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We present a density-functional scheme for calculating the pair density �PD� by means of the correlated
wave function. The Jastrow wave function is adopted as the correlated wave function. By using the lowest-
order approximation to the Jastrow wave function PDs, the search region for the ground-state PD is substan-
tially extended as compared with our previous theory �Physica B 387, 117 �2007��. The variational principle
results in simultaneous equations that are practicable to calculate the ground-state PD.
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I. INTRODUCTION

The pair density �PD� functional theory has recently at-
tracted particular interest because it provides the obvious
way to improve on density-functional theory �DFT� �1–9�.
Ziesche first proposed the PD functional theory about a de-
cade ago �1,2�, and then many workers followed his work
and have developed a variety of approaches �3–9�.

Very recently, we have proposed an approximate scheme
for calculating the PD on the basis of the extended
constrained-search theory �10–14�. By introducing a nonin-
teracting reference system �10,11�, the resultant PD corre-
sponds to the best solution within the set of PDs that are
constructed from a single Slater determinant �SSD�. This PD
functional theory has two kinds of merit. The first is that the
reproduced PD is necessarily N-representable. This is a
strong merit because the necessary and sufficient conditions
for the N-representable PD are not yet known �15–26�. The
second merit is the tractable form of the kinetic energy func-
tional. The kinetic energy functional cannot exactly be writ-
ten by using the PD alone. Some approximation is required
�7�. In this theory, we have successfully given an approxi-
mate form of the kinetic energy functional with the aid of the
coordinate scaling of electrons �10,11�.

On the other hand, a significant problem remains in that
approach �10�; namely, there exists the possibility that the
solution might be far from the correct value of the ground-
state PD. This is because the search region of the PDs may
be smaller than the set of N-representable PDs. In order to
improve the PD functional theory, we have to extend the
search region of the PDs to the set of N-representable PDs as
closely as possible. At least, we had better extend the search
region beyond the set of SSD-representable PDs �27�.

In this paper, we shall employ the strategy for reproducing
the PDs not by means of the SSD, but through the correlated
wave function. As the correlated wave function, we adopt the
Jastrow wave function that is defined as the SSD multiplied
by the correlation function �28–34�. Owing to the correlation
function, the search region becomes substantially larger than
the set of the SSD-representable PDs.

The organization of this paper is as follows. In Sec. II, we
provide the preliminary definitions of various quantities that
appear in the following sections. In Sec. III, by means of the

variational principle with respect to the PD, we derive simul-
taneous equations that yield the best PD within the Jastrow
wave function PDs of lowest order. Such equations are quite
tractable; the computational method for them is also pro-
posed in Sec. III.

II. PRELIMINARY DEFINITIONS IN THE PD
FUNCTIONAL THEORY

In this section we give the preliminary definitions that
will be used in the present scheme. The PD is defined as the
diagonal elements of the spinless second-order reduced den-
sity matrix, i.e.,

��2��rr�;rr�� = ���
1

2
� � �̂†�r,���̂†�r�,����̂�r�,���

��̂�r,��d� d����� , �1�

where �̂�r ,�� and �̂†�r ,�� are the field operators of the elec-
trons, � is the antisymmetric wave function, and r and � are
spatial and spin coordinates, respectively. We shall consider
a system, the Hamiltonian of which is given by

Ĥ = T̂ + Ŵ +� dr �̂�r�vext�r� , �2�

where T̂, Ŵ, and �̂�r� are operators of the kinetic energy,
electron-electron interaction, and electron density, respec-
tively, and vext�r� stands for the external potential. In a simi-
lar way to the extended constrained-search theory �12–14�,
the universal functional is defined as

F���2�� = Min
�→��2��rr�;rr��

���T̂ + Ŵ���

= �����2���T̂ + Ŵ�����2��� , �3�

where �→��2��rr� ;rr�� denotes the searching over all
antisymmetric wave functions that yield a prescribed
��2��rr� ;rr��. In the second line, the minimizing wave func-
tion is expressed as ����2��. By using Eq. �3�, the
Hohenberg-Kohn theorems for the PD functional theory can
be easily proved �1,5�. Here we show only their results �10�:
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�0 = ���0
�2�� �4�

and

E0 = Min
��2�

E���2��

= E��0
�2�� , �5�

where �0, E0, and �0
�2� are the ground-state wave function,

ground-state energy, and ground-state PD, respectively, and
where E���2�� is the total energy functional that is given by

E���2�� = F���2�� +
2

N − 1
� � dr dr�vext�r���2��rr�;rr�� .

�6�

Equations �4� and �5� correspond to the first and second
Hohenberg-Kohn theorems, respectively. Let us suppose that

T���2�� = �����2���T̂�����2���; �7�

then Eq. �6� is rewritten as

E���2�� = T���2�� + e2� � dr dr�
��2��rr�;rr��

�r − r��

+
2

N − 1
� � dr dr�vext�r���2��rr�;rr�� , �8�

where, in the second term, we use the fact that the expecta-

tion value of Ŵ is exactly written in terms of ��2��rr� ;rr��.
Equation �8� is the starting expression for the total energy
functional in the PD functional theory.

As mentioned in Sec. I, the kinetic energy of the PD func-
tional theory cannot be exactly expressed by the PDs alone.
In other words, we have to employ the approximate form. So
far, the kinetic energy functional of the PD functional theory
has been developed by several workers �10,35,36�. In this
paper, we make use of an approximate form of the kinetic
energy functional which has been derived by utilizing the
scaling property of the kinetic energy functional �10,36�. The
explicit form is given by

T���2�� = K� � dr dr���2��rr�;rr��4/3, �9�

where K is an arbitrary constant.

III. SINGLE-PARTICLE EQUATIONS

Equation �5� corresponds to the variational principle with
respect to the PD. The search region of the PDs should be of
course within the set of N-representable PDs. In order to
make the search region close to the set of N-representable
PDs, we shall introduce the search region of the PDs that is
approximately calculated from the correlated wave functions.
The search region is substantially extended as compared with
the previous theory �10�, because it is restricted within the
set of SSD-representable PDs. Extension of the search region
can be regarded as one of appropriate developments of the
PD functional theory �27�.

In this paper we adopt the Jastrow wave function as the
correlated wave function. The explicit evaluation of the PD
using the Jastrow wave function is actually very hard
�28–34�. As a consequence, the approximation technique to
evaluate the PD has been developed �28–34�. The expecta-
tion value of the PD operator with respect to the Jastrow
wave function can be systematically expressed with the aid
of the Yvon-Mayer diagrammatic technique �28,29�. Here we
shall use the lowest-order approximation of the expectation
value of the PD operator.

The Jastrow wave function is defined as �28,29�

�J�x1,x2, . . . ,xN� =
1

	CN



1�i�j�N

f�rij�	SSD�x1,x2, . . . ,xN� ,

�10�

where 	SSD�x1 ,x2 , . . . ,xN� is the SSD, f�rij�= f��ri−r j�� is the
correlation function, and CN is the normalization constant.
Suppose that the correlation function is chosen to satisfy the
cusp condition for the antisymmetric wave function. The
lowest-order approximation for the expectation value of the
PD operator is given by �28�

��2��rr�;rr�� = �f��r − r����2�SSD
�2� �rr�;rr�� , �11�

where �SSD
�2� �rr� ;rr�� is the expectation value of the PD op-

erator with respect to the SSD. Supposing N orthonormal
spin orbitals of the SSD are denoted as ��
�x�, then Eq. �11�
is explicitly expressed as

��2��rr�;rr�� =
1

2
�f��r − r����2 �


1,
2=1

N � � d� d��

���
1

* �x��
2

* �x���
1
�x��
2

�x��

− �
1

* �x��
2

* �x���
2
�x��
1

�x�� . �12�

Next, let us consider the variational principle with respect to
the PD, i.e., Eq. �5�. The variation of the PD is performed via
the spin orbitals of Eq. �12� with the restriction that they are
orthonormal to each other. Using the Lagrange method of
undetermined multipliers, we minimize the following func-
tional without the restriction:

����
� = E���2�� − �

,�


��� �

* �x����x�dx − �
�� ,

�13�

where Eqs. �8�, �9�, and �12� are used in the first term on the
right-hand side. The minimizing condition �����
�=0 im-
mediately leads to

�
�
� dx1���

*�x1����x1��
�x� − ��
*�x1����x��
�x1�

��f��r − r1���2�4K

3
��2��rr1;rr1�1/3 +

e2

�r − r1�

+
1

N − 1
�vext�r� + vext�r1��� = �

�


����x� , �14�
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where the chain rule for the functional derivatives is utilized.
The Lagrange multipliers 
� should be determined by re-
quiring that the spin orbitals are orthonormal to each other.
In a similar way to the previous theory �10�, we can simplify
the above equations by means of a unitary transformation of
the spin orbitals. Clearly 
� is Hermitian; hence there exists
U
� such that �i,jUi


* ijUj�= ̃
�
� and the spin orbitals
therefore can be transformed as

�
�x� = �
�

U
����x� . �15�

Substituting Eq. �15� into Eq. �14�, we obtain

�
�
� dx1���

*�x1����x1��
�x� − ��
*�x1����x��
�x1�

��f��r − r1���2�4K

3
��2��rr1;rr1�1/3 +

e2

�r − r1�

+
1

N − 1
�vext�r� + vext�r1��� = ̃
�
�x� �16�

with

� �

* �x����x�dx = �
�. �17�

Direct substitution

��2��rr�;rr�� =
1

2
�f��r − r����2 �


1,
2=1

N � � d� d��

���
1

* �x��
2

* �x���
1
�x��
2

�x��

− �
1

* �x��
2

* �x���
2
�x��
1

�x�� �18�

shows that ��2��rr� ;rr�� is invariant under the transformation
U. Equations �16� and �17� are simultaneous equations, and
the solutions yield the best PD within the set of PDs that are
calculated from Eq. �18�.

Our previous work is a proposal of a computational ap-
proach that deals with problems related to PD functional
theory �10�. The present scheme is also a computational ap-
proach, and further improves on the previous theory concern-
ing the search region of the PDs. In that sense, it would be
useful to consider a computational procedure for solving the
simultaneous equations �16� and �17�.

The procedure proposed here is similar to that of the
Hartree-Fock equation �37�. In order to make the computa-
tional procedure readily comprehensible, let us rewrite Eq.
�16� as

�F�r� − ̃����x� = G��x� �19�

with

F�r� =� dx1�f��r − r1���2�
�=1

N

����x1��2�4K

3
��2��rr1;rr1�1/3

+
e2

�r − r1�
+

1

N − 1
�vext�r� + vext�r1��� , �20�

G��x� =� dx1�f��r − r1���2��
�=1

N

��
*�x1����x1����x��

��4K

3
��2��rr1;rr1�1/3 +

e2

�r − r1�

+
1

N − 1
�vext�r� + vext�r1��� , �21�

where the spin orbital ���x� is the solution of Eq. �19�, and
should be determined in a self-consistent way. Here, note
that the right-hand side of Eq. �19� comes from the second
term of Eq. �18�, and explicitly depends on the spin orbital
���x�. The key point to get the self-consistent solution is that
spin orbitals of the previous iteration are used in calculating
F�r� and G��x� �37�. By solving simultaneously Eqs. �17�
and �19� with this technique, we can get a new set of spin
orbitals and energy parameters ̃�. We continue this proce-
dure until self-consistency for the solutions is accomplished
�37�.

At the end of this section, we shall give a brief comment
on the N-representability of the PDs that are given by Eq.
�18�. The necessary and sufficient conditions for PDs to be
N-representable have not yet been revealed. So it is accept-
able to carry out the variational calculations with some nec-
essary conditions imposed on the PDs, as in previous works
�38–43�. It can be confirmed that the PDs of Eq. �18� satisfy
four kinds of necessary conditions �44�. In this sense, we can
say that the PDs are “approximately N-representable” as in
the previous works �38–43�. Thus, it may be expected that
the PD obtained in the present scheme is not too bad. Fur-
ther, there is the possibility that the N-representability prob-
lem is reduced to the conditions imposed on the correlation
function. Indeed, for a two-particle system �N=2�, the PDs
of Eq. �18� become N-representable if the correlation func-
tion is chosen appropriately �29�. It is a future issue to reveal
what conditions should be imposed on the correlation func-
tion so as to allow the PDs for N-particle systems �N�3� be
N-representable.

IV. CONCLUDING REMARKS

In this paper, we propose the PD functional theory that
yields the best PD within the set of Jastrow wave function
PDs of the lowest order. Compared to the previous theory
�10,11�, the present one has the following features.

�1� The search region of the PDs is certainly larger than
that of the previous theory �10�. In addition to that, the re-
sultant PD is at least approximately N-representable. There-
fore, it may be expected that the appropriate PD is obtained
in the present scheme.

�2� Next we shall consider the present scheme from the
viewpoint of the total energy. If the correlation function is
chosen to be unity, then the present theory is reduced to the
previous one exactly. It has already been proved that the total
energy of the previous theory is better than that of the
Hartree-Fock approximation �11�. If the correlation function
is chosen most appropriately, then the search region is sub-
stantially equivalent to the set of PDs that are calculated by
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varying both the correlation function and spin orbitals in Eq.
�18�. Therefore, the total energy of the present scheme is
necessarily lower than in the previous one �10�, and, needless
to say, than that of the Hartree-Fock approximation.

�3� In addition to the above features, the present scheme
has a feature that deserves special emphasis. Due to the fact
that the PD functional theory is still a developing field, there
hardly exist any computational approaches so far. Our previ-
ous paper proposed a computational approach that addresses
both major problems of PD functional theory �10,11�. The
present scheme is also a computational approach. The result-
ant simultaneous equations are quite tractable, as were the
previous ones �10,11�. Also from such a viewpoint the
present scheme seems to be valuable.

The next step is to perform the actual calculations so as to
confirm to what extent the present scheme covers the
N-representable PDs.

Finally, we would like to comment on the future prospects
of the present theory. Although the present scheme utilizes
the lowest-order approximation of the expectation value of
the PD operator, the higher-order corrections can proceed
systematically with the aid of the Yvon-Mayer diagrams
�28,29�. Of course, it is anticipated that the equations
will become more complicated. But, from the methodologi-
cal point of view, it is important that the theoretical
framework has the potential to improve the approximation
systematically.
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