTsfr0, X0g andTsfr0

z , X0
zg is

Tsfr0
z, X0

zg = z2Tsfr0, X0g. s36d

Letting limz→1 d/dz act on the both sides of Eq.s36d, we get

−E
V

r0sr dr · ¹HUdTsfr, Xg
drsr d

U r=r0
X=X0

Jdr −E
V

X0sr d ·Hsr · ¹ − d + 3dUdTsfr, Xg
dXsr d

U r=r0
X=X0

Jdr +E
SV

r0sr d

3HUdTsfr, Xg
drsr d

U r=r0
X=X0

Jr · dS+E
SV

X0sr d ·HUdTsfr, Xg
dXsr d

U r=r0
X=X0

Jr · dS= 2Tsfr0, X0g, s37d

whereSV stands for the surface of the cubeV. Subtracting Eq.s37d from Eq. s32d, and using both Eq.s30d and the relation
Excfr , Xg=Tfr , Xg+Wfr , Xg−Tsfr , Xg−Ufrg, we finally get

Tfr0, X0g − Tsfr0, X0g + Excfr0, X0g +E
V

r0sr dr · ¹HUdExcfr, Xg
drsr d

U r=r0
X=X0

Jdr

+E
V

X0sr d ·Hsr · ¹ − d + 3dUdExcfr, Xg
dXsr d

U r=r0
X=X0

Jdr +E
SV

r0sr dHUdTsfr, Xg
drsr d

U r=r0
X=X0

Jr · dS

+E
SV

X0sr d ·HUdTsfr, Xg
dXsr d

U r=r0
X=X0

Jr · dS= 0. s38d

This is the virial relation of the ECS theory, which is
expressed with the use of functionals defined in the reference
system. It gives the relation betweenExcfr0, X0g, its kinetic
part Tfr0, X0g−Tsfr0, X0g andTsfr0, X0g.

Equations38d is applicable to the extended system, but we
can easily reduce it to the virial relation for the isolated sys-
tem. In the case of the isolated system, the wave function is

normalized to unity in the whole space instead ofV, as men-
tioned in Appendix A. Then, volume integrals throughoutV
in the above derivation are entirely changed into integrals
throughout the whole space. The surface integrals in Eqs.
s37d and s38d vanish because they become integrals over an
infinitely distant surface. Accordingly, the virial relation for
the isolated system is given by
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Tfr0, X0g − Tsfr0, X0g + Excfr0, X0g +E
V

r0sr dr · ¹HUdExcfr, Xg
drsr d

U r=r0
X=X0

Jdr

+E
V

X0sr d ·Hsr · ¹ − d + 3dUdExcfr, Xg
dXsr d

U r=r0
X=X0

Jdr = 0. s39d

Choosing the paramagnetic current densityj psr d asXsr d and
substitutingd=4 into Eq.s39d, we revisit the virial relation
for Excfr0, j p0g of CDFT. This relation exactly coincides
with the previous result that has been derived for an isolated
system in the absence of the external magnetic field.24

IV. CONCLUDING REMARKS

In the first half of this paper, we present the coupling-
constant expression for the exchange-correlation energy
functional under the assumption that basic variables are non-
interactingv-representable. This expression is similar to that
of the conventional DFT except that the arbitrary physical
quantityXsr d is added to it as the basic variable. The expres-
sion is expected to be useful for developing the approximate
form of the exchange-correlation energy functional, because
various kinds of approximations have been proposed on the
basis of the coupling-constant expression in the previous
theories such as DFTsRef. 7–12d and CDFT.22 Noninteract-
ing v-representability introduced here is just an assumption,
but may be reasonable even in the ECS theory. The reason is
a lot of successful applications which have been done within
the conventional DFT.26 Furthermore, from the practical
viewpoint, the noninteractingv-representability is advanta-
geous in permiting easier calculations such that basic vari-
ables are simply constructed fromN lowest eigenstates of the
ECS single-particle equation.

In the latter half, we discuss the virial theorem of the ECS
theory. The result has an advantage of being applicable to the
extended system, as compared with the previous one which
is restricted to the isolated system.23,24 The present virial
relation is expected to be a good starting point toward the
approximation of the exchange-correlation energy functional,
since the density-moment expansion for the conventional
exchange-correlation energy functional is based on its virial
relation.14–18 Also, the virial relation can be regarded as a
sum rule for checking the validity of the approximate form.
If the exchange-correlation energy functional is expanded
with respect torsr d and Xsr d, then the sum rule can be
utilized to determine the expansion coefficients. We know
that such an approach had already been used in the develop-
ment of the density-gradient expansion for the exchange-
correlation energy functional.27–29

At the end of this section, we shall give a comment on the
meaning of the above sum rule. Even though the approxi-
mate functional is satisfied with some of sum rules, it would
not necessarily give the quantitatively better results than the
functional which is not satisfied with sum rules. The sum

rule does not always guarantee to make a good functional.
However, to say the least of it, the sum rule may fairly get rid
of the difficulties which lead to the nonphysical results, from
the approximate functional.

APPENDIX A: NORMALIZATION OF THE SCALED
FUNCTION

Let us consider the case such that the coordinates of elec-
trons are scaled withz, where z is the scaling factor and
takes a positive value. Suppose that the scaled function of the
wave function Csr 1,… ,r Nd is given by Czsr 1,… ,r Nd
ªACszr 1,… ,zr Nd, whereA is a normalization constant. In
the following, we consider two kinds of systems, i.e., ex-
tended and isolated systems.

We first consider an extended system. In this case
Csr 1,… ,r Nd is usually required to be periodic in coordinates
of electrons with periodL, and to be normalized in the cube
of sideL, i.e.,

Csr 1,…,r j,…,r Nd = Csr 1,…,r j + Lea,…,r Nd, sA1d

E
V

¯E
V

uCsr 1,…,r Ndu2dr 1¯dr N = 1, sA2d

whereea sa=x,y,zd stands for the unit vector ofx, y, or z
direction. The integral is taken throughout the cube whose
volume is V=L3. Due to the periodic conditionsA1d of
Csr 1,… ,r Nd, the scaled functionCzsr 1,… ,r Nd has the pe-
riod z−1L:

Czsr 1,…,r j,…,r Nd = Czsr 1,…,r j + z−1Lea,…,r Nd.

sA3d

Accordingly,Czsr 1,… ,r Nd should reasonably be normalized
to unity in the cube of sidez−1L. We have

E
Vz

¯E
Vz

uCzsr 1,…,r Ndu2dr 1¯dr N = 1, sA4d

where Vz is the volume of the scaled cube of sidez−1L.
Using Eq. sA4d, we obtain the normalization factorA as
z3N/2.

In the case of the isolated system,Csr 1,… ,r Nd must de-
cay to zero at infinity becauseuCsr 1,… ,r Ndu2 is a probability
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distribution function. Thus,Csr 1,… ,r Nd is normalized to
unity in the whole space of the system:

E¯E uCsr 1,…,r Ndu2dr 1¯dr N = 1. sA5d

From the definition of the scaled wave function,
Czsr 1,… ,r Nd also vanishes at infinity. Therefore,
Czsr 1,… ,r Nd should be normalized to unity in the whole
space. We have

E¯E uCzsr 1,…,r Ndu2dr 1¯dr N = 1. sA6d

EquationsA6d leads to the normalization factorA=z3N/2.

APPENDIX B: PROOF OF EQ. (36)

In the ECS theory, the kinetic energy functional of the
reference system is defined by Eq.s4d. The minimizing
single Slater determinantFfr0, X0g consists ofN orbitals
which satisfy the following equation.1

H−
"2¹2

2m
+ lfr0, X0gsr dJfksr d +E

V

mfr0, X0gsr 8d ·SdX0sr 8d
dfk

+sr d Ddr 8 = o
j=1

N

«kjf jsr d, sB1d

wherelfr0, X0gsr d andmfr0, X0gsr d are determined by requiringFfr0, X0g to reproducer0sr d andX0sr d.1 After the changes
of variables, we get the equation forfksr dz=z3fkszr d which are constituent orbitals of the scaled single Slater determinant
Ffr0, X0gz;

H−
"2¹2

2m
+ z2lfr0, X0gszr dJfksr dz +E

Vz

z8−dmfr0, X0gszr 8d ·SdX0
zsr 8d

dfk
+sr dz

Ddr 8 = o
j=1

N

«kjz
2f jsr dz. sB2d

Owing to Eqs.s34d and s35d, solutions of Eq.sB2d yield
r0

zsr d and X0
zsr d. This means thatz2lfr0, X0gszr d and

z8−dmfr0, X0gszr d in Eq. sB2d can be regarded as the poten-
tials which reproducer0

zsr d andX0
zsr d. In addition to the fact

that lfr , Xgsr d andmfr , Xgsr d are uniquely determined by
rsr d andXsr d,1 we obtain

lfr0
z, X0

zgsr d = z2lfr0, X0gszr d, sB3d

mfr0
z, X0

zgsr d = z8−dmfr0, X0gszr d. sB4d

Accordingly, Ffr0
z , X0

zg is given by

Ffr0
z, X0

zgsr 1,…,r Nd = Ffr0, X0gzsr 1,…,r Nd

= z3N/2Ffr0, X0gszr 1,…,zr Nd.

sB5d

Similarly to the derivation of Eq.s22d, Eq. sB5d leads to Eq.
s36d, i.e.,

Tsfr0
z, X0

zg = kFfr0
z, X0

zguT̂uFfr0
z, X0

zglVz

= z2kFfr0, X0guT̂uFfr0, X0glV

= z2Tsfr0, X0g. sB6d
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