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Abstract

J. R. Holub introduced the concept of backward shift on Banach spaces. We
show that an infinite-dimensional function algebra does not admit a backward
shift. Moreover, we define a backward quasi-shift as a weak type of a back-
ward shift, and show that a function algebra A does not admit it, under the
assumption that the Choquet boundary of A has at most finitely many isolated
points.
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1. Introduction

Let H be an infinite-dimensional separable Hilbert space and T a bounded
linear operator on H. We call T a (forward) shift on H, if there is a complete
orthonormal system {en}∞n=1 in H such that Ten = en+1 for n = 1, 2, . . .. Also,
we call T a backward shift on H, if there is a complete orthonormal system
{en}∞n=1 such that Te1 = 0 and Ten = en−1 for n = 2, 3, . . .. In [5], R. M.
Crownover introduced a shift on a Banach space, as a generalization of a forward
shift on H. The isometric shifts on various function spaces have been studied
in [1], [6], [8], [14] and so on. In [10], J. R. Holub gave a similar generalization
for a backward shift, as follows:
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Definition. Let B be a Banach space and T a bounded linear operator on B.
We write kerT to denote the kernel {f ∈ B : Tf = 0}. We call T a backward
shift on B if T satisfies the following conditions:

(i) The dimension of kerT is 1.

(ii) The induced operator T̂ : f+kerT 7→ Tf from the quotient space B/ kerT
into B is an isometry.

(iii)
∪∞

n=1 kerTn is dense in B.

In this paper, we are concerned with this backward shift. Also, we say that T
is a backward quasi-shift on B, if T satisfies (i) and (ii) only.

Holub discussed the problem of the existence of backward shifts on various
function spaces. One of the spaces consists of continuous functions. Let X
be a compact Hausdorff space. By C(X), we denote the Banach space of all
continuous functions on X, equipped with the uniform norm. M. Rajagopalan
and K. Sundaresan proved that C(X) does not admit a backward shift if X is
infinite (The case that C(X) consists of real-valued functions was proved in [12]
and the complex-value case was in [13]). A further generalization was given by
M. Rajagopalan, T. M. Rassias and K. Sundaresan ([11]).

In this paper, we consider C(X) as the Banach algebra of all continuous
complex-valued functions on X, and deal with a function algebra as a general-
ization of C(X). Recall that a function algebra A on X is a uniformly closed
subalgebra of C(X) which contains the constants and separates the points of
X, that is, for each pair of distinct points x1, x2 ∈ X, there exists f ∈ A such
that f(x1) 6= f(x2). The book [3] is a good reference on function algebras. In
[2] and [7], J. Araujo and J. J. Font studied the finite-codimensional isometries
on function algebras.

The main result in this paper is the following:

Theorem 1.1. An infinite-dimensional function algebra does not admit a back-
ward shift.

This is a generalization of the Rajagopalan-Sundaresan theorem mentioned
above. Here the adjective “infinite-dimensional” is crucially necessary, because
a finite-dimensional space always admits a backward shift. Note that back-
ward shifts on finite-dimensional spaces are not surjective. On the other hand,
backward shifts on infinite-dimensional spaces are always surjective (see [12,
Proposition 1.2]).

We also prove the following theorem:

Theorem 1.2. Let A be a function algebra. Suppose that the Choquet bound-
ary of A has at most finitely many isolated points. Then A does not admit a
surjective backward quasi-shift.
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2. Lemmas

This section is devoted to the preparation for the proof of Theorems 1.1
and 1.2. Throughout this section, X is a compact Hausdorff space and A is a
function algebra on X. Also, we use the following notations: Let C be a set of
all complex numbers, and put T = {α ∈ C : |α| = 1}. For a normed linear space
S, we use the symbol ballS to denote the closed unit ball of S, and write S∗

for the dual space of S.
[Step 1] We first define a measure on X which is an extreme point of a

certain measure space.
Let M(X) denote the Banach space of all complex regular Borel measures

on X, with the total variation norm. A simple example of a measure in M(X)
is a point mass δp concentrated at p ∈ X. We know that ‖δp‖ = 1.

Now, we use δp to construct another measure. Take u ∈ C(X) and put
S(u) = {x ∈ X : u(x) 6= 0}. Choose distinct points p, q ∈ S(u). We put

kupq =
u(q)

|u(p)| + |u(q)|
,

and define a measure λupq on X by

λupq = kupqδp − kuqpδq.

Since |kupq| + |kuqp| = 1, it follows that

‖λupq‖ ≤ |kupq| ‖δp‖ + |kuqp| ‖δq‖ = 1.

We characterize the measure λupq, as follows:

Lemma 2.1. Let µ ∈M(X) and u ∈ C(X). Suppose that p and q are distinct
points in S(u). Then µ = λupq if and only if µ satisfies the following conditions:

µ({p}) = kupq, µ({q}) = −kuqp and ‖µ‖ ≤ 1. (2.1)

Moreover, ‖λupq‖ = 1 and |λupq|(X \ {p, q}) = 0.

Proof. It is clear that µ = λupq satisfies (2.1). For the “if” part, suppose that
µ satisfies (2.1). Then we have

0 ≤ |µ|(X \ {p, q}) = |µ|(X) − |µ|({p}) − |µ|({q})
= ‖µ‖ − |µ({p})| − |µ({q})|
= ‖µ‖ − |kupq| − |kuqp| = ‖µ‖ − 1 ≤ 0.

Thus we obtain
‖µ‖ = 1 and |µ|(X \ {p, q}) = 0.

Now let us show µ = λupq. Take a Borel set E in X arbitrarily. If p, q /∈ E,
then |µ(E)| ≤ |µ|(E) ≤ |µ|(X \ {p, q}) = 0, and hence µ(E) = 0 = λupq(E). If
p ∈ E and q /∈ E, then µ(E \ {p}) = 0, and so

µ(E) = µ(E \ {p}) + µ({p}) = kupq = λupq(E).
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If p /∈ E and q ∈ E, we can see µ(E) = λupq(E) similarly. Finally, if p, q ∈ E,
then µ(E \ {p, q}) = 0, and so

µ(E) = µ(E \ {p, q}) + µ({p}) + µ({q}) = kupq − kuqp = λupq(E).

In any case, we obtain µ(E) = λupq(E). All is proven.

For u ∈ C(X), we define a subspace M([u]⊥) of M(X) by

M([u]⊥) =
{
µ ∈M(X) :

∫
X

udµ = 0
}
.

Lemma 2.2. If u ∈ C(X), and if p and q are distinct points in S(u), then λupq

is an extreme point of ballM([u]⊥).

Proof. By Lemma 2.1, |λupq|(X \ {p, q}) = 0, and so∫
X

udλupq =
∫
{p,q}

udλupq = u(p)λupq({p}) + u(q)λupq({q})

= u(p)kupq − u(q)kuqp =
u(p)u(q)

|u(p)| + |u(q)|
− u(q)u(p)

|u(q)| + |u(p)|
= 0.

Hence λupq ∈M([u]⊥). Since ‖λupq‖ ≤ 1, we get λupq ∈ ballM([u]⊥).
Let us show that λupq is an extreme point of ballM([u]⊥). Assume that

λupq = tµ+ (1 − t)ν, (2.2)

where µ, ν ∈ ballM([u]⊥) and 0 < t < 1. We first observe the equations:

|µ({p})| + |µ({q})| = |ν({p})| + |ν({q})| = 1, (2.3)
argµ({p}) = arg ν({p}) and argµ({q}) = arg ν({q}). (2.4)

Indeed, we have

1 = |kupq| + |kuqp|
= |λupq({p})| + |λupq({q})|
=

∣∣tµ({p}) + (1 − t)ν({p})
∣∣ +

∣∣tµ({q}) + (1 − t)ν({q})
∣∣

≤ t|µ({p})| + (1 − t)|ν({p})| + t|µ({q})| + (1 − t)|ν({q})|
= t

(
|µ({p})| + |µ({q})|

)
+ (1 − t)

(
|ν({p})| + |ν({q})|

)
≤ t‖µ‖ + (1 − t)‖ν‖
≤ t+ (1 − t) = 1.

Thus all above inequalities become equalities. Note that the inequality in the
fourth line follows from the triangle inequality; |α+β| ≤ |α|+|β|, where equality
holds if and only if argα = arg β or αβ = 0. Hence we obtain (2.4). Moreover
the instance of equality in the last three lines implies (2.3).
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Next, we show that

u(p)µ({p}) + u(q)µ({q}) = u(p)ν({p}) + u(q)ν({q}) = 0. (2.5)

By (2.3), we have |µ|(X \ {p, q}) = |µ|(X) − |µ|({p}) − |µ|({q}) = ‖µ‖ − 1 ≤ 0,
and so

0 =
∫

X

udµ =
∫
{p,q}

udµ = u(p)µ({p}) + u(q)µ({q}).

Similarly, we get u(p)ν({p}) + u(q)ν({q}) = 0.
By (2.5), µ({q}) = −(u(p)/u(q))µ({p}). Inserting this into (2.3) gives

|µ({p})| =
|u(q)|

|u(p)| + |u(q)|
= |kupq|.

In the same way, we get |ν({p})| = |kupq|. Hence |µ({p})| = |ν({p})|. Combining
with the first equation in (2.4), we obtain µ({p}) = ν({p}). Hence (2.2) leads
to µ({p}) = ν({p}) = λupq({p}) = kupq. By a similar argument, we can see
that µ({q}) = ν({q}) = λupq({q}) = −kuqp. Here we recall that ‖µ‖ ≤ 1
and ‖ν‖ ≤ 1. By Lemma 2.1, we obtain µ = ν = λupq. Thus (2.2) implies
λupq = µ = ν, and hence λupq is an extreme point.

[Step 2] We here summarize our tools about the Choquet boundary of a
function algebra.

Let ϕ ∈ A∗. The Hahn-Banach theorem and the Riesz representation theo-
rem guarantee the existence of a measure µ ∈M(X) such that

ϕ(f) =
∫

X

fdµ for all f ∈ A and ‖ϕ‖ = ‖µ‖.

Such a µ is called a representing measure for ϕ. We should note that a repre-
senting measure for ϕ is not always determined uniquely.

For each p ∈ X, an evaluation functional τp on A is defined by τp(f) = f(p)
for all f ∈ A. We know that τp ∈ A∗ and ‖τp‖ = τp(1) = 1. Also, we easily
see that the point mass δp is one of the representing measures for τp. We recall
that the Choquet boundary of A, which is denoted by Ch(A), is the set of all
p ∈ X such that δp is the only representing measure for τp.

The next lemma seems to be known:

Lemma 2.3. Let ϕ ∈ ballA∗. Then ϕ is an extreme point of ballA∗ if and
only if there exist p ∈ Ch(A) and α ∈ T such that ϕ = ατp.

Sketch of proof. To prove the “if” part, it suffices to show that for p ∈ Ch(A),
τp is an extreme point of ballA∗. Assume that τp = tϕ + (1 − t)ψ, where
ϕ,ψ ∈ ballA∗ and 0 < t < 1. Let µ and ν be representing measures for ϕ and
ψ, respectively. Then the measure tµ + (1 − t)ν is a representing measure for
τp, and so tµ + (1 − t)ν = δp. By [4, Theorem V.8.4], we see that µ = ν = δp,
and hence ϕ = ψ = τp.
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For the “only if” part, let ϕ be an extreme point of ballA∗. Using the
method in [9, Page 145], we can find p ∈ X and α ∈ T such that ϕ = ατp. Here,
we easily see that τp is an extreme point of the set {ϕ ∈ A∗ : ‖ϕ‖ = ϕ(1) = 1}.
Hence it follows from [3, Theorem 2.2.8] that p ∈ Ch(A).

There is another characterization of Ch(A); the Bishop-deLueew theorem,
which states: A point p ∈ X belongs to Ch(A) if and only if for each neighbor-
hood U of p and for each ε > 0, there exists g ∈ ballA such that g(p) > 1 − ε
and |g(x)| < ε for all x ∈ X \ U (see [3, Theorem 2.3.4]).

Lemma 2.4. Let p be an isolated point of Ch(A). Then there exists f ∈ A such
that f(p) = 1 and f(x) = 1 for all x ∈ Ch(A) \ {p}.

Proof. Since p is isolated in Ch(A), we find a neighborhood U of p in X so
that U ∩ Ch(A) = {p}. Then the Bishop-deLueew theorem gives a sequence of
functions {fn} ⊂ ballA such that fn(p) > 1 − 1/2n and |fn(x)| < 1/2n for all
x ∈ X \ U . This sequence satisfies sup{|fm(x) − fn(x)| : x ∈ Ch(A)} ≤ 1/2n−1

whenever m > n. Since ‖f‖ = sup{|f(x)| : x ∈ Ch(A)} for all f ∈ A, it
follows that {fn} is a Cauchy sequence in A. By the completeness of A, there
exists f ∈ A such that ‖fn − f‖ → 0. This function f must have the desired
properties.

Lemma 2.5. Let p and q be distinct points in Ch(A), and let α, β ∈ T. Then
for each neighborhood W of {p, q} and each ε > 0, there exists f ∈ ballA such
that |f(p) − α| < ε, |f(q) − β| < ε and |f(x)| < ε for all x ∈ X \W .

Proof. Choose disjoint open sets U and V so that p ∈ U ⊂W , q ∈ V ⊂W . By
the Bishop-deLeeuw theorem, there exist g, h ∈ ballA such that

g(p) > 1 − ε and |g(x)| < ε for x ∈ X \ U,
h(q) > 1 − ε and |h(x)| < ε for x ∈ X \ V .

Then we have

|αg(x) + βh(x)| ≤

{
‖g‖ + |h(x)| ≤ 1 + ε if x ∈ U ,
|g(x)| + ‖h‖ ≤ ε+ 1 if x ∈ X \ U .

Now, we define a function f ∈ ballA by f = (αg + βh)/(1 + ε). Then we have
|f(p) − α| < 3ε/(1 + ε), because

|f(p) − α| =
∣∣∣∣ (αg(p) + βh(p)) − α(1 + ε)

1 + ε

∣∣∣∣
≤ |α| |g(p) − 1| + |β| |h(p)| + |α|ε

1 + ε
<

3ε
1 + ε

.

Similarly, we obtain |f(q) − β| < 3ε/(1 + ε). Furthermore, if x ∈ X \W , then
|g(x)| < ε and |h(x)| < ε, so that |f(x)| < 2ε/(1 + ε). Finally, we only have to
arrange a positive number ε to find the desired function f .
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[Step 3] Let us consider the functional on A that is represented by the
measure λupq. For each u ∈ A and for each pair of distinct points p, q ∈ S(u),
we define the bounded linear functional θupq on A by

θupq = kupqτp − kuqpτq,

where the constants kupq, kuqp are defined in Step 1, and τp, τq are the evaluation
functional defined in Step 2.

Lemma 2.6. Let u ∈ A, and let p and q be distinct points in S(u) ∩ Ch(A).
Then

(i) For each neighborhood W of {p, q} and each ε > 0, there exists f ∈ ballA
such that |θupq(f)| > 1 − ε and |f(x)| < ε for all x ∈ X \W .

(ii) ‖θupq‖ = 1.

Proof. To see (i), take α = |u(q)|/u(q) and β = −|u(p)|/u(p) in Lemma 2.5.
Then the resulting function f in ballA satisfies |f(x)| < ε for all x ∈ X \W . It
also satisfies |f(p) − α| < ε and |f(q) − β| < ε, so that

1 − |θupq(f)| ≤ |θupq(f) − 1| = |kupqf(p) − kuqpf(q) − (|kupq| + |kuqp|)|
= |kupqf(p) − kuqpf(q) − kupqα+ kuqpβ|
≤ |kupq| |f(p) − α| + |kuqp| |f(q) − β|
< |kupq|ε+ |kuqp|ε = ε.

Thus (i) is proved.
For (ii), note that ‖θupq‖ ≤ |kupq| ‖τp‖ + |kuqp| ‖τq‖ = |kupq| + |kuqp| = 1.

Also, the function f in (i) satisfies ‖θupq‖ ≥ |θupq(f)| > 1 − ε. Since ε is
arbitrary, we get ‖θupq‖ ≥ 1.

Lemma 2.7. Let u ∈ A, and let p and q be distinct points in S(u) ∩ Ch(A).
Then λupq is the only representing measure for θupq.

Proof. For any f ∈ A, we have

θupq(f) = kupqτp(f) − kuqpτq(f) = kupq

∫
X

fdδp − kuqp

∫
X

fdδq =
∫

X

fdλupq.

Also, Lemma 2.6 (ii) and Lemma 2.1 yield ‖θupq‖ = 1 = ‖λupq‖. Therefore,
λupq is a representing measure for θupq.

Let us show the uniqueness of λupq. Let µ be another representing measure
for θupq. For each neighborhood W of {p, q} and each ε > 0, Lemma 2.6 (i)
gives a function f ∈ ballA such that |θupq(f)| > 1 − ε and |f(x)| < ε for all
x ∈ X \W . Then we have

1 − ε < |θupq(f)| =
∣∣∣∣∫

X

fdµ

∣∣∣∣ ≤ ∣∣∣∣∫
W

fdµ

∣∣∣∣ +

∣∣∣∣∣
∫

X\W

fdµ

∣∣∣∣∣
≤ ‖f‖ |µ|(W ) + ε|µ|(X \W ) ≤ |µ|(W ) + ε(1 − |µ|(W ))
= (1 − ε)|µ|(W ) + ε,
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so that
|µ|(W ) ≥ 1 − 2ε

1 − ε
.

Letting ε→ 0, we get |µ|(W ) ≥ 1, and the regularity of µ forces |µ|({p, q}) = 1.
Since |µ|(X) = ‖µ‖ = ‖θupq‖ = 1, it follows that |µ|(X \ {p, q}) = 0. Hence, for
each f ∈ A, we have

kupqf(p) − kuqpf(q) = θupq(f) =
∫

X

fdµ =
∫
{p,q}

fdµ

= f(p)µ({p}) + f(q)µ({q}).

Taking f ∈ A so that f(p) = 1 and f(q) = 0, we obtain kupq = µ({p}). While,
taking f so that f(p) = 0 and f(q) = 1 yields −kuqp = µ({q}). Moreover, we
know ‖µ‖ = 1. Finally, we appeal to Lemma 2.1 to get µ = λupq.

[Step 4] In this step, we show the functional version of Lemma 2.2. For
u ∈ A, we put

[u] = {αu : α ∈ C}

and
[u]⊥ = {ϕ ∈ A∗ : ϕ(u) = 0}.

Lemma 2.8. If u ∈ A, and if p and q are distinct points in S(u)∩Ch(A), then
θupq is an extreme point of ball[u]⊥.

Proof. Since

θupq(u) = kupqτp(u) − kuqpτq(u) =
u(q)u(p)

|u(p)| + |u(q)|
− u(p)u(q)

|u(q)| + |u(p)|
= 0,

it follows θupq ∈ [u]⊥. Combining with Lemma 2.6 (ii), we get θupq ∈ ball[u]⊥.
Next, we show that θupq is an extreme point of ball[u]⊥. Assume that

θupq = tϕ+ (1 − t)ψ,

where ϕ,ψ ∈ ball[u]⊥ and 0 < t < 1. Take representing measures µ and ν for ϕ
and ψ, respectively. Put λ = tµ+ (1 − t)ν. Then for any f ∈ A, we have∫

X

fdλ = t

∫
X

fdµ+ (1 − t)
∫

X

fdν = tϕ(f) + (1 − t)ψ(f) = θupq(f).

This implies

|θupq(f)| =
∣∣∣∣∫

X

fdλ

∣∣∣∣ ≤ ∫
X

|f |d|λ| ≤ ‖f‖ ‖λ‖,

and so ‖θupq‖ ≤ ‖λ‖. Also, ‖µ‖ = ‖ϕ‖ ≤ 1 and ‖ν‖ = ‖ψ‖ ≤ 1, and hence

‖λ‖ ≤ t‖µ‖ + (1 − t)‖ν‖ ≤ 1 = ‖θupq‖.
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Therefore, ‖θupq‖ = ‖λ‖. As a consequence, λ is a representing measure for
θupq, and Lemma 2.7 shows that λ = λupq. Thus we obtain

λupq = tµ+ (1 − t)ν. (2.6)

Since ϕ and ψ belong to [u]⊥, it follows that∫
X

udµ = ϕ(u) = 0 and
∫

X

udν = ψ(u) = 0.

Hence µ, ν ∈ ballM([u]⊥). Recall from Lemma 2.2 that λupq is an extreme
point of ballM([u]⊥). Then (2.6) leads to λupq = µ = ν. Thus we have

θupq(f) =
∫

X

fdλupq =
∫

X

fdµ = ϕ(f)

for all f ∈ A, that is, θupq = ϕ. Similarly, we get θupq = ψ. We reach the
desired equation θupq = ϕ = ψ.

[Step 5] In this step, we investigate the distance ‖ϕ−ψ‖ for ϕ,ψ ∈ ballA∗.

Lemma 2.9. If p and q are distinct points in Ch(A) and if α, β ∈ T, then

‖ατp − βτq‖ = 2.

Proof. It is clear that ‖ατp − βτq‖ ≤ 2. For the reverse inequality, take ε > 0.
Lemma 2.5 gives a function f ∈ ballA such that |f(p)−α| < ε and |f(q)+β| < ε.
Then we have

2 − |ατp(f) − βτq(f)| ≤ |ατp(f) − βτq(f) − 2|
= |α(f(p) − α) − β(f(q) + β)|
≤ |α| |f(p) − α| + |β| |f(q) + β| < ε+ ε = 2ε.

Therefore, ‖ατp − βτq‖ ≥ |ατp(f) − βτq(f)| > 2 − 2ε. Since ε is arbitrary, we
get ‖ατp − βτq‖ ≥ 2.

Lemma 2.10. Let u ∈ A. If the set S(u)∩Ch(A) contains at least three distinct
points, then there exist extreme points ϕ and ψ of ball[u]⊥ such that

(i) ‖ϕ− ψ‖ < 2, and

(ii) ϕ and ψ are linearly independent.

Proof. By hypothesis, we find three distinct points p, q and r in S(u) ∩Ch(A).
Then we may assume that

arg u(p) 6= arg(−u(q)). (2.7)

For, if there exist no such points p and q, then three equations

arg u(p) = arg(−u(q)), arg u(q) = arg(−u(r)) and arg u(r) = arg(−u(p))
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hold simultaneously, which is impossible. Now, put ϕ = θupr and ψ = θuqr. By
Lemma 2.8, ϕ and ψ are extreme points of ball[u]⊥.

Let us show (i). By (2.7),

arg kurp 6= arg(−kurq).

Therefore, the triangle inequality |kurp − kurq| < |kurp| + |kurq| holds strictly.
Hence we have

‖ϕ− ψ‖ = ‖θupr − θuqr‖ = ‖(kuprτp − kurpτr) − (kuqrτq − kurqτr)‖
= ‖kuprτp − (kurp − kurq)τr − kuqrτq‖
≤ |kupr| + |kurp − kurq| + |kuqr|
< |kupr| + |kurp| + |kurq| + |kuqr| = 2.

To verify (ii), assume αϕ + βψ = 0 and α, β ∈ C. Then, for any f ∈ A, we
have

0 = αϕ(f) + βψ(f) = α
(
kuprτp(f) − kurpτr(f)

)
+ β

(
kuqrτq(f) − kurqτr(f)

)
= αkuprf(p) − (αkurp + βkurq)f(r) + βkuqrf(q).

Taking f ∈ A so that f(p) = 1 and f(q) = f(r) = 0, we have 0 = αkupr.
Noting kupr 6= 0, we get α = 0. On the other hand, if we take f ∈ A so that
f(q) = 1 and f(p) = f(r) = 0, then we get β = 0. Thus ϕ and ψ are linearly
independent.

[Step 6] The preceding two lemmas yield the following lemma:

Lemma 2.11. Let u ∈ A. If the set S(u)∩Ch(A) contains at least three distinct
points, then [u]⊥ is not linearly isometric to A∗.

Proof. Assume that [u]⊥ is linearly isometric to A∗. Then there is a linear
isometry T of [u]⊥ onto A∗. Consider extreme points ϕ and ψ of ball[u]⊥

described in Lemma 2.10. Then Tϕ and Tψ become extreme points of ballA∗.
Hence Lemma 2.3 shows Tϕ = ατp and Tψ = βτq, where p, q ∈ Ch(A) and
α, β ∈ T.

If p 6= q, Lemma 2.9 implies that ‖Tϕ− Tψ‖ = ‖ατp − βτq‖ = 2. Since T is
an isometry, ‖ϕ− ψ‖ = 2, which contradicts the condition (i) in Lemma 2.10.

On the other hand, if p = q, then we have

T (βϕ− αψ) = βTϕ− αTψ = βατp − αβτq = αβ(τp − τp) = 0.

Since T is injective, it follows that βϕ − αψ = 0. Note that α, β 6= 0. This
contradicts the linear independence of ϕ and ψ from Lemma 2.10 (ii). Conse-
quently, [u]⊥ is not linearly isometric to A∗.

[Step 7] Let us consider a backward quasi-shift on A.

Lemma 2.12. Suppose that there exists a surjective backward quasi-shift T on
A. If f ∈

∪∞
n=1 kerTn, then S(f) ∩ Ch(A) is a finite set. In particular, if

kerT = [u], then S(u) ∩ Ch(A) is finite.
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Proof. Since kerT is one-dimensional, we can write kerT = [u], where u ∈ A
and u 6= 0. Since the induced operator T̂ : f + [u] 7→ Tf is a linear isometry
from A/[u] onto A, the adjoint operator T̂ ∗ is a linear isometry from A∗ onto
(A/[u])∗. Note that (A/[u])∗ is linearly isometric to [u]⊥, via the linear isometry
σ : (A/[u])∗ → [u]⊥ defined by (σ(Φ))(f) = Φ(f + [u]) for all f ∈ A and
Φ ∈ (A/[u])∗. Thus we have

((σ ◦ T̂ ∗)ϕ)(f) = (σ(T̂ ∗ϕ))(f) = (T̂ ∗ϕ)(f + [u])

= ϕ
(
T̂ (f + [u])

)
= ϕ(Tf) = (T ∗ϕ)(f)

for all f ∈ A and ϕ ∈ A∗. Hence σ ◦ T̂ ∗ = T ∗, and so T ∗ is a linear isometry
from A∗ onto [u]⊥.

Once we have seen that [u]⊥ is linearly isometric to A∗, Lemma 2.11 says that
the number of elements of S(u)∩Ch(A) is less than 2. Of course, S(u)∩Ch(A)
is finite.

To prove the lemma, we show the following assertion for all n = 1, 2, . . .:

If f ∈ kerTn, then S(f) ∩ Ch(A) is a finite set. (2.8)

We adopt an induction on n.
First, consider the case n = 1. If f ∈ kerT = [u], then f = αu for some

α ∈ C. Hence

S(f) ∩ Ch(A) = S(αu) ∩ Ch(A) ⊂ S(u) ∩ Ch(A).

Since S(u)∩Ch(A) is finite, so is S(f)∩Ch(A). Thus (2.8) is true when n = 1.
For the inductive step, assume that (2.8) is valid for some n. We must show

that if f ∈ kerTn+1, then S(f)∩Ch(A) is finite. Put g = Tf . Then g ∈ kerTn,
and the assumption (2.8) implies that S(g) ∩ Ch(A) is finite.

Consider the set P of all p ∈ Ch(A) such that there exist q ∈ S(g) ∩ Ch(A)
and α ∈ T satisfying T ∗(ατq) = τp. We know that for each p ∈ P , the pair (q, α)
as above is uniquely determined, because T ∗ is injective. Thus we can define
the map π : P → S(g) ∩ Ch(A) by π(p) = q, where p ∈ P , q ∈ S(g) ∩ Ch(A),
α ∈ T and T ∗(ατq) = τp. Let us show that π is injective. If not, there exist
p, p′ ∈ P such that π(p) = π(p′) (= q). Then T ∗(ατq) = τp and T ∗(α′τq) = τp′

for some α, α′ ∈ T. Take a function f so that f(p) = 1 and f(p′) = 0. Then we
have

1 = f(p) = τp(f) = (T ∗(ατq))(f)

=
α

α′ (T
∗(α′τq′))(f) =

α

α′ τp′(f) =
α

α′ f(p′) = 0,

which is a contradiction. Hence π : P → S(g) ∩ Ch(A) is injective, and so the
number of the elements of P is less than that of the elements of S(g) ∩ Ch(A).
Since S(g) ∩ Ch(A) is finite, so is P .

Next, we show the inclusion:

S(f) ∩ Ch(A) ⊂ (S(u) ∩ Ch(A)) ∪ P. (2.9)
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For this, it suffices to show that if p ∈ S(f) ∩ Ch(A) and if p /∈ S(u), then
p ∈ P . Since p /∈ S(u), τp(u) = u(p) = 0, and so τp ∈ [u]⊥. Using Lemma
2.3, we easily see that τp is an extreme point of ball[u]⊥. Since T ∗ is a linear
isometry from A∗ onto [u]⊥, we find an extreme point ϕ of ballA∗ such that
T ∗ϕ = τp, and Lemma 2.3 gives the form ϕ = ατq, where q ∈ Ch(A) and α ∈ T.
Thus T ∗(ατq) = τp. Also, p ∈ S(f) implies

αg(q) = ατq(g) = (ατq)(Tf) = (T ∗(ατq))(f) = τp(f) = f(p) 6= 0,

and so q ∈ S(g). Thus we arrive at p ∈ P , and the inclusion (2.9) is established.
We now know that both S(u) ∩ Ch(A) and P are finite. Therefore, (2.9)

implies that S(f) ∩ Ch(A) is finite. This accomplishes the inductive step and
completes the proof.

3. Proofs of Theorems

We are now in a position to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let A be an infinite-dimensional function algebra on a
compact Hausdorff space X. The linear space {f |Ch(A) : f ∈ A} is isomorphic
to A, and it is also infinite-dimensional. Hence Ch(A) must have infinitely many
points. Thus the compact set X contains an accumulation point p of Ch(A).
In other words, there exists a net {pi} consisting of infinitely many points of
Ch(A) such that {pi} converges to p.

Now, assume that there exists a backward shift T on A. From the comment
in Introduction, we know that T is a surjective backward quasi-shift on A. Take
f ∈

∪∞
n=1 kerTn arbitrarily. By Lemma 2.12, the set S(f)∩Ch(A) is finite. So,

we may assume that {pi} ⊂ Ch(A) \ S(f). Then, for each i, we have f(pi) = 0,
and the continuity of f shows that f(p) = 0. Thus we have

‖1 − f‖ ≥ |1 − f(p)| = 1.

Since this holds for all f ∈
∪∞

n=1 kerTn, the constant function 1 cannot lie in the
closure of

∪∞
n=1 kerTn. Hence,

∪∞
n=1 kerTn is not dense in A. This contradicts

the fact that T is a backward shift, and the theorem is proved.

Proof of Theorem 1.2. Assume that there exists a surjective backward quasi-
shift T on A. Since kerT is one-dimensional, we can write kerT = [u], where
u ∈ A and u 6= 0. Note that S(u) is open in X and that S(u) ∩ Ch(A) is finite
by Lemma 2.12. We see that all points in S(u) ∩ Ch(A) are isolated points of
Ch(A). While, u 6= 0 implies that S(u)∩Ch(A) is non-empty. As a consequence,
there exists at least one isolated point of Ch(A).

Now, let m be the number of isolated points of Ch(A). We show that
the dimension of kerTm+1 is less than m. Write down all isolated points of
Ch(A) as p1, . . . , pm. For each j = 1, . . . ,m, Lemma 2.4 gives us a function
fj ∈ A such that fj(pj) = 1 and fj(x) = 0 for all x ∈ Ch(A) \ {pj}. Pick
f ∈ kerTm+1 arbitrarily. By Lemma 2.12, S(f) ∩ Ch(A) is finite, and so we
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again see that all points in S(f) ∩ Ch(A) are isolated points of Ch(A), that is,
S(f)∩Ch(A) ⊂ {p1, . . . , pm}. Hence, if we put αj = f(pj) for each j = 1, . . . ,m,
then

f |Ch(A) = α1f1|Ch(A) + · · · + αmfm|Ch(A)

= (α1f1 + · · · + αmfm)|Ch(A),

which implies f = α1f1 + · · · + αmfm. Thus every f ∈ kerTm+1 is written
as a linear combination of f1, . . . , fm, and we conclude that the dimension of
kerTm+1 is less than m.

Now note that

[u] = kerT ⊂ kerT 2 ⊂ · · · ⊂ kerTm ⊂ kerTm+1.

As a consequence of the preceding paragraph, we must have kerTN = kerTN+1

for some N ∈ {0, 1, . . . ,m}. Since TN , like T , is surjective, we find h ∈ A with
TNh = u. Then TN+1h = T (TNh) = Tu = 0 and so h ∈ kerTN+1 = kerTN .
Hence u = TNh = 0, a contradiction.

4. Examples

In this section, we exhibit three examples related with Theorems 1.1 and
1.2. The first is an example of a surjective backward quasi-shift which is not a
backward shift.

Example 4.1. Let c denote the Banach algebra of all convergent sequences with
the supremum norm. Define an operator T on c by (x1, x2, . . .) 7→ (x2, x3, . . .).
It is easily seen that T is a surjective backward quasi-shift on c. However, T is
not a backward shift, because it does not satisfy (iii). Next, we identify c with
C(X), where X is the one-point compactification of the natural numbers. Thus
we know that C(X) can admit a surjective backward quasi-shift, for some X.

The next example deals with the L∞-spaces.

Example 4.2. Let L∞(Ω, µ) be the Banach algebra of essentially bounded mea-
surable functions on a finite measure space (Ω, µ), with the essential supremum
norm. It is well known that L∞(Ω, µ) is isometrically isomorphic to C(X), where
X is the maximal ideal space of L∞(Ω, µ). If the measure µ has at most finitely
many atoms, then X has at most finitely many isolated points, and so Theorem
1.2 shows that L∞(Ω, µ) does not admit a surjective backward quasi-shift.

In the last example, we discuss the question whether the disc algebra admits
an isometric shift or a backward shift.

Example 4.3. Let A(D) be the disc algebra, that is, the function algebra of
all continuous functions on the closed unit disc which are analytic in the open
unit disc. The isometric shifts on A(D) are characterized by T. Takayama and
J. Wada [14]. A typical example of it is the multiplication operator T :

(Tf)(z) = zf(z) for all z and f ∈ A(D).
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This example suggests to us that the following operator T may be a backward
shift:

(Tf)(z) =

{
f(z)−f(0)

z if z 6= 0,
f ′(0) if z = 0,

for all f ∈ A(D).

It is easy to see that T is surjective and satisfies the conditions (i) and (iii)
in the definition of backward shift. But T is not a backward shift. Indeed, T
does not satisfy (ii), because kerT is the subspace of constant functions, and
the function f(z) = z2 + z satisfies that

inf{‖f + g‖ : g ∈ kerT} ≤
∥∥∥∥f − 1

2

∥∥∥∥ =

√
27
8
< 2 = ‖Tf‖.

Moreover, Theorem 1.2 implies that A(D) does not admit a surjective backward
quasi-shift, because Ch(A(D)) is the unit circle T which has no isolated points.
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