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We propose the vorticity expansion approximation �VEA� formulas of the exchange and correlation energy
functionals of the current density functional theory �CDFT�. They have a form of the second-order expansion
with respect to the vorticity. Expansion coefficients are determined by requiring them to satisfy exact relations
that have been derived from scaling properties of exchange and correlation energy functionals. Resultant VEA
formulas satisfy a larger number of exact relations than those of the local-density approximation of the CDFT.
Due to the well-behaved forms, the VEA formulas can be in quite good agreement with the exchange and
correlation energies of the homogeneous electron liquid under a uniform magnetic field.
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I. INTRODUCTION

The density functional theory1,2 provides the most power-
ful method to calculate the ground-state electronic structures
of atoms, molecules, and solids. Various kinds of extensions
have been proposed so far by choosing appropriate physical
quantities as basic variables in order to get a more suitable
single-particle picture for a system.3,4 The current-density
functional theory �CDFT�5,6 and its relativistic version, rela-
tivistic current- and spin-density functional theory
�RCSDFT�,7,8 are examples of these extensions, in which the
current density is chosen as a basic variable in addition to the
electron density. These theories are useful for describing the
ground-state properties of systems such as open-shell atoms
and f-electron magnetic materials where an orbital current is
induced from both the strong spin-orbit interaction and the
intra-atomic Coulomb interaction. Also, these theories are
applicable to inhomogeneous electronic systems in an exter-
nal magnetic field, where an orbital current is induced by the
external magnetic field.

In order to calculate electronic structures while taking the
current density into account, the exchange and correlation
energy functionals of the CDFT or RCSDFT must be devised
in practicable forms. Many attempts to develop approximate
forms of the exchange and correlation energy functionals of
the CDFT have been presented so far.5,6,9–18 Vignale, Rasolt,
and Geldart have first proposed the local-density approxima-
tion �LDA� of the CDFT.5,6,9,10 The practical formula9,10 has
been applied to actual calculations.19–23 Erhard and Gross
have derived exact relations that are satisfied with exchange
and correlation energy functionals from the virial theorem
and uniform scaling properties.11 By using these exact rela-
tions, Liu has proposed local formulas for the exchange and
correlation energy functionals under the local and variable-
separation assumptions.12 Capelle and Gross13 have proposed
a method to construct approximate exchange and correlation
energy functionals of the CDFT by using those of the SDFT.
Lee and Handy14 have derived a procedure to construct ex-
change and correlation scalar and vector potentials by ex-

tending the procedure proposed by Zhao, Morrison, and
Parr.24 Recently, Maximoff, Ernzerhof, and Scuseria15 have
developed an empirical form of a current-dependent ex-
change hole model by using some of the exact relations as
constraints. More recently, Zhu and Trickey have investi-
gated analytical solutions of Hook’s atom in a magnetic field
toward approximate forms of the exchange and correlation
energy functionals.16

In recent years, we have advanced the development of
approximate forms of the exchange and correlation energy
functionals on the basis of two strategies.17,18 One is to start
with the coupling-constant expression of the exchange-
correlation energy functional of the CDFT.17 By using this
expression, in addition to the LDA, the average-density ap-
proximation and weighted-density approximation have been
proposed similarly to those in the conventional DFT.17 An-
other strategy is to utilize as constraints exact relations that
are satisfied with exchange and correlation energy
functionals.17 This strategy is analogous to the generalized
gradient approximation �GGA� method25–27 in developing
approximate forms of the exchange and correlation energy
functionals of the DFT. To date, a lot of exact relations have
been derived17,18 by means of the virial theorem and nonuni-
form scaling properties. The set of these exact relations is a
complement to those derived by Erhard and Gross.11

In this paper, we propose approximate forms of both the
exchange and correlation energy functionals of the CDFT
along the latter strategy. They have a form of the second-
order vorticity expansion, which is hereafter called the vor-
ticity expansion approximation �VEA� formulas. Expansion
coefficients of the VEA formulas are determined by requiring
them to satisfy a series of exact relations that have been
derived from uniform and nonuniform coordinate scaling of
electrons.11,17 We also apply the VEA formulas to exchange
and correlation energies of the homogeneous electron liquid
under the uniform magnetic field. It is expected that the
present VEA formulas make it feasible to perform the actual
calculations of the CDFT.

The organization of this paper is as follows. In Sec. II, we
shall give the preliminary definitions of various quantities
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that will be required in the subsequent discussions. The ex-
change and correlation energy functionals of the CDFT are
also defined there. In Sec. III, it is shown by utilizing the
gauge transformation that the exchange and correlation en-
ergy functionals are dependent on the paramagnetic current
density only through the vorticity. In Sec. IV, the VEA for-
mula of the exchange energy functional is actually proposed
by using the scaling behavior of the exchange energy func-
tional as a sum rule. In a similar way to the exchange energy
functional, the VEA formula of the correlation energy func-
tional is proposed in Sec. V. In Sec. VI, as a possible ex-
ample for checking the validity of the VEA formulas plus the
practical purpose, the present VEA formulas are fitted to the
exchange and correlation energies of the homogeneous elec-
tron liquid under the uniform magnetic field. Finally, con-
cluding remarks are given in Sec. VII.

II. PRELIMINARY DEFINITIONS IN THE CDFT

The system we wish to consider consists of N electrons
moving in the external electromagnetic fields, vext�r� and
Aext�r�. The Hamiltonian of the system is generally given by

Ĥ = �
i=1

N
1

2m
�pi +

e

c
Aext�ri��2

+ �
i=1

N

vext�ri� + �
i�j

N
e2

�ri − r j�
, �1�

where ri and pi stand for the position and momentum of the
ith electron, respectively. The operators of the electron den-
sity and paramagnetic current density are defined by

�̂�r� = �
i=1

N

��r − ri� �2�

and

ĵp�r� =
1

2m
�
i=1

N

�pi��r − ri� + ��r − ri�pi� , �3�

respectively. Using these operators and neglecting the sur-
face integral at infinity, the Hamiltonian �1� is approximately
rewritten as

ĤCDFT = T̂ + Ŵ +
e

c
	 Aext�r� · ĵp�r�dr

+	 �̂�r��vext�r� +
e2

2mc2Aext�r�2�dr , �4�

where T̂ and Ŵ are operators of the kinetic energy and the
electron-electron interaction, respectively, which are given
by

T̂ = �
i=1

N
pi

2

2m
�5�

and

Ŵ = �
i�j

N
e2

�ri − r j�
. �6�

This is the starting Hamiltonian of the CDFT. Hereafter, we
shall discuss on the basis of Eq. �4�.

The exchange-correlation energy functional of the CDFT
is formally defined as5,6

Exc
�,jp� = F
�,jp� − Ts
�,jp� − U
�� , �7�

where according to the constrained-search approach

F
�,jp� = Min
�→��,jp�

���T̂ + Ŵ��

¬ ��
�,jp��T̂ + Ŵ��
�,jp� , �8�

Ts
�,jp� = Min
�→��,jp�

���T̂��

¬ ��
�,jp��T̂��
�,jp� , �9�

U
�� =
e2

2
	 	 ��r���r��

�r − r��
drdr�, �10�

where ��r� and jp�r� are expectation values of Eqs. �2� and
�3� with respect to the wave function, respectively. In Eq. �8�,
the minimizing is performed among antisymmetric wave
functions � that yield the prescribed ��r� and jp�r�, and
�
� , jp� means the minimizing wave function. Similarly, the
minimizing in Eq. �9� is done among the single Slater deter-
minants � that yield the prescribed ��r� and jp�r�. �
� , jp�
means the minimizing single Slater determinant. Substituting
Eqs. �8� and �9� into Eq. �7�, we have

Exc
�,jp� = ��
�,jp��Ŵ��
�,jp� − U
��

+ ��
�,jp��Ŵ��
�,jp� − ��
�,jp��Ŵ��
�,jp�

+ ��
�,jp��T̂��
�,jp�

− ��
�,jp��T̂��
�,jp� . �11�

Let us define the exchange energy functional Ex
� , jp� as the
first two terms on the right-hand side of Eq. �11�, and the
correlation energy functional Ec
� , jp� as the remaining four
terms, i.e.,

Ex
�,jp� � ��
�,jp��Ŵ��
�,jp� − U
�� , �12�

Ec
�,jp� � ��
�,jp��Ŵ��
�,jp� − ��
�,jp��Ŵ��
�,jp�

+ ��
�,jp��T̂��
�,jp� − ��
�,jp��T̂��
�,jp� .

�13�

These definitions are the same as those previously given by
Erhard and Gross.11

III. VORTICITY DEPENDENCE OF Ex†� , jp‡ AND Ec†� , jp‡

In this section, we shall show that Ex
� , jp� and Ec
� , jp�
are dependent on jp�r� only via the vorticity ��r�=�
� �jp�r� /��r��. This proof is slightly different from the pre-
vious one in that the vorticity dependence will be shown for
each of Ex
� , jp� and Ec
� , jp� without the restriction of the v
representability, while previous work gave such dependence

KATSUHIKO HIGUCHI AND MASAHIKO HIGUCHI PHYSICAL REVIEW B 74, 195122 �2006�

195122-2



for Exc
� , jp� within the v-representable CDFT.5,6

First of all, we shall show the following relation:

���,jp −
e

mc
� � �� = e−i�e/c�� �

i=1

N
��ri��
�,jp� , �14�

where ��r� is an arbitrary scalar function. Since it is the
minimizing wave function defined in Eq. �8�, �
� , jp� satis-
fies

�T̂ + Ŵ +	 	
�,jp��r��̂�r�dr

+	 �
�,jp��r� · ĵp�r�dr��
�,jp� = E�
�,jp� ,

�15�

where 	
� , jp��r� and �
� , jp��r� are the Lagrange multiplier
functions that correspond to the constraints ��r�
= ����̂�r��� and jp�r�= ���ĵp�r���, respectively, and where
E is the Lagrange multiplier coefficient to the constraint
�� ��=1. Here note that the Lagrange multiplier functions
are explicitly written as the functional of both ��r� and jp�r�
because they are determined corresponding to the prescribed
values of ��r� and jp�r�. If we define

A
�,jp��r� �
c

e
�
�,jp��r� �16�

and

v
�,jp��r� � 	
�,jp��r� −
1

2m
�
�,jp��r�2, �17�

then Eq. �15� is formally rewritten as

�T̂ + Ŵ +	 �v
�,jp��r� +
e2

2mc2A
�,jp��r�2��̂�r�dr

+
e

c
	 A
�,jp��r� · ĵp�r�dr��
�,jp� = E�
�,jp� .

�18�

Since the left-hand side of Eq. �18� is the same as Eq. �4�, the
gauge transformation such as A
� , jp��r�→A
� , jp��r�
+���r� leads to28

�T̂ + Ŵ +	 �v
�,jp��r� +
e2

2mc2 
A
�,jp��r�

+ ���r��2��̂�r�dr +
e

c
	 �A
�,jp��r�

+ ���r�� · ĵp�r�dr�e−i�e/c�� �
i=1

N
��ri��
�,jp�

= Ee−i�e/c�� �
i=1

N
��ri��
�,jp� . �19�

As shown in Ref. 28, solutions of Eq. �19� yield ��r� and
jp�r�− e

mc��r����r�. If we recall the fact that the Lagrange
multiplier functions, 	
� , jp� and �
� , jp�, are uniquely deter-
mined by ��r� and jp�r�, then the potentials in Eq. �19�,

v
� , jp��r�+ e2

2mc2 
A
� , jp��r�+���r��2 and e /c�A
� , jp��r�
+���r��, can be regarded as the Lagrange multiplier func-
tions that reproduce ��r� and jp�r�− �e /mc���r����r�. We
thus obtain

	��,jp −
e

mc
� � ���r� = v
�,jp��r� +

e2

2mc2 
A
�,jp��r�

+ ���r��2, �20�

���,jp −
e

mc
� � ���r� =

e

c
�A
�,jp��r� + ���r�� . �21�

Correspondingly, �
� , jp− e
mc���� is given by Eq. �14�.

It should be noted that substitution of Eqs. �16� and �17�
into Eqs. �20� and �21� leads to the relation between the
Lagrange multiplier functions. Namely, the Lagrange multi-
plier functions that yield ��r� and jp�r�− e

mc��r����r� are
related to those that yield ��r� and jp�r�. These relations
result in the relation �14� between �
� , jp− e

mc���� and
�
� , jp�.

A similar result is available for �
� , jp� if we consider the

case such that Ŵ→0,

���,jp −
e

mc
� � �� = e−i�e/c���i=1

N ��ri��
�,jp� . �22�

Using Eqs. �14� and �22�, the exchange and correlation en-
ergy functionals that are defined by Eqs. �12� and �13� have
the following relations:

Ex��,jp −
e

mc
� � �� = Ex
�,jp� , �23�

Ec��,jp −
e

mc
� � �� = Ec
�,jp� . �24�

In order to satisfy Eqs. �23� and �24� for the arbitrary scalar
function ��r�, both energy functionals, Ex
� , jp� and
Ec
� , jp�, are dependent on jp�r� via the form of vorticity
��r�. Hereafter, we shall write the exchange and correlation
energy functionals as

Ēx
�,�� ª Ex
�,jp� �25�

and

Ēc
�,�� ª Ec
�,jp� , �26�

respectively.

IV. VORTICITY EXPANSION APPROXIMATION OF THE
EXCHANGE ENERGY FUNCTIONAL

In this section, we shall propose the practical form of the
exchange energy functional on the basis of the VEA. The
expansion coefficient is determined by requiring it to satisfy
the exact relation that was derived previously.11 This strategy
is similar to that of the GGA of the conventional DFT.25–27

With reference to the GGA, the approximate form of

Ēx
� ,�� is assumed to be

VORTICITY EXPANSION APPROXIMATION OF THE… PHYSICAL REVIEW B 74, 195122 �2006�

195122-3



Ēx
�,�� = Ex
�� +	 ���r�Fx��,����=��r�
�=��r�

dr , �27�

where Ex
�� is the exchange energy functional of the con-
ventional DFT, and where Fx�� ,�� is an energy density that
should be determined by the exact relation. Here we consider
the case in which � is small. Then, the Taylor expansion of
Fx�� ,�� around �=0 may be truncated at second order of �,

Fx��,�� = Fx��,0� + � · D�1���� + Dxx
�2����
x

2 + Dyy
�2����
y

2

+ Dzz
�2����
z

2 + Dxy
�2����
x
y + Dyz

�2����
y
z

+ Dxz
�2����
x
z, �28�

where D�1���� and Dij
�2���� are the expansion coefficients,

which are given by

D�1���� = ���Fx��,����=0, �29�

Dij
�2���� =

1

2
� �2Fx��,��

�
i�
 j
�

�=0
, i, j = x,y,z . �30�

Since �Ēx
� ,����=0 should coincide with the exchange en-
ergy functional of the DFT, we can obtain Fx�� ,0�=0. In
addition, if Fx�� ,�� is assumed to be spherical with respect
to �, then the first order of � becomes zero and the terms of
the second order can be rewritten as D������2, where D���
ªDxx

�2����=Dyy
�2����=Dzz

�2����. Consequently, Eq. �28� becomes

Fx��,�� = D������2. �31�

Next let us consider the properties of D��� by utilizing the
exact relation for the exchange energy functional. The scal-
ing behavior of the exchange energy functional was given
by11

Ēx
�	,�	� = 	Ēx
�,�� �32�

with

�	�r� = � � � jp
	�r�

�	�r�
� , �33�

where 	 is the scaling factor of the electron coordinates, and
where �	�r� and jp

	�r� are, respectively, electron density and
paramagnetic current density, which are calculated from the
uniformly scaled wave function.11 They are related to ��r�
and ��r� by

�	�r� = 	3��	r� , �34�

�	�r� = 	2��	r� . �35�

Substituting Eq. �27� into Eq. �32�, we get

	 ���r�Fx��,����=�	�r�
�=�	�r�

dr = 		 ���r�Fx��,����=��r�
�=��r�

dr ,

�36�

where the relation Ex
�	�=	Ex
�� for the conventional DFT
is used.29 Substitution of Eq. �31� into Eq. �36� yields

	 ��r����r��2�	3�D�����=	3��r� − �D�����=��r��dr = 0.

�37�

As a sufficient condition for the above, we can obtain
	3D�	3��=D���. If D��� is assumed to be expressed as the
power of �, i.e., D���=Dx�

�, then �=−1 can be obtained
from the sufficient condition. Accordingly, we get the VEA
formula

Ēx
�,�� = Ex
�� + Dx	 ���r��2dr , �38�

where Dx is the constant. By using the dimensionless con-

stant D̄x, Eq. �38� is further rewritten as

Ēx
�,�� = Ex
�� + D̄x
�2

aH
3 �H

	 ���r��2dr , �39�

where aH and �H stand for the Bohr radius and Rydberg
constant, respectively.

V. VORTICITY EXPANSION APPROXIMATION OF THE
CORRELATION ENERGY FUNCTIONAL

A. Vorticity expansion of the correlation energy functional

In the same way as the exchange energy functional, let us

consider the following approximate form of Ēc
� ,��:

Ēc
�,�� = Ec
�� +	 ��r�Fc���,����=��r�
�=��r�

dr , �40�

where Ec
�� denotes the correlation energy functional of the
conventional DFT, and where Fc�� ,�� stands for an energy
density that is a function of � and �. Similarly to Fx�� ,��, we
assume that Fc�� ,�� is spherical with respect to �. Truncat-
ing the third- and higher-order terms of the expansion, we
get

Fc��,�� = C������2, �41�

where C��� is a function of �. Substituting Eq. �41� into Eq.

�40�, we obtain the VEA formula for Ēc
� ,��

Ēc
�,�� = Ec
�� +	 ��r�C„��r�…���r��2dr . �42�

The expansion coefficient C��� is determined by requiring

Ēc
� ,�� to satisfy exact relations.11,17

B. Conditions to be satisfied with the expansion coefficient
C„�…

In this subsection, the exact relations for Ēc
� ,��, which
have been derived by means of the uniform and nonuniform
scaling techniques,11,17 are rewritten as conditions for C���.
Then, we propose an approximate form of C��� that satisfies
their conditions.

The uniform scaling of coordinates of electrons leads to
the following exact relations:11
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Ēc
�	,�	� − 	Ēc
�,��  0 for 	  1, �43�

Ēc
�	,�	� − 	Ēc
�,�� � 0 for 	 � 1. �44�

By using Eq. �42�, the left-hand side of Eqs. �43� and �44� is
given by

Ēc
�	,�	� − 	Ēc
�,�� = Ec
�	� − 	Ec
��

+ 		 ��r��	3C„	3��r�…

− C„��r�…����r��2dr . �45�

Since Ec
�� satisfies exact relations that are similar to Eqs.
�43� and �44�,29 Eqs. �43� and �44� can be rewritten as con-
ditions for C���. We have

	3C�	3��  C��� for 	  1, �46�

	3C�	3�� � C��� for 	 � 1. �47�

Note that Eqs. �43� and �44� always hold if C��� satisfies the
above conditions. Namely, Eqs. �46� and �47� can be recog-
nized as sufficient conditions for Eqs. �43� and �44�, respec-
tively.

The nonuniform scaling of coordinates of electrons leads
to a lot of exact relations. These have been systematically
derived and summarized in Ref. 17. If we scale the x coor-
dinate with 	, the scaled electronic density and vorticity are
given by

�	
x�r� = 	��	x,y,z� , �48�

�	
x�r� � � � � jp	

x �r�
�	

x�r�
�

= „
x�	x,y,z�,	
y�	x,y,z�,	
z�	x,y,z�… , �49�

respectively, where �	
x�r� and jp	

x �r� are calculated from the
wave function, which is scaled by 	 only in the x axis. Ac-
cording to our previous work,17 the following exact relations
hold for �	

x�r� and �	
x�r�:

lim
	→�

Ēc
�	
x ,�	

x� = 0, �50�

lim
	→�

	Ēc
�	
x ,�	

x� = const, �51�

lim
	→0

Ēc
�	
x ,�	

x� = 0, �52�

lim
	→0

	−1Ēc
�	
x ,�	

x� = 0, �53�

lim
	→0

	−2Ēc
�	
x ,�	

x� = const. �54�

By using Eqs. �42�, �48�, and �49�, Ēc
�	
x ,�	

x� is given by

Ēc
�	
x ,�	

x� = Ec
�	
x� +	 ��r�	2C„	��r�…

��
x�r�2

	2 + 
y�r�2 + 
z�r�2�dr . �55�

Substituting Eq. �55� into Eqs. �50�–�54�, and using the exact
relations of Ec
��,30 we obtain conditions for C��� that cor-
respond to sufficient conditions for Eqs. �50�–�54�,

lim
	→�

	2C�	�� = 0, �56�

lim
	→�

	3C�	�� = 0 or �a positive power of �� ,

�57�

lim
	→0

C�	�� = 0, �58�

lim
	→0

	−1C�	�� = 0, �59�

lim
	→0

	−2C�	�� = 0 or �a positive power of �� .

�60�

In a similar way to the above discussion, we can obtain con-
ditions for C��� from the other kinds of exact relations of

Ēc
� ,��, which have been derived in Ref. 17. They are sum-
marized as follows:

lim
	→�

	4C�	�� = 0, �61�

lim
	→�

	5C�	�� = 0, �62�

lim
	→�

	6C�	�� = 0 or �a positive power of �� ,

�63�

lim
	→�

	4C�	2�� = 0, �64�

lim
	→�

	5C�	2�� = 0 or �a positive power of �� ,

�65�

lim
	→0

	2C�	2�� = 0, �66�

lim
	→0

	C�	2�� = 0, �67�

lim
	→0

C�	2�� = 0 or �a positive power of �� . �68�

It should be noted that the exact relations �3.11a�–�3.11e�,
�3.14a�–�3.14e�, and �3.20a�–�3.20f� of Ref. 17 necessarily
hold if C��� satisfies the equations from Eqs. �56�–�68�.
Hereafter, we propose an approximate form of C��� that sat-
isfies the above conditions.
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Let us suppose that C��� is given by

C��� = C̄0
�2

aH
3 �H

e−�̄aH
3 ��2

�� − �̄/aH
3 �3

, �69�

where C̄0, �̄, and �̄ are dimensionless constants. It is easily
confirmed that Eq. �69� is satisfied with conditions from Eqs.

�56�–�68� if �̄ and �̄ are positive values. Also, Eqs. �46� and

�47� hold when we choose C̄0 negative and �̄ small enough.

If �̄ /aH
3 is much smaller than � of interest, and if C̄0 is nega-

tive, then the condition �46� holds. Additionally, the condi-
tion �47� is satisfied if the scaling factor 	 is larger than

��̄ /��1/3 and if C̄0 is negative. Substituting Eq. �69� into Eq.

�42�, we get the resultant VEA formula of Ēc
� ,��,

Ēc
�,�� = Ec
�� +
C̄0�2

aH
3 �H

	 e−�̄aH
3 ��r���r�3

���r� − �̄/aH
3 �3

���r��2dr .

�70�

The comparison of the present VEA and the CDFT-LDA17 is
summarized in Table I from the viewpoint of exact relations
fulfilled. The VEA formulas satisfy more “sum rules” than
those of the CDFT-LDA.17 It should be noted that even
though an approximate functional is satisfied with more sum
rules than another one, it would not always give the quanti-
tatively better results than the functional that is not satisfied
with fewer sum rules. The sum rule does not always guaran-
tee to make a good functional. However, to say the least, the
sum rule may well get rid of the difficulties that lead to
nonphysical results, from the approximate functional. In this
sense, it can be expected that the present VEA formulas may
lead to more reasonable results than the CDFT-LDA.

At the end of this subsection, we would like to comment
on the VEA formulas. The present form includes three con-
stants. In order to satisfy Eqs. �46�, �47�, and �56�–�68�, as

mentioned above, the values of C̄0, �̄, and �̄ should be cho-
sen as

C̄0 � 0, �̄ � 0, 0 � �̄ � aH
3 � , �71�

respectively. It is striking that no matter how we give values
of their constants according to Eq. �71�, Eq. �70� satisfies all
exact relations as shown in Table I.

VI. FITTING TO THE EXCHANGE AND CORRELATION
ENERGIES OF THE HOMOGENEOUS ELECTRON

LIQUID UNDER THE UNIFORM MAGNETIC FIELD

In this section, the VEA formulas are fitted to the ex-
change and correlation energies of the homogeneous electron
liquid under the uniform magnetic field. These fits are mean-
ingful not only from a practical viewpoint but also for check-
ing the validity of the VEA formulas.

A. Exchange energy

The exchange energy of the homogeneous electron liquid
under the uniform magnetic field has already been studied by

some workers.31,32 If the electron liquid under the uniform
magnetic field is at rest, then the vorticity is constant and can
be written as

� = −
e

mc
Bext, �72�

where Bext=��Aext�r�. Substituting Eq. �72� into Eq. �39�,
we get

Ēx
homo��,B̄ext� = Ex

homo��� + D̄x
�2�

aH
3 �H

�me4

2�3 �2

B̄ext
2 �73�

with

B̄ext =
��c

�H
=

2�3

m2ce3 �Bext� , �74�

where �, �c, and B̄ext are the volume of the system, the
cyclotron frequency, and the dimensionless magnetic field,

TABLE I. Comparison of the VEA and the CDFT-LDA defined
in Ref. 17.

CDFT-LDA VEA

Ex
�	,jp
	� = 	Ex
�,jp� Yes Yes

Ec
�	,jp
	�  	Ec
�,jp�, 	  1 Yes Yes

Ec
�	,jp
	� � 	Ec
�,jp�, 	 � 1 Yes Yes

lim
	→�

Ec
�	
x ,jp	

x � = 0 Yes

lim
	→�

	Ec
�	
x ,jp	

x � = const Yes

lim
	→0

Ec
�	
x ,jp	

x � = 0 Yes Yes

lim
	→0

	−1Ec
�	
x ,jp	

x � = 0 No Yes

lim
	→0

	−2Ec
�	
x ,jp	

x � = const No Yes

lim
	→�

Ec
�		
xy ,jp		

xy � = 0 Yes

lim
	→�

	Ec
�		
xy ,jp		

xy � = const Yes

lim
	→0

Ec
�		
xy ,jp		

xy � = 0 Yes

lim
	→0

	−1Ec
�		
xy ,jp		

xy � = 0 Yes Yes

lim
	→0

	−2Ec
�		
xy ,jp		

xy � = const No Yes

lim
	→�

Ec
�			−1
xyz ,jp			−1

xyz � = 0 Yes

lim
	→�

	Ec
�			−1
xyz ,jp			−1

xyz � = 0 Yes

lim
	→�

	2Ec
�			−1
xyz ,jp			−1

xyz � = const Yes Yes

lim
	→0

Ec
�			−1
xyz ,jp			−1

xyz � = 0 No Yes

lim
	→0

	−1Ec
�			−1
xyz ,jp			−1

xyz � = 0 No Yes

lim
	→0

	−2Ec
�			−1
xyz ,jp			−1

xyz � = const No Yes
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respectively. The exchange energy per particle is thus given
by

�̄ x
homo��,B̄ext� =

Ex
homo���

N
+ D̄x

�2

aH
3 �H�

�me4

2�3 �2

B̄ext
2 , �75�

where N is the number of electrons. Hereafter we shall use
atomic units. Using the fact that Ex

homo
�� /N=−0.9163/rs

�Ry�,33 Eq. �75� can be rewritten as

�̄ x
homo��,B̄ext� = −

0.9163

rs
+ D̄x

4�

3
rs

3B̄ext
2 �Ry� , �76�

where rs is the usual density parameter that is defined by rs
= �3/4���1/3. Fitting Eq. �76� to the results of Takada and

Goto,32 we obtain D̄x=3.76�10−4. Figure 1 shows the de-
pendence of �̄ x

homo on rs, where the ratio �l /r0� of the mag-
netic length �l=��c /eBext� to the mean interparticle distance
�r0=aHrs� is fixed at 0.4. As can be seen in Fig. 1, the present
formula is in good agreement with the result of Takada and
Goto.32 This means the validity of the VEA formula for the
exchange energy functional.

B. Correlation energy

From Eq. �70�, the correlation energy �̄ c
homo in Ry per

particle is given by

�̄ c
homo = �c

homo�Bext = 0� + ��̄ c
homo, �77�

with

��̄ c
homo = C̄0

exp�−
3�̄

4�
rs

−3�� 3

4�
rs

−3�2

� 3

4�
rs

−3 − �̄�3 B̄ext
2 , �78�

where �c
homo�Bext=0� and ��̄ c

homo are the correlation energy
�in Ry� per particle of the homogeneous electron liquid with-
out magnetic field and the difference from �̄ c

homo to
�c

homo�Bext=0�, respectively. The values of constants are de-
termined by fitting calculation results of Eq. �77� to the cor-

relation energy per particle of the homogeneous electron liq-

uid under uniform magnetic fields.32 As a result, we get C̄0

=−4.669�10−4, �̄=0.653, and �̄=1.0�10−30, respectively.
Note that these values are consistent with the conditions
�71�. Figure 2 shows the dependence of ��̄ c

homo on rs. The
resultant ��̄ c

homo is in good agreement with those of Ref. 32.
This means the validity of the VEA formula for the correla-
tion energy functional.

Next, we give a comment on the value of �̄. As mentioned

in Sec. V B, the value of �̄ /aH
3 should be much smaller than

� of interest so that the approximate form �70� satisfies all

exact relations. The condition ���̄ /aH
3 can be rewritten as

rs�6.2�109 if �̄=1.0�10−30. The rs parameters that are
physically meaningful are up to about six in metals.33 There-
fore, it can be concluded that the approximate form �70� is
satisfied with all exact relations for � of interest.

At the end of this section, we give a brief comment on the
fitting formulas obtained in this section. Judging from the
fact that the LDA of the conventional DFT has been success-
fully applied to various inhomogeneous systems, it is ex-
pected that these fitting formulas may be applied not only to
the homogeneous electron liquid under the uniform magnetic
field, but also to various kinds of inhomogeneous systems.

VII. CONCLUDING REMARKS

In this paper, we present the practical forms of the ex-
change and correlation energy functionals of the CDFT on
the basis of the VEA. The expansion coefficients are deter-
mined to satisfy exact relations that have been derived
previously.11,17 These VEA formulas have the following fea-
tures.

�i� They coincide with exchange and correlation energy
functionals of the conventional DFT, respectively, in the
limit of vanishing vorticity. �ii� Although each expansion is
truncated at second order of �, the effects of third- and
higher-order terms are in principle taken into account by an
imposition of the exact relations on the expansion. Due to
this fact, the fits of the present expansions to the results of
Takada and Goto are quite good, as shown in Figs. 1 and 2.

FIG. 1. Dependence of �̄ x
homo on rs. Solid curve and open circles

denote the present VEA of Eq. �76� and the calculation results of
Ref. 32, respectively, where the ratio �l /r0� of the magnetic length
�l� to the mean interparticle distance �r0� is fixed at 0.4.

FIG. 2. Dependence of ��̄ c
homo on rs. Solid curve denotes the

present VEA of Eq. �78�, while open circles denote the calculation
results of Ref. 32, where the ratio �l /r0� of the magnetic length �l�
to the mean interparticle distance �r0� is fixed at 0.4.
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This is also similar to the fact that the GGA is generally
better than the simple gradient approximation.25–27 �iii� The
VEA formulas with fixed constants, which are determined in
Sec. VI, have no parameters and are expected to be appli-
cable to various systems if we remember the success of the
LDA.

Finally, we give a brief comment on exact relations ful-
filled by the VEA formulas. There is an exact relation that is
not utilized in Sec. V but is utilized in the development of
the PBE functional.27 The exact relation is such that the cor-
relation energy functional for the uniformly scaled basic
variables approaches a constant in the limit of infinite scaling
factor.34 Also in the CDFT, it can be shown that the exact
relation of that type holds for the correlation energy
functional.35 Then, it can be confirmed that the VEA formula

is satisfied with such an exact relation in addition to the exact
relations listed in Table I, while the CDFT-LDA is not satis-
fied with it. This also indicates the validity of the VEA for-
mulas. The proof and details will be published elsewhere.35

The next step is to perform the actual calculations by
means of the present VEA formulas.
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