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Abstract

We will consider structures of Terwilliger algebras of direct and wreath prod-
ucts of association schemes. In general, it is difficult to determine the struc-
ture of the Terwilliger algebras though they are known to be semisimple
C-algebras. But, we get the structure of Terwilliger algebras of these cases
under some assumptions.
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1. Introduction

The Terwilliger algebra is a new algebraic tool for the study of associa-
tion schemes, introduced by Terwilliger in 1992 [6], [7] and [8]. In a sense,
Terwilliger algebras can contain combinatorial information more than adja-
cency algebras. However, we don’t know general theory for the structure of
Terwilliger algebras. In general, it is difficult to determine irreducible rep-
resentations of Terwilliger algebras although the algebras are known to be
semisimple over the complex number field.

In [2], Bhattacharyya et al. determined the structure of Terwilliger alge-
bras of repeated wreath products of class-one schemes. They computed all
irreducible representations concretely. In this article, we will determine all
irreducible representations of wrath products of arbitrary schemes by class-
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one schemes or thin schemes using information of smaller schemes. The main
result in [2] is obtained by repeating our result.

2. Association schemes and Terwilliger algebras

Let X be a finite set, S a collection of non-empty subsets of X ×X. We
say that (X,S) is an association scheme if the following conditions hold:

(1)
⋃
s∈S s = X ×X and s ∩ t = ∅ if s 6= t.

(2) Put 1 = {(x, x) | x ∈ X}. Then, 1 ∈ S.

(3) For s ∈ S, put s∗ = {(y, x) | (x, y) ∈ s} ∈ S. Then s∗ ∈ S.

(4) For all s, t, u ∈ S and all x, y ∈ X,

pust = ]{z ∈ X | (x, z) ∈ s, (z, y) ∈ t}

is constant whenever (x, y) ∈ u.

We call p1
ss∗ the valency of S and write it by ns.

Let (X,S) denote an association scheme. Let MX(C) denote a C-algebra
of matrices with complex entries, where the rows and columns are indexed
by elements in X. For s ∈ S, let σs denote the matrix in MX(C) that has
entries

(σs)xy =

{
1 if (x, y) ∈ s,
0 otherwise.

We call σs the adjacency matrix of s ∈ S.
Then

⊕
s∈S Cσs becomes a subalgebra of MX(C) by the condition (4).

We call
⊕

s∈S Cσs the adjacency algebra of S, and write it by A (S).

Definition 2.1 (thin scheme). Let G is a finite group. For each g ∈ G, put
sg = {(α, β) ∈ G×G | α−1β = g}. Then (G, {sg | g ∈ G}) is an association
scheme. We call this a thin scheme.

Definition 2.2 (class-one scheme). Let X is finite set. We define relations
1 = {(x, x) | x ∈ X} and t = {(x, y) | x 6= y}. Then (X, {1, t}) is an
association scheme. We call this a class-one scheme.

Let (X,S) be an association scheme. For U ⊂ X, we denote by εU the
diagonal matrix in MX(C) with entries (εU)xx = 1 if x ∈ U and (εU)xx = 0
otherwise.
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The Terwilliger algebra of (X,S) with respect to x0 ∈ X is defined as a
subalgebra of MX(C) generated by {σs | s ∈ S} ∪ {εx0s | s ∈ S} (see [6],[7],
and [8]). The Terwilliger algebra will be denoted by T (X,S, x0) or T (S)
briefly. Since A (S) and T (S) are closed under transposed conjugate, they
are semisimple C-algebras. The set of irreducible characters of T (S) and
A (S) will be denoted by Irr(T (S)) and Irr(A (S)), respectively. The trivial
character 1A (S) of A (S) is a map σs 7→ ns and the corresponding central
primitive idempotent is |X|−1JX , where JX is the all-one matrix. The trivial
character 1T (S) of T (S) corresponds to the central primitive idempotent∑

s∈S n
−1
s εx0sJXεx0s of T (S). For χ ∈ Irr(A (S)) or Irr(T (S)), eχ will be

the corresponding central primitive idempotent of A (S) or T (S).
For Y ⊂ X and s ∈ S, set

sY = s ∩ (Y × Y )

and set
SY = {sY | s ∈ S, sY 6= ∅}.

In general, (Y, SY ) is not necessary an association scheme. When (Y, SY )
is an association scheme, we say that Y induces an association scheme
(Y, SY ).

3. Terwilliger algebras of direct products

Let (X,S) and (Y, T ) be association schemes. We will consider the direct
product (X × Y, S × T ) of (X,S) and (Y, T ) (for example, see [5]). The
adjacency matrix of (s, t) ∈ S×T is given by the Kronecker product σs⊗σt.

We fix x0 ∈ X and y0 ∈ Y and consider the Terwilliger algebras of
(X,S) and (Y, T ) with respect to x0 and y0, respectively. We will determine
the structure of the Terwilliger algebra of (X × Y, S × T ) with respect to
(x0, y0).

Theorem 3.1. We have

T (X × Y, S × T, (x0, y0)) ∼= T (X,S, x0)
⊗
C

T (Y, T, y0).

Proof. First we confirm notation. We will consider T (S × T ) ⊂ MX×Y (C)
and T (S) ⊗C T (T ) ⊂ MX(C) ⊗C MY (C) ∼= MX×Y (C). We will identify
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MX×Y (C) with MX(C)⊗CMY (C) by the natural way and prove that T (S×
T ) = T (S)⊗C T (T ).

For (s, t) ∈ S × T , σ(s,t) = σs ⊗ σt ∈ T (S)⊗C T (T ). For (s, t) ∈ S × T ,
ε(x0,y0)(s,t) = εx0s×y0t = εx0s ⊗ εy0t ∈ T (S) ⊗C T (T ). Since T (S × T )
and T (S)⊗C T (T ) are algebras and T (S × T ) is generated by σ(s,t)’s and
ε(x0,y0)(s,t)’s, we can say that T (S × T ) ⊂ T (S)⊗C T (T ).

For s ∈ S,
σs ⊗ IY = σ(s,1) ∈ T (S × T )

and

εx0s ⊗ IY = εx0s×Y =
∑
t∈T

εx0s×y0t =
∑
t∈T

εx0s ⊗ εy0t ∈ T (S × T ).

Now, for an arbitrary α ∈ T (S), α ⊗ IY ∈ T (S × T ). Similarly, for
an arbitrary β ∈ T (T ), IX ⊗ β ∈ T (S × T ). So α ⊗ β = (α ⊗ β) = (α ⊗
IY )(IX ⊗β) ∈ T (S×T ). We can say that T (S)⊗C T (T ) ⊂ T (S×T ).

4. Wreath products

Let (X,S) and (Y, T ) be association schemes. For s ∈ S, set s̃ =
{((x, y), (x′, y)) | (x, x′) ∈ s, y ∈ Y }. For t ∈ T , set t̄ = {((x, y), (x′, y′)) |
x, x′ ∈ X, (y, y′) ∈ t}. Also set S o T = {s̃ | s ∈ S} ∪ {t̄ | t ∈ T \ {1}}.
Then (X × Y, S o T ) is an association scheme and called the wreath product
of (X,S) by (Y, T ) (see [5]). For the adjacency matrices, we have

σs̃ = σs ⊗ IY , σt̄ = JX ⊗ σt
where IY is the identity matrix and JX is the all-one matrix. We fix x0 ∈ X
and y0 ∈ Y . Note that

(x0, y0)s̃ = (x0s, y0) = {(x, y0) | x ∈ x0s},
(x0, y0)t̄ = (X, y0t) = {(x, y) | x ∈ X, y ∈ y0t}

and

ε(x0,y0)s̃ = εx0s ⊗ εy01,

ε(x0,y0)t̄ =
∑

s∈S εx0s ⊗ εy0t = IX ⊗ εy0t.

The structure of Terwilliger algebras of wreath products of association
schemes was studied in [2]. We will give a generalization of their results.
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4.1. Central primitive idempotents

Let (X,S) and (Y, T ) be association schemes. Fix x0 ∈ X and y0 ∈ Y
and consider the wreath product (X × Y, S o T ). In the rest of this section,
we assume that (Y, T ) is a thin scheme or a class-one scheme. Set F (t) =
(x0, y0)t̄ = (X, y0t) and U (t) = (S o T )(x0,y0)t̄ for t ∈ T . If (Y, T ) is a thin
scheme, then (F (t), U (t)) is naturally isomorphic to (X,S) for every t ∈ T .
If (Y, T ) is a class-one scheme, then (F (1), U (1)) is naturally isomorphic to
(X,S) and (F (t), U (t)) is isomorphic to the wreath product of (X,S) by the
class-one scheme (Y ′, T ′) where Y ′ = Y − {y0}. So, for both cases, F (t)

induces an association scheme for every t ∈ T .
For χ ∈ Irr(T (U (1))) \ {1T (U(1))}, set

ẽχ = eχ ⊗ ε{y0} ∈ T (S o T ).

Then clearly ẽχ is an idempotent of T (S o T ).
For t ∈ T \ {1} and ϕ ∈ Irr(A (U (t))) \ {1A (U(t))}, we will determine an

idempotent. If (Y, T ) is thin, then we put ēϕ = eϕ ⊗ εy0t and this is an
idempotent of T (S o T ). Suppose that (Y, T ) is a class-one scheme. Then
U (t) is a wreath product of S and a class-one scheme. By [3] and [5], we can
determine the set of all central primitive idempotents of U (t). It is given by

{eµ ⊗ εy0t | µ ∈ Irr(A (S)) \ {1A (S)}} ∪ {|X|−1JX ⊗ eν | ν ∈ Irr(A (T ′))}.

Naturally, we can see that they are idempotents of T (S o T ). So we can
define an idempotent ēϕ of T (S o T ) for ϕ ∈ Irr(A (U (t))) \ {1A (U(t))}.

We will show the following theorem.

Theorem 4.1. Let (X,S) and (Y, T ) be association schemes. Suppose that
(Y, T ) is a thin scheme or a class-one scheme. Fix x0 ∈ X and y0 ∈ Y , and
consider the wreath product (X × Y, S o T ). Then

{e1} ∪ {ẽχ | χ ∈ Irr(T (U (1))) \ {1T (U(1))}}

∪
⋃

t∈T\{1}

{ēϕ | ϕ ∈ Irr(A (U (t))) \ {1A (U(t))}}

is the set of all central primitive idempotents of T (X × Y, S o T , (x0, y0)).

To prove Theorem 4.1, we need some lemmas.

Lemma 4.2. For χ ∈ Irr(T (U (1))) \ {1T (U(1))}, ẽχ is a central idempotent
of T (S o T ).
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Proof. It is enough to show that ẽχ = eχ⊗ε{y0} commutes with σs⊗IY , JX⊗
σt (t 6= 1), εx0s ⊗ ε{y0} and IX ⊗ εy0t (t 6= 1).

By the form of e1T (S)
, we have JX = e1T (S)

JX = JXe1T (S)
. So we have

eχJX = JXeχ = 0. So we can see that

(eχ ⊗ ε{y0})(JX ⊗ σt) = (JX ⊗ σt)(eχ ⊗ ε{y0}) = 0.

For t ∈ T \ {1}, since ε{y0}εy0t = εy0tε{y0} = 0, we have

(eχ ⊗ ε{y0})(IX ⊗ εy0t) = (IX ⊗ εy0t)(eχ ⊗ ε{y0}) = 0.

Since eχ is a central element of T (S), ẽχ commutes with σs ⊗ IY and εx0s ⊗
ε{y0}.

Lemma 4.3. For t ∈ T \ {1} and ϕ ∈ Irr(A (U (t))) \ {1A (U(t))}, ēϕ is a
central idempotent of T (S o T ).

Proof. It is enough to show that ēϕ commutes with σs ⊗ IY , JX ⊗ σu (u ∈
T \ {1}), εx0s ⊗ ε{y0}, and IX ⊗ εy0u (u ∈ T \ {1}).

Suppose that (Y, T ) is thin. In this case, ēϕ = eϕ ⊗ εy0t. For s ∈ S,
ēϕ(σs ⊗ IY ) =

∑
u∈T ēϕ(σs ⊗ εy0u) = ēϕ(σs ⊗ εy0t). Since σs ⊗ εy0t ∈ A (U (t)),

we have ēϕ(σs ⊗ IY ) = (σs ⊗ IY )ēϕ. Since t 6= 1, we have ēϕ(εx0s ⊗ ε{y0}) =
(εx0s ⊗ ε{y0})ēϕ = 0. Since e1 = |X|−1JX and e1eϕ = eϕe1 = 0, we have
eϕJX = JXeϕ = 0. So we can see that

(JX ⊗ σu)(eϕ ⊗ εy0t) = (eϕ ⊗ εy0t)(JX ⊗ σu) = 0.

The last commutativity ēϕ(IX ⊗ εy0u) = (IX ⊗ εy0u)ēϕ is trivial.
Suppose that (Y, T ) is class-one scheme. Then

ēϕ =

{
eϕ ⊗ εy0t if ϕ ∈ Irr(A (S)) \ {1},
|X|−1JX ⊗ eϕ if ϕ ∈ Irr(A (T ′))) \ {1}).

If ēϕ is eϕ ⊗ εy0t, then the same argument as thin case will work. Next, we
show that ēϕ = |X|−1JX ⊗ eϕ is central. Easily we can see that

ēϕ(σs ⊗ IY ) = nsēϕ = (σs ⊗ IY )ēϕ,

ēϕ(εx0s ⊗ ε{y0}) = (εx0s ⊗ ε{y0})ēϕ = 0,

ēϕ(IX ⊗ εy0t) = (IX ⊗ εy0t)ēϕ = ēϕ.
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To show that ēϕ(JX⊗σt) = (JX⊗σt)ēϕ, it is enough to show that eϕσt = σteϕ.
Now

eϕσt =


0 0 · · · 0
0
... eϕ
0




0 1 · · · 1
1
... A
1

 =


0 0 · · · 0
0
... eϕA
0

 ,

because the all-one vector is an eigenvector of eϕ with the eigenvalue zero.
Since eϕA = Aeϕ, we can conclude eϕσt = σteϕ. Therefore ēϕ is a central
idempotent of T (S o T ).

Lemma 4.4. For χ ∈ Irr(T (U (1))) \ {1T (U(1))}, ẽχ is a central primitive

idempotent of T (S o T ). For t ∈ T \ {1} and ϕ ∈ Irr(A (U (t))) \ {1A (U(t))},
ēϕ is a central primitive idempotent of T (S o T ).

Proof. It is enough to show that ẽχ, and ēϕ are primitive.
First, we prove ẽχ to be primitive. The map π : T (S o T )→ ẽχT (S o T )

is a projection. Now ẽχT (S o T ) is naturally isomorphic to eχT (S). eχ is a
central primitive idempotent of T (S). So the map f : T (S o T )→Mχ(1)(C)
is an epimorphism. Therefore ẽχ is primitive.

By the same argument, ēϕ is primitive.

Lemma 4.5. The sum of central primitive idempotents in Theorem 4.1 is
the identity elements.

Proof. e1 is trivial idempotent of T (S o T ). So,

e1 =
∑
s∈S

n−1
s εx0sJXεx0s ⊗ ε{y0}JY ε{y0} +

∑
t∈T\{1}

|X|−1JX ⊗ n−1
t εy0tJY εy0t

Then,
∑
s∈S

n−1
s εx0sJXεx0s is the trivial idempotent of T (S).

If (Y, T ) is the thin scheme, then nt = 1 (for all t ∈ T ) and εy0tJY εy0t is
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the trivial idempotent of A (U (t)).

e1 +
∑

χ∈Irr(T (U(1))\{1})

ẽχ +
∑

t∈T\{1}

∑
ϕ∈Irr(A (U(t)))\{1}

ēϕ

= (
∑
s∈S

n−1
s εx0sJXεx0s ⊗ ε{y0}JY ε{y0} +

∑
t∈T\{1}

|X|−1JX ⊗ n−1
t εy0tJY εy0t)

+
∑

χ∈Irr(T (U(1))\{1})

eχ ⊗ ε{y0} +
∑

t∈T\{1}

∑
ϕ∈Irr(A (U(t)))\{1}

eϕ ⊗ εy0tJY εy0t

=
∑

χ∈Irr(T (U(1)))

eχ ⊗ ε{y0} +
∑

t∈T\{1}

∑
ϕ∈Irr(A (U(t)))

eϕ ⊗ εy0tJY εy0t

= IX ⊗ ε{y0} +
∑

t∈T\{1}

IX ⊗ εy0t

= IX ⊗ IY = IX×Y

If (Y, T ) is the class-one scheme, then

ēϕ =

{
eϕ ⊗ εy0t (ϕ ∈ Irr(A (S))\{1})
|X|−1JX ⊗ eϕ (ϕ ∈ Irr(A (T ′))\{1})

and n−1
t εy0tJY εy0t is the trivial idempotent of A (U t).

e1 +
∑

χ∈Irr(T (U(1))\{1})

ẽχ +
∑

ϕ∈Irr(A (U(t)))\{1}

ēϕ

= (
∑
s∈S

n−1
s εx0sJXεx0s ⊗ ε{y0}JY ε{y0} +

∑
t∈T\{1}

|X|−1JX ⊗ n−1
t εy0tJY εy0t)

+
∑

χ∈Irr(T (U(1))\{1})

eχ ⊗ ε{y0} +
∑

ϕ∈Irr(A (S))\{1}

eϕ ⊗ εy0t +
∑

ϕ∈Irr(A (T ′))\{1}

|X|−1JX ⊗ eϕ

=
∑

χ∈Irr(T (U(1))

eχ ⊗ ε{y0} +
∑

ϕ∈Irr(A (S))\{1}

eϕ ⊗ εy0t + |X|−1JX ⊗ εy0t

= IX ⊗ ε{y0} +
∑

ϕ∈Irr(A (S))

eϕ ⊗ εy0t

= IX ⊗ IY = IX×Y
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Now, combining Lemma 4.2, Lemma 4.3, Lemma 4.4, and Lemma 4.5,
the proof of Theorem 4.1 is completed. Finally, we state the degrees of
irreducible representation as a corollary. This is clear by Lemma 4.4.

Corollary 4.6. The degree of the trivial character of T (S) is |S o T | =
|S|+ |T |− 1. For χ ∈ Irr(T (U (1)))\{1T (U(1))}, the degree of the correspond-

ing character is χ(1). For ϕ ∈ Irr(A (U (t))) \ {1A (U(t))}, the degree of the
corresponding character is ϕ(1).
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