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(Communicated by Bernd Ulrich)

Abstract. Let R be a commutative Noetherian local ring. We show that R is
Gorenstein if and only if every finitely generated R-module can be embedded
in a finitely generated R-module of finite projective dimension. This extends
a result of Auslander and Bridger to rings of higher Krull dimension, and it
also improves a result due to Foxby where the ring is assumed to be Cohen-

Macaulay.

1. Introduction

Throughout this paper, let R be a commutative Noetherian local ring. All
R-modules in this paper are assumed to be finitely generated.

In [1, Proposition 2.6 (a) and (d)] Auslander and Bridger proved the following.

Theorem 1.1 (Auslander-Bridger). The following are equivalent:

(1) R is quasi-Frobenius (i.e. Gorenstein with Krull dimension zero).
(2) Every R-module can be embedded in a free R-module.

On the other hand, in [4, Theorem 2] Foxby showed the following.

Theorem 1.2 (Foxby). The following are equivalent:

(1) R is Gorenstein.
(2) R is Cohen-Macaulay, and every R-module can be embedded in an R-module of

finite projective dimension.

For an R-module C we denote by addR C the class of R-modules which are direct
summands of finite direct sums of copies of C. The C-dimension of an R-module
X, C-dimR X, is defined as the infimum of nonnegative integers n such that there
exists an exact sequence

0 → Cn → Cn−1 → · · · → C0 → X → 0

of R-modules with Ci ∈ addR C for all 0 ≤ i ≤ n.
In this paper, we prove the following theorem. This result removes from Theo-

rem 1.2 the assumption that R is Cohen-Macaulay, and it extends Theorem 1.1 to
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rings of higher Krull dimension. It should be noted that our proof of this result is
different from Foxby’s proof for the special case C = R.

Theorem 1.3. Let R be a commutative Noetherian local ring with residue field k.
Let C be a semidualizing R-module of depth t. Then the following are equivalent:

(1) C is dualizing.
(2) Every R-module can be embedded in an R-module of finite C-dimension.
(3) The R-module TrΩtk ⊗R C can be embedded in an R-module of finite C-

dimension. (Here TrΩtk denotes the transpose of the t-th syzygy of the
R-module k.)

Moreover, if one of these three conditions holds, then R is Cohen-Macaulay.

2. Proof of Theorem 1.3 and its applications

First of all, we recall the definition of a semidualizing module.

Definition 2.1. An R-module C is called semidualizing if the natural homomor-
phism R → HomR(C,C) is an isormophism and ExtiR(C,C) = 0 for all i > 0.

Note that a dualizing module is nothing but a semidualizing module of finite
injective dimension. Another typical example of a semidualizing module is a free
module of rank one. Recently a considerable number of authors have studied semid-
ualizing modules and have obtained many results concerning these modules.

We denote by m the maximal ideal of R and by k the residue field of R. To
prove our main theorem, we establish two lemmas.

Lemma 2.2. Let C be a semidualizing R-module. Let g : M → X be an injective
homomorphism of R-modules with C-dimR X < ∞. If ExtiR(M,C) = 0 for any
1 ≤ i ≤ C-dimR X, then the natural map λM : M → HomR(HomR(M,C), C) is
injective.

Proof. First of all we prove that M can be embedded in a module C0 in addR C.
For this we set n = C-dimR X. If n = 0, then this is obvious from the assumption,
since X ∈ addR C. If n > 0, then there exists an exact sequence

0 → Cn
dn→ Cn−1

dn−1→ · · · d1→ C0
d0→ X → 0

with Ci ∈ addR C for 0 ≤ i ≤ n. Putting Xi = Im di, we have exact sequences

0 → Xi+1 → Ci → Xi → 0 (0 ≤ i ≤ n− 1).

Then we have Ext1R(M,X1) = 0, since there are isomorphisms Ext1R(M,X1) ∼=
Ext2R(M,X2) ∼= · · · ∼= ExtnR(M,Xn) ∼= ExtnR(M,Cn) = 0. Hence HomR(M,d0) :
HomR(M,C0) → HomR(M,X) is surjective. This implies that the homomorphism
g ∈ HomR(M,X) is lifted to f ∈ HomR(M,C0), i.e. d0 · f = g. Since g is injective,
f is injective as well. Therefore M has an embedding f into C0.

To prove that λM is injective, we note that λC0
is an isomorphism because of

C0 ∈ addR C. Since there is an injective homomorphism f : M → C0, the following
commutative diagram forces λM to be injective:

M
f−−−−→ C0

λM

⏐
⏐
� λC0

⏐
⏐
�∼=

HomR(HomR(M,C), C)
HomR(HomR(f,C),C)−−−−−−−−−−−−−−→ HomR(HomR(C0, C), C). �
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Lemma 2.3. Let C be a semidualizing R-module and let M be an R-module. As-
sume that M is free on the punctured spectrum of R. Then there is an isomorphism

ExtiR(M,R) ∼= ExtiR(M ⊗R C,C)

for each integer i ≤ depthR C.

Proof. Set t = depthR C. Since C is semidualizing, we have a spectral sequence

Ep,q
2 = ExtpR(Tor

R
q (M,C), C) ⇒ Extp+q

R (M,R).

Note by assumption that the R-module TorRq (M,C) has finite length for q > 0. By

[2, Proposition 1.2.10(e)] we have Ep,q
2 = 0 if p < t and q > 0. Hence

ExtiR(M ⊗R C,C) = Ei,0
2

∼= ExtiR(M,R)

for i ≤ t. �
Let M be an R-module. Take a free resolution

F• = (· · · dn+1→ Fn
dn→ Fn−1

dn−1→ · · · d1→ F0 → 0)

of M . Then for a nonnegative integer n we define the n-th syzygy of M by the
image of dn and denote it by Ωn

RM or simply by ΩnM . We also define the (Aus-
lander) transpose of M by the cokernel of the map HomR(d1, R) : HomR(F0, R) →
HomR(F1, R) and denote it by TrR M or simply by TrM . Note that the nth syzygy
and the transpose of M are uniquely determined up to free summand. Note also
that they commute with localization; namely, for every prime ideal p of R there are
isomorphisms (Ωn

RM)p ∼= Ωn
Rp

Mp and (TrR M)p ∼= TrRp
Mp up to free summand.

Recall that for a positive integer n an R-module is called n-torsionfree if

ExtiR(M,R) = 0

for all 1 ≤ i ≤ n. Now we can prove our main theorem.

Proof of Theorem 1.3. (1) ⇒ (2): By virtue of [6, Theorem (3.11)], the local ring
R is Cohen-Macaulay. Now assertion (2) follows from [4, Theorem 1].

(2) ⇒ (3): This implication is obvious.
(3) ⇒ (1): We denote by (−)† the C-dual functor HomR(−, C). Put t =

depthR C and set M = TrΩtk. Then we have depthR = t by [5]. Since

gradeR ExtiR(k,R) ≥ i− 1

for 1 ≤ i ≤ t, the module Ωtk is t-torsionfree by [1, Proposition (2.26)]. Hence

ExtiR(M,R) = 0 for 1 ≤ i ≤ t. As M is free on the punctured spectrum of R,
Lemma 2.3 implies ExtiR(M ⊗R C,C) = 0 for 1 ≤ i ≤ t. By assumption (3),
the module M ⊗R C has an embedding into a module X with C-dimR X < ∞.
According to [7, Lemma 4.3], we have C-dimR X ≤ t. Lemma 2.2 shows that the
natural map λM⊗RC : M ⊗R C → (M ⊗R C)†† is injective. On the other hand,
since there are natural isomorphisms

(M ⊗R C)††= HomR(HomR(M⊗R C,C), C) ∼= HomR(HomR(M,HomR(C,C)), C)

∼= HomR(HomR(M,R), C),

we see from [1, Proposition (2.6)(a)] that

KerλM⊗RC
∼= Ext1R(TrM,C) ∼= Ext1R(Ω

tk, C)

∼= Extt+1
R (k, C).
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Thus we obtain Extt+1
R (k, C) = 0. By [3, Theorem (1.1)], the R-module C must

have finite injective dimension.
As we observed in the proof of the implication (1) ⇒ (2), assertion (1) implies

that R is Cohen-Macaulay. Thus the last assertion follows. �
Now we give applications of our main theorem. Letting C = R in Theorem 1.3,

we obtain the following result. This improves Theorem 1.2 and extends Theo-
rem 1.1.

Corollary 2.4. The following are equivalent:

(1) R is Gorenstein.
(2) Every R-module can be embedded in an R-module of finite projective dimension.

Combining Corollary 2.4 with [4, Theorem 1], we have the following.

Corollary 2.5. If every finitely generated R-module can be embedded in a finitely
generated R-module of finite projective dimension, then every finitely generated
R-module can be embedded in a finitely generated R-module of finite injective
dimension.
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