(GOTTLIEB GROUPS OF SPHERES

Marek Golasinski

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
87-100 Toruni, Chopina 12/18, Poland

Juno Mukai

Department of Mathematical Sciences Faculty of Science, Shinshu University,
Matsumoto 390-8621, Japan

Abstract

This paper takes up the systematic study of the Gottlieb groups G,,1x(S™) of spheres
for £ < 13 by means of the classical homotopy theory methods. We fully determine
the groups G,,1x(S™) for k < 13 except for the 2-primary components in the cases:
k=9,n=53;k=11,n = 115. Especially, we show [, N0, 12] = 0 if n = 2! — 7 for
7> 4.
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Introduction

The Gottlieb groups G(X) of a pointed space X have been defined by Gottlieb
in [9] and [10]; first G;(X) and then G(X) for all £ > 1. The higher Gottlieb
groups G (X) are related in [10] to the existence of sectioning fibrations with

fiber X. For instance, if Gx(X) is trivial then there is a cross-section for every
fibration over the (k + 1)-sphere S*™!, with fiber X.

This paper grew out of our attempt to develop techniques in calculating
G (S™) for £ < 13 and any n > 1. The composition methods developed by
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Toda [36] are the main tools used in the paper. Our calculations also deeply
depend on the results of [13], [16] and [21].

Section 1 serves as background to the rest of the paper. Write ¢, for the
homotopy class of the identity map of S™. Then, the homomorphism

P i (S™) — Thin_1(S™)

defined by P'(a) = [tn, @] for a € mp(S™) [11] leads to the formula G(S™) =
Ker P', where [—, —] denotes the Whitehead product. Let SO(n) be the rota-
tion group and J: m(SO(n)) — mp4x(S™) be the J-homomorphism. We recall
P’ = Jo A and so, we have

Ker{A: m,(S") = m,_1(SO(n))} C Gr(S™).

By use of this result and [13, Table 2], we can show the lower bounds of the
2-primary component of G, (S") if n > 13 and k£ < 11.

Our main task is to consult first [11], [12], [20], [21], [35] and [36] about the
order of [t,, @] and then to determine some Whitehead products in unsettled
cases as well. In light of Serre’s result [33, Proposition IV.5], the p-primary
component of G, (S*™) vanishes for any odd prime p, if 2m >k + 1.

Let EX be the suspension of a space X and denote by E: m(X) — mp1(FX)
the suspension map. Write 7, € m3(S?), vy € 77(S*) and og € m5(S®) for
the Hopf maps, respectively. We set 1, = E" %ny € m,41(S") for n > 2,
vy, = E" vy € m,y3(S”) for n > 4 and 0, = E" %05 € m,7(S") for n > 8.
Write 72 = 9, © Hpy1, V2 = U, 0 Vpyz and 02 = 0, 0 0,.7. Section 2 is a
description of G, (S") for k < 7. To reach that for G, 14(S™), we make use
of Theorem 2.2 partially extending the result of [17]: [, 2] = 0 if and only
if n=4,57 (mod 8) orn =2'—5 fori > 4; for the proof of which Section
3 and Section 4 are devoted.

Section 5 devotes to proving Mahowald’s result: [t16517, 016547 7 0 for s > 1.

Section 6 takes up computations of G,x(S") for 8 < k < 13. In a repeated
use of [21], we have found out the triviality of the Whitehead product [23]:

[tns Mo0ns2] = 0, i n =2 =7 (i > 4),

which corrects thereby [21] for n = 2¢ — 7.



1 Preliminaries on Gottlieb groups

Throughout this paper, spaces, maps and homotopies are based. We use the
standard terminology and notations from the homotopy theory, mainly from
[36]. We do not distinguish between a map and its homotopy class.

Let X be a connected space. The k-th Gottlieb group Gp(X) of X is the
subgroup of the k-th homotopy group m(X) consisting of all elements which
can be represented by a map f: S¥ — X such that f Vidyx: S* VX — X
extends (up to homotopy) to a map F': S* x X — X. Define P,(X) to be the
set of elements of m;(X) whose Whitehead product with all elements of all
homotopy groups is zero. It turns out that Py (X) forms a subgroup of m(X)
and, by [10, Proposition 2.3], Gx(X) C Pi(X). Recall from [18] that X is said
to be a G-space (resp. W-space) if mx(X) = G(X) (resp. mx(X) = Pr(X)) for
all k.

Given a € mi(S™) for k > 1, we deduce that a € Gi(S™) if and only if
[tn, @] = 0. In other words, consider the map

P Wk(Sn) — 7Tk+n_1(8n)
defined by P'(«) = [in, @] for o € m(S™). Then, this leads to the formula
Gk(Sn) = Ker P/.

Write now f for the order of a group or its any element. Then, from the above
interpretation of Gottlieb groups of spheres, we obtain

(1.1) Gi(S™) = (8]tn, o)) (S™), if m£(S™) is a cyclic group
with a generator a.

Since S™ is an H-space for n = 3,7, we have

Gr(S") = mp(S™) for k> 1, if n = 3,7.

We recall the following result from [12] and [42] needed in the sequel.

Lemma 1.1 (1) If € € mn(X), n € mo(X), a € m(S™), B € m(S™) and if
[€,m] =0 then [Eoa,no 5] =0.

(2) Let o € mpy1(X), B € mp1(X), v € Tn(S¥) and § € m,(SY).

Then [aco Ev, B o Ed] = [, B] o E(y N 6).



(3) If o € m(S?) and B € m(S?) then [o, 8] = 0 unless k =1 = 2.
(4) [B,a] = (=1)EDED [, 3] for o € mpyq (X) and B € mi(X).
In particular, 2], o] = 0 for o € m,(X) if n is odd.

(5) If ay, a9 € mp1(X), B € mg1(X) and p > 1, then [aq + a9, B] =
o, B] + [az, B] and [B, 01 + az] = [B, 1] + [B, ).

(6) Ela, B] =0 for a € mp(X) and B € m(X).

(7) Let o € mpy1(X). If n is even, 2[a,a] =0 and |o, [o, ]| = 0. If n is odd,
3[a, [, a]] = 0 and all Whitehead products in o of weight > 4 vanish.

Let Gi(X; p) and 7 (X; p) be the p-primary components of G (X) and 74 (X)
for a prime p, respectively. But for X = S", recall the notation from [36]:

T (S™), if k = n;
Ty = E7lmo, (S"2), if k= 2n — 1;
(S 2), if k#£n,2n—1.
As it is well-known, [t,,t,] = 0 if and only if n = 1,3,7 and #[i,, tn] = 2

for n odd and n # 1,3,7, and it is infinite provided n is even. Thus, we
have reproved the result [10] that G,(S") = m,(S") = Z for n = 1,3,7,
Gn(S") = 2m,(S") = 2Z for n odd and n # 1,3,7, and G,(S") = 0 for n
even, where Z denotes the additive group of integers. It is easily obtained that
Gr(S™) = P,(S™) for all k,n [18, Theorem 1.9]. In other words, on the level of
spheres the class of G-spaces coincides with that of W-spaces.

We show

Proposition 1.2 (1) (24 (=1)")[tn, tn] € G2n—1(S™). In particular, the infi-
nite direct summand of Gun_1(S*) is {3[ton, ton]} unless n = 1,2 4.

(2) If k > 3 then G(S?) = m(S?).

(3) If n is odd and n # 1,3,7 then 2m,(S™) C Gi(S"). In particular,
Gr(S™;p) = 7 (S™; p) for any odd prime p and k > 1.

(4) Gi(S™) = 7(S™) provided that E: Tpyn_1(S™) — Trpn(S™T) is

a monomorphism.



PROOF. By Lemma 1.1.(7), [tn, [tn, tn]] = 0 for n odd. In light of [19, The-
orem 1.2.2],

(1.2) #ean, [ton, ton]] = 3, if n > 2.
Hence, (1) follows.

(2) follows from Lemma 1.1.(3) what it was shown in [8] as well.

By Lemma 1.1.(4):(5), [2tn, tn] = 0. So, by Lemma 1.1.(1), [t5,, 2] = [2¢,, ] =
0 for o € m(S™). This leads to (3).

(4) is a direct consequence of Lemma 1.1.(6). This completes the proof.

We note that P': mx(S") — Tg4n—1(S") and the homomorphism
P: Thins1 (ST — Mrgn_1(S™) (k < 2n —2)

in the EHP sequence defined as the notation “A” in [36, Chapter I1] are related
as follows:

P =PoE"! for k <2n—2.

Denote by i, (R): SO(n—1) < SO(n) and p,(R): SO(n) — S"! the inclusion
and projection maps, respectively. We use the following exact sequence induced
from the fibration SO(n + 1) 00 gn,

(SOY) M1 (SN2 (SO () 57k (SO(n + 1)) Loy (S) — -+ |

where i = i,11(R), p = ppi1(R) and A: 1 (S") — m,—1(SO(n)) the connecting
map.

We recall, for the J-homomorphism J: m,(SO(n)) — m,.1%(S"),

(1.3) P'=JoA
and so,
(1.4) Ker{A: m(S") = m—1(SO(n))} C Gr(S"™).

Denote by V,, i, the Stiefel manifold consisting of k-frames in R" for £ < n —1.
We consider the commutative diagram:



(V1) —— m(Vann)

A/

n A

T (S") —— m-1(SO(n)),
where i: V411 <= Vb, is the inclusion and A’ is the connecting map associ-
ated with the fibration SO(2n) 50ty Vonn-

By [5, Theorem 2], A’ is a split monomorphism if £ < 2n — 2 and n > 13. So,
we have f(Aa) = §(i.«) for a € m(S™) if £ < 2n — 2 and n > 13. Hence, by
(1.4) and [13, Table 2], we obtain the following.

Proposition 1.3 Let n > 13. Then, Gy, (S") = mx(S") for k =1,2,8,9 if
n =3 (mod 4); Gpy3(S™2) =705 if n =7 (mod 8); Gpy6(S™) = Tp46(S™)

ifn=4,57(mod 8); Gny7(S™2) =7, 7 ifn =15 (mod 16); G410(S";2) =
oo f = 2,3 (mod 4); Gpy11(S™2) = mr .y if nods odd unless n =

115 (mod 128).

In virtue of [33, Proposition IV.5] ([36, (13.1)]), Serre’s isomorphism
(1.5) mi (S p) @ m(ST p) = m(SP p)
is given by the correspondence (a, ) — Ea + [tom, tam] © 5.

By (1.5), the Freudenthal suspension theorem and the EHP sequence, we
obtain

(1.6) Gonsr(S*;p) = 0, if p is an odd prime and k < 2n — 1.

The notation 7,4, (S") = {a,} (resp. {a(n)}) means that there exist some
k > 1 and an element «y, ( resp. a(k)) € mpm(S¥) satisfying o, = E" Fay,
(resp. a(n) = E"*a(k)) for n > k. For the p-primary component with any
prime p, the notation is available.

Hereafter, we omit the reference [36] unless otherwise stated. Now, we know
that m,43(S™3) = {an(n)} = Z3 and 7,7(S";3) = {az(n)} = Z3 for n > 3.
We have the relations [36, (13.7), Lemma 13.8, Theorem 13.9]:

(1.7) a1(5)ay(8) = 0 and ay(7)az(10) = 0.

Write {—, —, —},, for the Toda bracket, wheren > 0and {—, —, =} = {—, —, = }o.
We recall that there exists the element 3,(5) € m5(S°) satisfying 31(5) €
{a1(5), @1(8), 041(]_1)}1, 3&1(5) = —061<5)062(8) and that 7Tn+10(Sn; 3) = {61<TL)} =
Zg for n = 5,6 and = Zs for n > 7.



Let Q28+ = Q(QS?™+1) be the double loop space of S and Q3" ' =
Q(Q*S*m+1 §?m=1) the homotopy fiber of the canonical inclusion (the double
suspension map) ¢: S*~1 — Q2S?™*1 Then, the (mod p) EHP sequence [39,
(2.1.3)] or [36, (13.2)] is stated as follows:

(1.8) -+ Domipa(SP™ ) Lo (@2 ) Lom (87 ) Doy (871 s

By making use of [36, Corollary 13.2], we obtain the generators of the following
groups which are all isomorphic to Zs:

(1.9) mom—3(@3""33) = {i(2m — 1)},
where dg,,_1: S 7% < Q3™ ! is the inclusion;
Tom(Q3™ 1 3) = {a1(2m — 1)} (a1(2m — 1) = i(2m — 1)y (6m — 3));
Temaa(Q3™ 1 3) = {az(2m — 1)} (ag(2m — 1) = i(2m — 1)as(6m — 3));

Tem+7(@3™1:3) = {b1(2m — 1)} (b1(2m — 1) = i(2m — 1)B1(6m — 3)).
The following result and its proof have been shown by Toda [40].

Theorem 1.4 Let n > 2. Then, [ton, [ton, @1(2n)]] # 0 if and only if n # 2
and 2n =1 (mod 3).

PROOF. First of all, observe that using the proof of [14, Corollary (5.9)],
the formula

(1.10) ([, B],7] € Emgn_2(X) for a, 8,7 € man(X)
holds. By (1.2), (1.3) and (1.10), we obtain
(111) [L2n7 [L2n7 LQnH - JA[LQTU L2n] S Eﬂ-ﬁn—ﬁi(SQH_l; 3)

By (1.8) and (1.9), [ton, [t2n, ton]] = £EP(i(2n — 1)). By the naturality [39,
(2.1.5)], we obtain [ton, [ton, @1(2n)]] = £EP(a;(2n — 1)). By [39, (4.15),
Proposition 4.4], (n + 1)a;(2n — 1) = HP(i(2n + 1)). So, P(a1(2n — 1)) =
+PHP(i(2n+1)) = 01if 2n # 1 (mod 3). For the case n = 2, the assertion is
trivial.

Next, assume that n # 2 and 2n = 1 (mod 3). Then, by [38, Theorem 10.3],
there exists an element v € 74, _o(S?*"73) satisfying H(v) = b;(2n — 5) and
FE?v = P(a;(2n — 1)). Furthermore, by [38, Proposition 5.3.(ii)], we obtain
P(ay(2n — 3)) = 3v. Hence, by the (mod 3) EHP sequence (1.8), we have
P(ai(2n — 1)) # 0. This implies the sufficient condition and completes the
proof.

We show



Proposition 1.5 (1) Let 3 < n < 27. Then, G4,12(S*3) = 0 if n =
5,8,11,14,17,20,23,26 and Gun2(S*3) = {[ton, a1(2n)]} = Z3 otherwise.
(2) Let 3 <n <9. Then, Gen—2(S*";3) = {[tan, [ton, t2n]|} = Zs3 forn = 3,5,9,
G22(8% 3) = {[ts, [ts, 1], 15, 22(8)]} = (Zs)?,

G34(S™;3) = {112, [t12, t12]], [t12, A4 (12)]} = Zs @ Zy,

G10(S™;3) = {[e1a, [t14, t14]], [t14, 00 (14) 51 (17)]} = (Z3)* and

Gas(5'%3) = {[t16: [t16: tas]], 116, a(16)]} = (Z3)*.

PROOF. Notice that Gg,_2(S*) > [tan, [t2n, t2n]] by Lemma 1.1.(7).

The assertion is obtained from [39, pp. 60-1: Table], (1.5), (1.2), Theorem 1.4.
We determine m35(S®; 3) and m34(S'?;3). The rest is similar.

(1) By [39, pp. 60-1: Table], m,.20(S™;3) = {Bi(n)} = Z3 for n > 5. So,
by (1.5), mss(S';3) = {87(18), [t1s, a1 (18)]} = (Z3)*. Again, by (1.5), we get
[t18, B7(18)] # 0. Hence, by Theorem 1.4, G35(S*®;3) = {[t15, a1 (18)]} = Zs.

(2) By (1.5), 7T34(Sl2;3) = E7T23(SH;3) @ {[112, 2] © a5(23)}. By [39, pp. 60-
1: Table] and (1.11), [t12, [t12, t12]] € E*731(S%;3) and so, [i19, [t12, a5(12)]] €
E3745(S?; 3). Moreover, m45(S%;3) = Zs and E* : myo(S?%;3) — my45(S13;3) = Zg
is injective. This implies [t12, [t12, @%(12)]] = 0 and hence, the group Gs4(S'?; 3)
follows.

Remark 1.6 In virtue of (1.10) and Lemma 1.1.(2);(6), [t2n, [t2n, [ton, t2a]]] =
[Lgn, LQn] o EQnil[L2n7 [L2na LQnH = 0.

2 Gottlieb groups of spheres with stems for k£ < 7

According to [11], [12], [17], [20], [35] and [36], we know the following results:

(2.1) [tn,nn] = 0 if and only if n = 3 (mod 4) or n = 2, 6;

(2.2) [tn,n2] = 0 if and only if n = 2,3 (mod 4) or n = 5.

Hence, (1.1) completely determines G,4x(S") for k = 1,2 overlaping with
Proposition 1.3.

We recall that 78 = {V/} = Z,, where 20/ = n3. Write w for a generator
of the J-image Jm3(SO(3)) = m6(S?) = Zyy satisfying w = v/ — ay(3). We
recall the relation [i4, 4] = +(2v4 — Ew). By abuse of notation, v, represents
a generator of 7", and m,.3(S") for n > 4, respectively. Then, m(S*) =



{vy, Ew} 27 O T, mpi3(S") = {vn} = Zoy for n > 5. Here, we write up the
relations:

(2.3) n3 = 20" and 0> = 4v, for n > 5.

By [36, (5.9-11), Proposition 5.11],

(2.4) mava = Ve, M5 = 0, [ta, ma] = (EV )7,
[t5,15] = vsms, veme = 0 and /v = 0.
By [2, Corollary (7.4)],
(2.5) L4, v4) = £207.
In light of Lemma 1.1.(2) and (2.4), we obtain
[ta, EV| = (2u4 — EV') 0 2u7 = 4073,
So, we have 2Ev" € G7(S*). Consequently, by Proposition 1.2.(1) and (1.6),

G7(SY) = {3[14, 4], 2EV'} 2 37 @ Zy.

By Lemma 1.1.(2) and (2.4), we obtain

(26) [L5, V5] = 0.

We recall the relations [36, (7.1), (7.4), p. 64, Lemma 6.3]:

(2.7) N70s = /M4 + Uz + €7, €311 = N3€4, Nelr = VgTia = Vg.
and
(2.8) [tg, Lo] = M9010 + ToMie; (Lo, o] = 773011 + 0'977%6'

By [36, Lemma 6.2],
[Lﬁ, 1/6] = ﬂ:2§6.

By [36, (7.19-20)],
(2.9)  o'vyy = 27010 and [ig, vg] = 208115 — wvgory (v : odd), dvgory = 0.
By [36, (7.22), Theorem 7.6]

(2.10) [tg, Vo] = Do117



and #[e10, v10] = 4. In light of [17], [20], [21], [34], [35], [36], Proposition 1.2.(3)
and (1.5), we know the following:

1, ifn=7(mod 8)or n=2"—3fori>3;

2, ifn=1,3,5(mod 8) and n > 9 and n # 2 — 3;
12, ifn=2(mod 4) and n > 6 or n =4,12;

24

(2.11)  H[tn, vn) =

, ifn=0(mod 4) and n > 8 unless n = 12.
Thus, (1.1) leads to a complete description of G,3(S") for n > 5.

By [36, (7.20-1)],

(2.12)  [t10,mo] = 2010117, [t11,t11] = onivis, vinow = 0 and o13119 = 0.
By (2.4), (2.5) and (2.6), we have [t4,vany] = [ta, (EV)7] = [15,v5ms] =

0.
Hence, by the group structures of 7, (S") for k£ = 4,5 and Proposition 1.2.(1),
we get

Proposition 2.1 G,,14(S") = m,44(S"); Gpy5(S") = m05(S™) unless n = 6
and GH(SG> == 371'11(86) =~ 37.

In the next two sections, we will prove the following result partially extending
that of [17, Theorem 1.3].

Theorem 2.2 [1,, 2] =0 if and only if n =4,5,7 (mod 8) orn =2"—5 for
12> 4.

We recall that m0(S*) = {2, a1(4)a1(7), vaay (7))} 2 Zg @ (Z3)?. By (2.5) and
(1.7), we get that [tg, v4a1(7)] = [ta, @1(4)a1(7)] = 0. Recall from [36, Lemma
5.14] that 75, = {0""} 2 Zy, 7%y = {0"} = Z4 and 7], = {0’} = Zg, where

(2.13) Eo" = 20", Ed" = 20" and E*0’ = 20,.
By [2, Corollary (7.4)], (2.4) and (2.13), we obtain
15,0 = [t5,15) 0 BE*0” =0, [16, 0" = 16, t6]) © E°0" = 4([1g, t6] © 011)

and 2[16,0"] # 0. We recall the relation [is,t5] = +(203 — Eo¢’). In 7§, =
Zyg{o2} @ Zs{(Eo')o15} ® Zs{rs}, we have [ig, Eo’| = 2|18, 1g]o15 = +2(202 —
(Ec')oy5) and in view of [2, Corollary (7.4)], we obtain [is, o8] = [ts, tg] 0015 =
+(202 — (Ed’)o15). We know that m,7(S";5) = {a}(n)} = Zs for n > 3.
Thus, by Propositions 1.2, 1.3 and Theorem 2.2, we obtain

Proposition 2.3 (1) G,46(S") = m,46(S") if n = 4,5,7 (mod 8) or n =
2 — 5 and G,,+6(S™) = 0 otherwise.

10



(2) Gn+7(8n> =0 an = 4, 6, Glg(SS) = 7T12(SS) and G15(SS> = {S[Lg, Lg], 4EO’I} =
32 @ ZLs.

Let H: m,(S™) — m:(S?*~1) be the Hopf homomorphism. Then, by [1] and [31,
Proposition 4.5], there exists an element y € 75, “s satisfying

(2.14) [tn,tn) = E™y, if n =7 (mod 8); Hy = 09,15, if n =7 (mod 16)
and n > 23.

Concerning (2.14), we obtain

Theorem 2.4 (Mahowald [23]) [t,,0,] # 0, if n = 7 (mod 16) and n >
23. It desuspends seven dimensions whose Hopf invariant is o3, ;s.

In virtue of Theorem 6.1.(2), the first half of Theorem 2.4 is obtained and this
will be proved in Section 5.

By abuse of notation, o, represents a generator of ", ; and m,7(S") for n > 9,
respectively.

By [36, (10.18), Theorem 10.5],

(2.15) [Lg, 0'9} = U9<Dl6 + 516) 7’é 0
and
(216) 01118 = 011€18 = 0.

In view of [36, Theorem 12.16], f[t10, 010] = 16 and, by [36, Lemma 12.14],
(217) [Lll, 0'11] = 0.

We know that £[t12, 012] = 16 [36, Lemma 12.19, Theorem 12.22] and [113, 013] #
0 [36, p. 166] We also know that Ij[l,14,0'14] = 16 [26, p. 52], [L15,0'15] =0
[24, Lemma 6.2], f[t16,016] = 16 [24, p. 323], [t17,017] # 0 [25, p. 27] and
Hluis, o8] = 16 [25, (5.36)]. By [32, p. 72: (7.23)], [t19, 010] # 0. By [32, p.
142, Theorem 3.(b)], £[t20, 020] = 16. Hence, by combining the results of [20,
Theorem (1.1.2¢)], [21, Theorem CJ, [36, Theorem 10.3], Proposition 1.2.(3),
(1.5) and Theorem 2.4, we obtain

(2.18)

1, ifn=11o0rn=15 (mod 16);
2, ifnisodd and n > 9 unless n = 11 and n = 15 (mod 16);
120, if n =8

ﬂ[bnv Un] =

240, if n is even and n > 10.

11



Whence, by means of (1.1), the group G,7(S") for n > 9 has been fully
described as well.

3 Proof of Theorem 2.2, part I

Since SO(n) = SO(n — 1) x S*7! for n = 4,8, we get that
(3.1) Ampa(SY) =0, if n =3,7.

By the exact sequence (SO.) and the fact that 7,(SO(n)) = Z for n =
3 (mod 4) [16, pp. 161-2], we have

(3.2) An, =0, if n =3 (mod 4).
We recall the formula [16, Lemma 1]

(3.3) A(ao Ef) = Aao .

By (3.2) and (3.3),

(3.4) A(n?) =0, if n =3 (mod 4).

Given elements a € m,44(S") and 5 € 7,1, (SO(n+ 1)) satisfying p,+1(R)S =
a, then [ is called a lift of a and we write

B = [o].

R) o -+ 0ipi1(R). We set [a], = imn,|a] €
(m)) is a lift of a € mx(S™1). Observe that

For m < n — 1, set ippn = i
(SO(n)), where [a] € m(SO
J[t3] = vy and J[i7] = os.

Next, we need

Lemma 3.1 Let n =3 (mod 4) and n > 7. Then,

(1) {Atn, Mp-1,2tp} = 0;

(2) A(E{nn-1,2ty,a}) =0, where o € mx(S™) is an element satisfying 2t,,000 =
0.

PROOF. By [36, Proposition 1.4] and the fact that 2m,1(SO(n+ 1)) =0
[16, p. 161], we obtain

int1(R)o{ A, a1, 20} = —{int1(R), Ay, M1 }02tn 11 C 27,41 (SO(n+1)) = 0.
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It follows from (SO, ;) and (3.4) that 4,41 (R), : m41(SO(n)) = 741 (SO(n+
1)) is a monomorphism. This leads to (1).

By (3.3) and (1), for any 8 € {nn_1,2t,, a}, we obtain
A(EB) € Aty 0o {nn_1,2tn, a0} = —{Atp, 1,2t} 0o Ea = 0.

This leads to (2) and completes the proof.

We recall that €, 1 € {n,_1,2tn, 2} and pin_1 € {Nu_1,2tn, E" 50"} for n >
5. By (3.1) and Lemma 3.1.(2), we obtain

Example 3.2 Ag,, =0 and Au, =0, if n =3 (mod 4).

We show

Lemma 3.3 (1) A(x2) =0, ifn=>5 (mod 8);

(2) A(vi,) =0, if n is odd.

PROOF. Since 7;(SO(5)) 2 Z [16, p. 162], A: m5(S°?) — 77(SO(5)) is trivial

and Avs = 0. So, by (3.3), A(¥2) = 0. Let now n = 5 (mod 8) and n > 13.
We consider the exact sequence (SO, ;):

Ts6(S™) S Tnis(SO(M)) 2 70 5(SO(n + 1)) — 0.
By [5, Theorem 2], we obtain
Tnt5(50(n)) = Ty 5(5S0) © Mg (Viss,s)-
In light of [13, Table 1], mu16(Vaiss) = Zs and by [6], m,45(SO) = 0. So,
Tni5(S0(n)) = Zs. By [16, p. 161], m,45(SO(n+1)) = Zs. From the fact that

Tna6(S™) = {12} = Zy, we obtain A(v?) = 0, and hence (1) follows.

We obtain me(SO(4)) = m9(SO(3)) @ mo(S?) = (Z3)?, and so A(vi) = 0. Let
now n > 3. Then, we consider the exact sequence (SO, ;):

Tans6(S™) B Tunis(SO(4n)) 5 Tanis(SO(4n + 1)) — 0.
By [16, p. 161],
(3.5) Tanss(SOMAn + 1)) 2 Zy (n > 2).
By [15, Theorem 1.(iii)], 17(SO(12)) = {[er]12nrts} = Zs. Since J ([t7]12m7418) =

O19Motto0 7 0 in mag(S'?), we get that A(vZ,) = 0. Let n be odd and n > 5. In
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light of [5, Theorem 2],

Tant5(S0(4n)) = Tupt5(SO) @ Tant6(Vintss)-

By means of [6] and [13, Table 1], m4,45(S0) = Zy and my46(Vintss) = 0.
Hence, we obtain A(v3,) = 0 if n is odd with n > 5. This leads to (2) and
completes the proof.

[17, Theorem 1.3] suggests the non-triviality of [t,, /2] forn = 0, 1,2, 3,6 ( mod
8) and n > 6 and [28, Proposition 3.4] gives an explicit proof of its non-
triviality for n = 2 (mod 4) and n > 6.

By Lemma 1.1.(1) and (2.11), we have [t,, 2] = 0 if n = 7 (mod 8) or n =
2t — 3 for i > 3. In virtue of Lemma 3.3 and (1.3), we get that

(3.6) [tn, 2] =0, if n =5 (mod 8)
and
(3.7) [, 2] = 0, if n =4 (mod 8).

Let now n = 0 (mod 4) and n > 8. By [5, Theorem 2], [6] and [13, Table
1], T2,13(SO(2n — 2)) 2 Z @ Zy. In the exact sequence (SO3r.3), the map
Pon—2(R)s: Tony3(SO(2n — 2)) — Mo,y 3(S?*™3) is an epimorphism by Lemma
3.3.(1). So, the direct summand Z; of o, 3(SO(2n—2)) is generated by [v2, .
By [16, p. 161], mo,13(SO(2n + 1)) =2 Z & Zy and ma,3(SO(2n + 2)) 2 Z. Tt
follows from (SO3r13) that the direct summand Zs of a,13(SO(2n+1)) is gen-
erated by Avg, 1. By [16, p. 161], ma,+3(SO(2n+k—1)) = ZDZy for 0 < k < 2.
Hence, by use of (8032115_1) for —1 < k < 2, (i2n—22n+1)s: Tont3(SO(2n —
2)) = Mp+3(SO(2n + 1)) is an epimorphism and we get the relation

(V3 _slon+1 = Avopi1.
Thus, we conclude
Lemma 3.4 E3J[v3, 5] = [tans1, Vans1), if n =0 (mod 4) and n > 8.
Hereafter, we use often the EHP sequence of the following type:
(PEri) W?ﬁr:}mi)ﬂz+ki>ﬂﬁili+l'
It is well-known that

Hltp, t,) = 0 for n odd, and H|ip, t,] = £219, 1 for n even.

14



So, by [36, Proposition 2.5], we obtain

(3.8) HP(E*y) = £(1 + (=1)")Ey for v € mp" 2.

Suppose that Aa = 0 for o € mx(S™). Then, by [41, pp. 214-5], we obtain

(3.9) H(J[a]) = £E" o for k < 2n.

Now, we show
L [tn, V2] # 0 if n = 1(mod 8) and n > 9.

In virtue of (2.10) and [36, Lemmas 9.2,10.1, Theorem 20.3], [t9, V3] = vgvi; =
2K9 + 8aoi # 0 for a € {0,1}.

Let n = 0 (mod 4) and n > 8. By Lemma 3.4, [to,41,5,,1] = E*(J[v3,_5] o

Van+1)- Suppose that E3(J[v2,_slovs,11) = 0. Then, by use of (PE3r_ ), we ob-
tain E*(J[v3,_3] 0 Vans1) = 8a[tan, 02,) for a € {0, 1} By means of [36, Propo-
sition 11.11.(i)], there exists an element 8 € 7ir 3 such that P(804,11) =
E?B and HB € {2t4n_5, Nan—5,804n_4}2- By [36, (1.15), Proposition 1.2.0);ii),

Lemma 1.1] and the relation 27y, 5 = 0, we see that

{2L4n—5,774n—5,804n—4}2 - {2L4n 55 Ndn— 5,804n—4} C
4n—5 4An—>5

{2t4n-5,0,4045 4} = 204n 5 0 Tiptd T Tap_3 0 404n_3 = 0.
So, there exists an element 3’ € 73,3 such that 8 = Ef3'. Hence, E(J[v3, 5]
V4n+1) = CLE35/.

In virtue of Lemma 1.1.(1) and (2.1), [t2n—1, M2n—102,] = 0. In light of (1.3) and
Example 3.2, [ta,-1,620-1] = 0, and so Pryri7 = 0. Therefore, by (PET L),
E(J[V3, 3] © Vant1) = aE*B'. Finally, by use of (PE7r.7) and (3.9), we have a
contradictory relation v, 5 = 0. Thus, we get [ton41,V3,,1] = E*(J|v3,_5] 0
V4n+1) # 0.

We denote by RP" the real n-dimensional projective space, by v,,: S — RP"
the covering map and by p/,: RP™ — S™ the collapsing map, respectively.
Then, we can take A, = j 07, 1, where j: RP"! < SO(n) is the canonical
embedding. Hence, by the relations j o p,(R) = p/,_; and p/, o7, = (1 +
(—=1)"" 1)1, we obtain

(3.10) Pn(R)(Aty) = (14 (=1)") 1.
Let n = 0 (mod 8) and n > 8. By use of (SO, 1) and [16, pp. 161-2], we
get that i,,(R).: 7,11 (SO(n—1)) = m,+1(S0O(n)) is a monomorphism. So, we
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obtain
(3.11) Av,_1 =0, if n =0 (mod 8) and n > 8.

Hence, by Lemma 3.3.(2), v, and v>_, are lifted to [v,_1] € m,12(SO(n))
and [12_,] € Tp12(SO(n — 3)), respectively. We show the following

Lemma 3.5 Let n =0 (mod 8) and n > 16. Then,
(1) 2[vp_1] — Av, = 22 _,], for odd x;

(2) Tni5(SO(n + 1)) = {[vn-1lnr1Vni2} = Zo.

PROOF. By use of (SO?.5) for 2 < k < 4, Lemma 3.3 and [16, p. 161], we see
that (in—3m-1)«: Tn2(SO(n—3)) = Tpi2(SO(n—1)) = Zg is an isomorphism
and 7,,2(SO(n — 3)) = {[2_,]}. In virtue of [16, p. 161], 7, 2(SO(n + 1)) =
Zs and 7,42(SO(n)) = Zyy @® Zs. So, by (SOIE) for k = 0,1, we get
Tnt2(SO(n)) = {Avy, [Vn-1]}. By (3.10), we obtain p,(R)(Av,) = 21,1, and
hence 2[v,,—1] — Ay, € Im {i,,(R),: m42(SO(n — 1)) — 7,42(S0O(n))}. Since
8(2[Vn—1] — Av,) = 8, we have the required relation of (1).

We consider the exact sequence (SO, ;):

T (S") 237045 (SO(N)) 57045 (SO (0 + 1)) —0.

By (3.5), my15(SO(n+ 1)) = Zs. In view of [5, Theorem 2], [6] and [13, Table
1], we obtain

(3.12) Tnts(SO(n)) =2 (Z3)* (n =0 (mod 8) and n > 8).
By (3.11), v2_; is lifted to [v,,_1]vy12. Consequently, we obtain ,,5(SO(n)) =

{AW2), Wn-1|Vni2} and m, 4 5(SO(n+1)) = {[Vn_1]ns1Vnr2}- This leads to (2)
and completes the proof.

The relation in [36, Lemma 11.17] is regarded as the J-image of that in Lemma
3.5.(1).

Remark 3.6 The results in (3.2), (3.4), Lemma 3.3, Example 3.2 and (3.11)
overlaps with [13, Table 2].

Now, we present a proof of the non-triviality of [t,, /2] in the case n = 0 (mod
8) and n > 8.

IL. [tp, 2] # 0 if n =0 (mod 8) and n > 8.
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By (2.9) and [36, Theorem 7.7], [ts,v3] = vgopvig # 0. Let n = 0 (mod
8) and n > 16. In light of (3.12), m,.5(SO(n)) = (Z,)* So, by (3.3) and
Lemma 3.5,

Avz) = [Va_slntnye

and hence [1,,, /2] = E3(J[V2_,] o vay_1).

Suppose that E3(J[v2_,] o va, 1) = 0. Then, E2(J[12_,] o va, 1) € Prgris =

{[tn—1,0n1]}. By [36, Proposition 11.11.(ii)], it holds Pr3' 3 C E?rb, . So,
by (2.14) and using (PEY, ! %,) for k= 0,1, we get that

J[V2_4]ovay_1 — aE°(y0a,-10) — EB € Pryli}

for some 3 € 7y, and a € {0,1}. Hence, (3.8) and (3.9) imply a contradictory
relation v3, - = 0, and thus [i,, V2] # 0.

We note that Nomura [30] has a different proof of II.

4 Proof of Theorem 2.2, part 11

Let w,(R) € m,-1(0(n)), wn(C) € m,(U(n)) and w,(H) € my,12(Sp(n)) be
the characteristic elements for the orthogonal O(n), unitary U(n) and sym-
plectic Sp(n) groups, respectively. We note that w,(R) = A¢, and f§(Aw,) =
2 for odd n > 9.

Let r,: U(n) — SO(2n) and ¢,: Sp(n) — SU(2n) be the canonical maps,
respectively. Set i,(C): U(n — 1) < U(n) for the inclusion map. As it is
well-known,

i2n+1 (R)rnwn((C) = CL)Qn+1(R) and i2n+1 (C)ann(H> = (,L)2n+1<(C).
Let

Ton = Tnwn(C) € M, (SO(2n)) and 74, = 1o, Crwn(H) € T4 12(SO(4n)).

By use of the exact sequence (SO3") and [16, p. 161], we obtain the following:

(4.1) iont1(R)73,, = Atgny1 for n > 4.
Let n =2 (mod 4) and n > 10. Then, by use of (SO}), (4.1) and [16, p. 161],
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we obtain

(4.2) m,(SO(n)) = {7} = Zy and 27, = An,, if n =2 (mod 4) and n > 10.

By the commutative diagram

i2n4+1(C),

Tan+2(U(2n)) ——— Tun2(U(2n + 1))

T2n T2n+14

T4n,dn+2,

7r4n+2(5'0(4n)) E—— 7T4n+2<SO(4n + 2)),
we obtain

(43) (i4n,4n+2)7ﬁzin - 7-4171—4-2‘

It is well-known that

(4.4)  pon(R)75, = (n — 1)non_1 and py,(R)7, = £(n + 1)vy, 1 for n > 2.

By use of (SO1'13), (4.1), (4.3) and [16, p. 161], we obtain

(4.5) ANgpi1) = Yian1 (R)T,, ifn > 2.

So, by (SO4".,), (4.1) and (4.5), we have 74,73, — 471, € {Avy,}. Composing
pan(R) with this relation, using the fact that 13, | = 1204, 1 (2.3), (3.10) and

(1)
e =47, (mod 2aAvy,), for a odd and n > 2.

Set Ty, = J74,, € T4n(S*) and Ty, = JT4,, € Tgns2(S™). Then, we note that

(4.6) BT = [tons1, t2nt1], HTop = (0 — 1)1
and
(47) E37_—4n == [54n+37 [/4n+3]7 H7_—4n = :l:(n + 1)V8n71

By (4.5), we have

(4-8) [L4n+17 Uinﬂ] = 4ETyy.

Let ¢x be the identity class of a space X. Denote by P"(2) the Moore space of
type (Zz,n — 1) and by i,,: S"1 — P"(2), p,: P"(2) — S" the inclusion and
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collapsing maps, respectively. We recall from [37, p. 307, Corollary| that
(4.9) 2upn(2) = ipln—1Pn, if 0 > 3.

Let 7, € [P"2(2),S"] & Z4 and 1), € m,42(P"™(2)) 2 Zy for n > 3 be an
extension and a coextension of 7, respectively. We note that

(4.10) T € {Mny 2ns1, Pyr }, ifn >3

and

(4.11) T € {int1, 2L, Mn ), if 0 > 3.

We have

(4.12) 20 = N2Pnye and 27, = i,41m2, if n > 3.

We recall that 7,7,.1 = £E" 3V for n > 3. Furthermore, we recall that
Tnts(S") = {en} = Zy for 3 <n <5 and &5 € {n3, EV', v7}. We need

Lemma 4.1 ¢, = {0ynt1, Tnt2, Vnid fns for n > 5.

PROOF. By the fact that 77 € {is, 2t7, 77} and [36, Propositon 1.4],

il 0 vy € {ig, 27,17} 0 vy = ig 0 {217,775} C i 0 ma(ST) = 0.
So, by [36, Proposition 1.2.(ii)], we can take
g5 € {ns, 206, Vo } = {5, M7, Vo } = {576, 717, Vo }
and
En = En_5€5 € En_s{nf)ﬁ&ﬁ% VQ} C {nnﬁn+17ﬁn+2a l/n+4}n—5 if n 2 d.
The indeterminacy of the bracket {9,711, Tnt2, Vnia} 1S Daflng 10T s (P7T3(2))+
Tn+5(S™) © Upys. Since Nypavnss = 0 (2.4) and m,45(S™) = {van2 s} if n > 5,
we obtain m,5(S") o v,45 = 0. By use of the homotopy exact sequence of
a pair (P"3(2),5"%?), we obtain m,4s(P""(2)) = {inys2,5}. SO Tps1 ©

Tnis(P"3(2)) = {nup1v2io} = 0, and hence 7,711 © Tnys(P"(2)) = 0.
Thus, the indeterminacy is trivial. This completes the proof.

Although the following result is directly obtained from [13, Table 2], we show

Theorem 4.2 [1,, 7,41 =0 if n =1 (mod 8) and n > 9.
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PROOF. For n =9, the assertion is obtained in [17, p. 336]. By [16, p. 161]
and Lemma 3.5.(2), we get that

Tnt3(50(n)) = 0

and

Tnya(SO(n)) = {[Vn—2]nlni1} = Zo.
We consider the exact sequence (SO, ):

0— 70 2(S™) 271 (SO () 25741 (SO(n + 1)) —0,

where m,11(SO(n)) = Zg and 1,11 (SO(n+1)) = {7, } = Z4 (4.2). By (4.3),

/

in(R)7T! _; becomes a generator of m,.1(SO(n)) and we have 4i,(R)7, |, =

A(n?). Hence, we obtain An, o 1,7,4+1 = 0 and we can define a Toda bracket
{AD, M i 1s Tna2 tnos C Tuas(SO(n)). By [36, the second formula in Propo-
sition 1.6 and Proposition 1.2.0)] and the relation 2(ns7) = 0, we obtain

2{ AN MTn1s T2 b5 = { A1, E">(2(n576) ), E™ 17 }ns
= Any, o En_57ri)0 + [Pn+4(2)7 SO(”)] O Tn+3-

Since E"°my, = {E"(vsn2)} = 0, we have An, o E" 1%, = 0. By the fact
that 7,.3(SO(n)) = 0 and the relation v,,, 17,14 = 0, we obtain [P""*(2), SO(n)]o
Nnts = Tnea(SO(N)) 0 Myyq = 0. This implies

(*) Z{Anna nnﬁnJrla ﬁn+2}n75 =0.

In virtue of [5, Theorem 2], [6] and [13, Table 1],

(4.13) m,44(SO(n)) = Zggq, where d =2 or 1 according as
n =2 (mod 8) and n > 18 or n =6 (mod 8) and n > 14

and 7,45(50(n)) = Zis ® Zy. By use of the exact sequence (SO, ), we see
that the direct summand Z, is generated by A(12). So, by (x),

{ AN, MnTins1s Tna2 fnos contains possibly A(v2) ( mod 8m,,5(SO(n)). By Lemma
4.1 and [36, Proposition 1.4],

A(nngn—i—l) - Ann oey € {A’I]n, nnﬁn-i—la ﬁn+2}n—5 O Vpt4.
Thus, we obtain A(n,&,41) = aA(v3) for a € {0,1}.
Suppose that [tn, 7mens1] # 0. Then, [t Mnens1] = [tn, V3] On the other

hand, by [31, Proposition 4.2], [ty, Mment1] = bltn, N20n1a] for b € {0,1}. The
assumption induces the equality [tn, 7m&nt1] = [tn,n20ni2]. Then, we have
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[ty MEnst] = [tn, V3] + [tns M2 0ni2] = 2[tn; MmEns1] = 0. This completes the
proof.

Since 74, (SO(4n)) = (Zy)? or (Z3)?, if n > 2 [16, p. 161], we obtain

(4.14) b7l =2, ifn > 2.

Next, we show

Lemma 4.3 If n = 0,1 (mod 4) and n > 8 then [i,,a] # 0 for a =
€n,17n,7’]n0'n+1 and Mo, -

PROOF. We show [ip,e,] # 0. Let n = 0 (mod 4) and n > 8. By [36,
Proposition 11.10.(i)], there exists an element 3 € w5, !¢ such that Ef =
[tn,€n) and HB = ny,_389,—2. Suppose that [1,,e,] = 0. Then, by (PE516),
we have [ € Pw%ﬁ;é. This induces a contradictory relation 1, _3€2,_2 = 0, and
hence [i,,€,] # 0. Next, consider the case n = 1 (mod 4) and n > 9. Then,
by (4.6), [tn,en] = E(Th—189n—2) and H(T,_1€9,_2) = Mon_32,—2. Suppose that
[tn,€n) = 0. Then, (PE5 L), (3.8) and (4.6) lead to a contradictory relation
Non—3on—2 = 0, and 80 [i,,&,] # 0. For other elements, the argument goes
ahead similarly.

By (1.3) and Lemma 4.3, A: m,15(S") = m,47(SO(n)) is a monomorphism, if
n=0,1 (mod 4) and n > 12. So, by (SO}, ), we obtain the exact sequence

(4.15) Tpso(S™) 2748 (SO(n)) 570 45(SO(n + 1)) —0,
if n=0,1 (mod 4) and n > 12.

By (2.9) and [36, Lemma 12.10],

(4.16) o'V, = gy

(4.16) and [36, Theorem 12.6] yield

(8, gon0) = (Ea’)(msers + vi5) = nso + B¢ # 0.

By (2.8), (2.3) and (2.9), [t9, n3o11] = (n5o11 + o9nis) © (mso1g) = 0.

The formula (2.2) and [23, Theorem C] yield
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1, if n=2,3 (mod 4) and n > 6;

(4.17) Hlen, MmOns2] =
2, if n=0 (mod 4) and n > 8

and
(4.18) #[tn, 20nso] = 2, if n =1 (mod 8) and n > 17.
Now, we conclude

Proposition 4.4 [1,,,23] =0ifn =5 (mod 8) and [tn, Ment1] = [tn, N20n10] =
0 provided n =5 (mod 8) and n > 13 unless n = 53 (mod 64).

PROOF. By (3.3) and Lemma 3.3.(1), A(¢3) = 0 if n = 5 (mod 8). So,
the first assertion holds. In light of [24, (7.9)], the second assertion holds for
n = 13. Let n = 5 (mod 8) and n > 21. We consider the exact sequence
(4.15). By [5, Theorem 2], [6] and [13, Table 1], we see that

Zy ® Zsy, if n =5 (mod 32) and n > 37,

(SO +1)) =1 (Zy)?,  if n =21 (mod 32);

Ly, if n =13 (mod 16)
and
Zys® (Zy)?*, ifn=5 (mod 32) and n > 3T;
(Z4)* ®Zy,  if n =21 (mod 64);
Zg ® Ly @ Zs, if n =53 (mod 64);
Z4@Zg, ifn=13 (mod 16)

1%

7Tn+8(SO(n))

By (3.3) and (4.5), we obtain
A(Tlianw) = 4in<R)7_—1/1710-n+1
and hence

0, if n # 53 (mod 64);

A(1ponta) =
4in,(R)T! _jop1 # 0, if n=53 (mod 64).

This leads to the second assertion and the proof is complete.

Next, we show the following
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Lemma 4.5 Letn =1 (mod 4) andn > 5. Then E(Ton_ovi, o) = [tan—_1, Von_1]
Zf and 0nly Zf [L2n+17 V22n+1] =0.

PROOF. By (4.7), E*(Ton—2Vi,_5) = [t2n+1, Vansq] and this implies the nec-
essary condition.

Suppose that [t2,41,3,,,] = 0. Then, by (PEr ),

4An+1 2n 2n+1
Tyn+8 —>7T4n+6 —>7T4n+77

E?(Tyn_ov2 _5) € P jﬁjﬁé >~ Z16. We can set E*(To,_ovi, o) = 80P (04p41) for
x € {0,1}.

Apply [36, Proposition 11.11.(ii)] to the case o = 80y, _¢, then there exists an
element 3 € w4 3 such that

P(804nt1) = E°B and  H(B) € {Nan—s5,2t4n—1, 80 4n—_4}o.

By [36, Lemma 6.5, Theorem 7.1] and (2.7),

2_4n—6
fan—s € {Nan—s5, 2tan—1,804n—a}2 m0d Nan_5 0 E*Ty S = {V}, 5, Man—sEan—a}-

So we obtain
H(B) = pan—s + yVip_s + 2Man—s5an—a (y, 2 € {0,1}).
By using (PE7" ) and the assumption,
E(Ton-oViy,_5) — tEB € Pryyiq = {P(Pan—1), P(€an—1)}.

By Lemma 41, P(774n—1) = E(Tgn_gﬂ4n_4) and P(54n—1) = E(Tgn_2€4n_4). SO7
by using (PELT),

= 2 = 4n—3
Ton—2Vpp_o9 — xﬁ — ATop—2Vin—q4 — b7_2n72€4n74 € P7r4n+6 (a7 be {O, 1})

By applying H: mj 2 — 7422 to the equation, by use of (4.6), (4.7) and
(2.7), we obtain

3 3 3
Vip—s — $(M4n—5 + YV 5 + Z774n—554n—4) = avy,_ 5+ bNan—5Ean—a.

Since flan s, V3, 5, Nan_54n—_4a generate w5 independently, we have z = 0, a =
1 and b = 0. Hence, F(To,_2v3, 5) = E(Ton_2Vsn_4). This completes the proof.

Since V1,43 = 0 (2.4) and 71,48 = v> (2.7) for n > 6, Lemma 4.5 implies

Corollary 4.6 If [tsn+3, V3,43 = 0, then [tgni1, Vg, 1] = 0.
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Now, we show
I [, 2] =0if n =2 — 5 (z > 4).

We recall the Mahowald element 7, € 73, (SY) [22, Theorem 1] for i > 3. We set
M1 = Mi_y on S™ for m = 2'"' —2 with ¢ > 4, that is, 1{_, ,, € Tai-14,(S™).
It satisfies the relation H(7;_;,,) = vam-1. Then, the assertion follows directly
from [3, Proposition] taking o = 8 =n;_, ,,.

Finally, we show

IV. [tn, 2] # 0 if n = 3 (mod 8) and n > 19 unless n = 2* — 5.

By IIT and Corollary 4.6, we obtain

[tn, V2] =0, if n=2"—7(i>4).
Hence, from Theorem 4.2 and the relation 720,10 = V3 + NpEni1,

[tn, 20pi0] =0, if n =2"—7(i >4).
Let n = 1 (mod 8) and n > 17. Considering the exact sequence (4.15), in
virtue of [5, Theorem 2], [6] and [13, Table 1], we obtain

Tns(SON)) 2 Lo @ Zs ®Zs and m,y8(SO(n+ 1)) X Zy D Zy.
By (4.8) and (4.18), we get the relation
AB(Ty109n) = [tn, 130n42] # 0.
Hence, by (4.18) and Theorem 4.2, we obtain
[tn, V2] = [tn, D20 nsa) # 0, if n =1 (mod 8) and n > 17 and n # 2' — 7.

Thus, by Corollary 4.6, we obtain the assertion.

We are in a position to assert that Mahowald’s result [21, Table 2 for n%p,]
should be stated as follows.

Theorem 4.7 Let n = 1 (mod 8) and n > 9. Then |1, n20n12] # 0 if and
only if n # 2t — 7.

5 Proof of [L163+7, 0-163—{—7] # 0 for s Z 1

We give a proof of the first part of Theorem 2.4: [116517, 016517] 7# 0 for s > 1.
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We recall from [36, pp. 95-6] the construction of the element x7 € ma;(S7). It
is a representative of a Toda bracket

{V77 EQ? EQB}D

where o = 7jg € [P11(2),S?] is an extension of 1y and 8 = vy € m5(P(2)) is a
coextension of 7y satisfying oo E8 = 0. Furthermore, k, = E" "x; forn > 7
and set v, = E" %0y for n > 9. Then, we can take

Kn € {Vn, i3, Unpa} forn > 7.

By [16, p. 161], m,44(SO(n + k)) 2 Z @ Zsy for k = 1,2 if n = 7 (mod 8).
And, by (SO3), the direct summand Zs of m,44(SO(n + 2)) is generated
by Av,yo. So, the non-triviality of [v,]nn+3 € Tra(SO(n + 1)) induces the
relation i, 12(R), ([4]0n+3) = Avpia. Because of the fact that [t,40, 12, 5] # 0,
this induces a contradictory relation 0 = Av2,, # 0. Hence, we obtain

(Va3 =0, if n =7 (mod 8).
Next, by [16, p. 161],
{n)s Mnt3, 2tnta} C Trg5(SO(n 4 1)) =0, if n =7 (mod 8).

So, by (4.10), we have [1,]7,13 € {[Vn], Mnis, 2tnsa} © pnis = 0 and hence we
can define a lift of x,, for n =7 (mod 8), as follows:

(k0] € {[Vn), Tnsss Unga} C Tpy14(SO(n + 1)) for n = 7 (mod 8).
Let n = 7 (mod 8) and n > 15. By use of (SO"=%) for k = 3,4, (SO"7%) for
1=2,3,5 (SO for 2 < m <5 and [16, p. 161], we obtain
Tu-a(SO(n —4)) = {8} = Z; 7,-4(SO(n — 3)) = {in-3(R)B, Atn_s} = (2)*;

Tu-3(SO(n—4)) = {[n,_s]} = Za; ma-3(SO(n—=3)) = {[1n-a], A3} = (Z2)*;
Ta—2(SO(n — 4)) = {0, _sltm—3, Avi—a} = (Z5)*

Tn—2(SO(n—=3)) = {[Nn-a]n—s, A% _3} = (Z2)%; mn2(SO(n—2)) = {An,_o} = Zo,

where [ is a generator of m,_4(SO(n — 4)) and

(5.1) Aty = [ _s]n-s.

We need

(5.2) {Pn(R),i,(R),Aty—1} 3 tp—1 (mod 2¢,_1) for n > 9.

By the same reason as (3.1), we obtain A(73) = 0 € [P*(2),S0(3)]. Let

n =7 (mod 8) and n > 15. Then, by Lemma 3.1.(1) and (4.10), we obtain

A(Np—s) = Aty—g 0Ty € —{Aly_a, Nn—5,2tp_4} 0 ppg = 0.
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S0, M4 is lifted to [7,_4] € [P"2(2),SO(n — 3)] for n = 7 (mod 8). We set
[Tn—4] © ip—2 = [Mn—a], which is a lift of n,_4. By (5.1) and (5.2), we get

(5.3)  [Nn-a] € {in-3(R), Atp_s,n—5} (mod i,_3(R) o m,_3(SO(n — 4))
+ 7 4(SO(n —3)) oy = {An,_3}) forn =7 (mod 8) and n > 15.

By use of the cofiber sequence S”—3“’—’2>P"—2(2)W_*§Sn—2 and the relation
[771%4] Olp_g = [7],174], we obtain

(5.4) 4] = [Gn-s] (mod 7,_5(SO(n—3))op,_s = 2[P"2(2),SO(n—3)]).

We show

Lemma 5.1 Letn =7 (mod 8) and n > 15. Then,

(1) [n—a] € {in-3(R), Aty4,Mn5} (mod {A(7n-3)} + K), where
K =i, 3(R) [P"2(2),50(n — 4)] + m,_4(SO(n — 3)) 0 p_4;

(2) in—2(R), K C {(Atpn—2)pn—2}-

PROOF. By (4.9), (5.4) and (5.3), we have (1).

We see that [P"72(2),SO(n —4)] = {[n2_s], (Avn_4)pn_o} = Zy & Zy, where
[n2_s] is an extension of [n2_.] and 2[n2_5] = [n2_s]nn_3Pn_2. Hence, by (5.1),

in—47n_2*[777%,—5] € Zn—2(R) © {Ann—& 2Ln—37pn—3} -

_{ian(R)a A?]n,'g,, 2Ln73} O Pp—2-
Since {ip—2(R), Any_3,2tp—3} C m—2(SO(n —2)) = {An,_2}, we have
in_tn2.[P"2(2), SO(n — )] € {(An2)pns}.
From the relation p,_3(R)5 = 0, we obtain 8n,—4 = 0 € m,_5(SO(n —4)). So,
by (4.10), we have S7, 4 € {B,Mn—4,2tn-3} © Pp—2 C Tr2(SO(n — 2)) 0 pp_».

Hence,we obtain i,_s(R) (m,-4(SO(n — 3)) © fu—a) C {(AnNp—2)pn—2}. This
leads to (2) and completes the proof.

We show

Lemma 5.2 [k, g],-1 = Av,_1 ifn =7 (mod 8) and n > 15.
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PROOF. By use of (SO""I™%) for 0 < k < 3 and [16, p. 161], we have
[Vn—8]n—a = Atp_4, and so

[Rn—S]n—l S (in—4,n—1)*{ALn—4a ﬁn—57 571—4}'
By (5.4) and Lemma 5.1, we obtain

in—S(R)*{ALn—Zlv ﬁn—Su 571—4} - _{in—B(R)u ALn—47 ﬁn—5} o 571—3

= [777174] o §n73 c {[nnfll]a 2[/71737 an?)}
(mod [1,_4] © Tny6(S" ) + 7 _2(SO(n — 3)) 0 o + K 0 17,,_3).

By Lemma 5.1 and (3.6), i, o(R)_ (Kob, 3) C {An, 2}ov, 3 ={Ar3 ,} =0.

From the relation [1,_4],_2 = At,_o, we see that
[5n78]n72 S {A[fnf% 2Ln737 anB} (mOd Aﬂ-n+7(Sn72))

and

[/fn—S]n—l S _Zn—l(R) o {Abn—Qa 2Ln—37 Dn—?)}
= {in—l(R)u ALn—27 2Ln—3} O Up_2.

Since {ip,-1(R), Atp_9,2tp_3} = Aty (mod 2A¢,_1) by (5.2), we have
{in—l(R)7 ALn—Q; 2Ln—3} OlUp o= A77n—1-

This completes the proof.

Hereafter, we fix n = 16s + 7 > 23. Suppose that E7(y09, 8) = [tn,0n] =
0, where v is the element in (2.14). Then, by (P&5.};) and Lemma 5.2,
E6(702n78) S {[Lnfb ﬂnfl] = EGJ{"£7L*7]7 [Lnfhnnflo-n]}-

By [29, p. 382: Table], there exists an element & € 75, >, such that
(5.5) [tne1, 1] = E'8 and HS = 0217

and so, [tn_1,Nn—10,] desuspends until we reach seven dimensions. Hence, in
the sequel argument, it suffices to consider E®(yoq,_g) = aFE°%J[k, 7] for a €
{0,1}. By (P€5.2,), we have

E*(yoon—s — aJ[kn_7]) € Py e.

By Lemma 4.3 and Proposition 4.4, Pus, 3 # 0 and P(v3,_5) = 0. By [29,
p. 383: Table], [th_2,72 5] and [t,,_2,72 ,0,] desuspend until 7 dimensions.
Hence, for x € {0,1}, we have

E5(702n—8 - aJ[/{n_7]) = v Ppg,_3.
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By [36, Proposition 11.10.(ii)], there exists an element 3 € 75,25 such that
Pps, 3= EfB and Hf3 = 1o, _7ft2n—6. Then, by (77537;%3)’ we have

E4(702n,8 —aJ|kn_7]) —zB € Pﬂ%ﬁjrg.
This induces the relation xng,_7u2,-¢ = 0. Hence, x = 0 and we can set
E4(’YU2n—8 - aJ[’%—?]) = yP(nzn—5N2n—4) for y € {Oa 1}-

By [36, Proposition 11.10.(i)], there exists an element 3 € 7%, such that
P(nan_spion—s) = EB and HB' =03, _opan_7. So, we have

B3 (yogn_g — aJ[kn_7]) —yB € PWSZ;Z.

This leads to the relation yn3, op2,—7 = 0, and hence y = 0. Therefore, by
(4.7), we obtain

E3(’}/O'2n,8 — CLJ[H”,7] — b7_'n,7C2n,12) =0 (b S {O, 1})

By (P&y, 2%, for k=0,1 and 2, we have

E2(702n—8 - CLJ[/{n—ﬂ - b?n—7C2n—12) < Pﬂgglg =0

E(yoan—s — aJ k7] — bTh—7Con—12) € PW%ZEI =0

and

= 2n—13
YOom—s — @ [Kp—7] — bTp_7Con—12 € Py ”.

By (4.7) and [36, Lemma 9.2, Theorem 10.3],

H(Tp—r7Con-12) = :i:(nT_g)VQn_lg)CQn_lQ = +2(n — 3)o3, 15 = 0. Then, the last
relation induces the contradictory relation o2, |- = aka, 15. Thus, we obtain
the non-triviality of [¢,,,0,] if n =7 (mod 16) and n > 23.

By Lemma 5.2, we have [i,,,7,] = EJ[k,_7] if n = 6 (mod 8) and n > 14.
By the parallel arguments to the above, we obtain

Corollary 5.3 [u,,7,) #0, if n =6 (mod 8) and n > 14.

6 Gottlieb groups of spheres with stems for 8 < k < 13

By [36, Theorems 7.1,7.4,7.6, p. 186: Table|, m,.5(S™) = {e,} = Zy forn = 4,5
and [i4,e4] = (EV)er # 0, [t5,e5) = vsnseg # 0.

We recall 7T14(S6) = {567 €6, [Lﬁ, (6%} (6)]} = Z24 D ZQ. By [36, (727)],

(61) [LG,Dﬁ] = [L6756] = 0.
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So, we obtain G14(S% 2) = 7¢,. By Proposition 1.5.(1), G14(S%; 3) = m14(S%; 3).
This shows G14(Sﬁ) = 7T14<Sﬁ).

We recall 7T16<SS) = {0'87715, (EO”)T]15, 178, 58} = (22)4 and ’7T17(Sg> = {0'97]16, 179, Eg} =
(22)3. We have [Lg, 0'87]15] = (EO'/)O'157]22 = (EO'/)(515 + 615) = [Lg, 778] + [Lg,&g].

By (2.15) and [36, Theorem 12.6], [tg, 09m16] = 09(V3s +mee17) # 0. So, obtain
GlG(Ss) = {(EOJ)T]15,087715 + vg + 88} = (Z2)2 and 017(89) = {[Lg,Lg]} = ZQ.
Hence, by Lemma 4.3, we get that

Gns(S") =0, if n=0,1(mod 4) and n > 4 unless n = §,9.

Since Ta7(S'Y) — mog(SM) is @ monomorphism [36, (12.21)], we obtain

Glg(Sw) = 7T18(Slo).

Let n =3 (mod 4) andn > 11. Then, by Lemma 1.1.(1) and (2.1), [tn, 70n+1] =
0. In virtue of (1.3) and Example 3.2, we obtain [i,,&,] = 0. Thus, as it is
expected in Proposition 1.3,

Gnis(S") = m,18(S™), if n =3 (mod 4).

By Lemma 4.3 and [21, Theorem C],
(6.2)

2, ifn=0,1,2,4,5 (mod 8) and n > 8 unless n = 10;
1, if n =3 (mod 4) and n > 7.

ﬁ[bm nnan+1] =

Here we recall from [4, p. 137, Corollary 1.6] and [7, p. 48: Theorem]|, the
following

Theorem 6.1 (Barratt-Jones-Feder-Gitler-Lam-Mahowald) Let 3’s gen-
erate the J-image in the s-stem and assume 3s —2 < 2n. Then,

(1) [tn, B] =0, provided n and s satisfy 3 < va(n+ s+ 2) < ¢(s);

(2) [tn, 8] # 0 provided n and s satisfy vo(n + s +2) > ¢(s) +1 > 3, but
n+ s+ 2 # 20+

Here v5(m) is the exponent of 2 in the factorization of m and ¢(s) denotes the
number of integers in the closed interval [1,s] which are congruent to 0,1, 2
or 4 modulo 8.
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By use of Theorem 6.1, we obtain

(6.3)
2, if n =22 (mod 32) and n > 54;
jj[l'na nnan—‘rl] =
1, if n =14 (mod 16) or n =6 (mod 32) and n > 14
and
(6.4)

2, if n =53 (mod 64) and n > 117;

Jj[bmﬁiffnﬂ] =
1, if n =13 (mod 16), 5 (mod 32) or 21 (mod 64) and n > 13.

Now, we show
Lemma 6.2 (1) Let n =2 (mod 8) and n > 18. Then, Ae,, = 0.

(2) Let n =6 (mod 8) and n > 14. Then, Ae,, = +2[V2 ], Vn 4.

PROOF. Although (1) is directly obtained by [13, Table 2], we give a differ-
ent proof.

Let n =2 (mod 4) and n > 18. Then, by the fact that 7, 1(SO(n)) = Z |16,
p. 161], we have 71, = 0. So, by (3.3), (4.12) and (4.2), we obtain

A(nnﬁn+1> = 27—7/1 o ﬁn = 7—7/1 o nTQLanrQ = 0.
Therefore, by Lemma 4.1, we get

Agn = ALn C&np—1—= A[fn ° {nnflﬁna ﬁnJrla I/n+3} = _{Abna M1 ﬁn+1} O Vpiq.

We have
{Al/na nnflﬁrm ﬁnJrl} C 7Tn+4<SO(n))
Noting the relation 47, .; = 0, we obtain

AL, 1Ty Tt b = =Dt 0 {00 170, Tint1, dnss} C —At,0m,44(S") = 0.

This induces Ae,, € (2d)(7,1+4(SO(n))ovyy4), where d is the number in (4.13).
Since 4m,47(SO(n)) = 0 by [5, Theorem 2], [6] and [13, Table 1], we obtain

(1).

Let n = 6 (mod 8) and n > 14. By the exact sequences (SOI%) for k
—2,—1 and Lemma 3.3 we get that i,(R).: m,44(SO(n — 1)) = m,54(S0(n))
is an isomorphism and 7,,4(SO(n — 1)) = {[v2_,|} = Zs.

By [13, Table 2], Ae,, # 0 for n = 6 (mod 8) and n > 14. Hence, (2) follows
and the proof is complete.
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Now, by Lemma 6.2.(1) and (6.2),
[tnyen] = 0 and [tn, Un] = [tn, MnOn+1] # 0, if n =2 (mod 8) and n > 18.
Whence, we conclude that
Gnis(S") = {en} = Zy, if n =2 (mod 8) and n > 18.

We show [t,,, €,] # 0 if n = 22 (mod 32) and n > 22. By (5.5), there exists an
element 0 € 7 "s such that [1,,,7,] = E76 and H§ = 09,,_15. Hence, by Lemma
5.2, [tn,€n] = ES(J[kn_z] + E(609,_7)). Suppose that [t,,e,] = 0. Then, by
the parallel argument to that in the proof the non-triviality of [¢,,41,05,41], we
get a contradiction.

By [24, (7.13)], Ker{ P: 737(S*) — 735(S')} = {n14015} and hence, G, (S') =
{mao1s} = Zy. By [32, p. 134: (7.29)], Ker{P: 725 — 72}} = {ms046} and
hence, G30(S*?) = {ng2093} = Z,. Thus, we have shown

Proposition 6.3 The group G,s(S™) is equal to the following: 0 if n
0,1 (mod 4) and n > 4 unless n = 8,9 or n = 22 (mod 32) and n
54; mh1s(S™) if n = 6,10 or n = 3 (mod 4); {e,} = Zs, if n = 2 (mod
8) and n > 18. Moreover, Gpnis(S") = {nuoni1} = Zo if n = 22, n =
14 (mod 16) or n = 6 (mod 32) with n > 14; G14(S®) = {(Eo’)ms, 0sm1s +
778 + 88} = (ZQ)Q and G17<Sg) = {[Lg, Lg]} = ZQ.

VIl

By [36, Theorem 7.6],

(6.5) [ta, pa] = (EV')pz # 0.
We have [, ps] = vsnsig # 0 [36, Theorem 7.7].

By [36, (10.6)],

(6.6) [t6, ] = 0.

We have [ig, ug] = (Eo’)u15 # 0 [36, Theorem 12.6] and [tg, pto] = nopt10019 +
gomettrr # 0 [36, (12.21), Theorem 12.7].

We recall the relations (2.8) and [36, Proposition 3.1, Lemma 12.12]: 019117 =
To0011, O11418 = M11020 and 4C90'20 = 80'9(16 =0. By these relations, (28) and
(6.13), [to, moti10) = (5011 + Oonie)tins = 4Cooag + 409Cis = 409C16 # 0. That

is,

(6~7) [69, 779,“10] = 409C16 # 0.

Making use of the EHP sequence (PE7;), by [36, Theorem 12.8] and (6.7), we
have

ﬁ(UmCl?) = 4.
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So, by [36, (12.25)],

(6.8) [L10, t10) = 201017 # 0.

By Example 3.2, [t11, 11] = 0. We have [t12, p112] # 0 [36, Lemma 16.2] and
[t13, p13] # 0 [24, p. 309]. By [24, pp. 321-2], [t14, p14] # 0. By [32, p. 140:
(8.31), Theorem 3.(b)], [t22, p2a] # 0. Hence, by Lemma 4.3 and [21, Theorem
C],

(6'9) ﬁ[bna ,un] =

1, if n =6 or n =3 (mod 4);
2, if n=0,1,2 (mod 4) and n > 4 unless n = 6.

We have [1q,naps] = (EV)nrps # 0 and [i5, m56] = vsnipno = 4vs¢s = 0
(6.13), [36, Theorem 10.3]. That is,

(6.10) [t5, Ms5416] = 0.

By (2.1) and (4.2), [tn, nptn+1] = 0 for n = 6,10 and 11. By [36, Theorem
12.7],

(6.11) (L8, M ptg] = (EU/)Thsuw # 0

and [LH,T]H/JJH] =0 (21) By [24, (78)], [L12,7]12/JJ13] % 0. By [24, P 321]7

[L13,7]13,u14] = 8p130'28 7& 0 By [32, p. 139 (827)], [L21,7721/L22] 7é 0 Hence, by
21, Theorem C],

1, if n=>50rn=2,3 (mod 4);
(6.12) £, Mttns1) =

2, if n=0,1 (mod 4) and n > 4 unless n = 5.

We recall 715(S%) = {v3, us, meer} = (Zo)3. Since [15,76] = 0 and v§ = ngiy
(2.7), we have [i6,v5] = [t6,m687] = 0. So, by (6.6), we obtain G5(S°) =
7T15(SG).

Next, we recall 7.‘.19(810) = {[Llo,Llo],l/fo,/tlo,ﬁloé‘n} = 7 D (Zg)s. By (42)
and (27), [Llo,l/fo] = [Ll(),?]lgéu] = 0 SO, by (68)7 Glg(Slo) = {S[Llo,blo],
vy, moc1 } = 3Z @ (Zy)>.

Let n =2 (mod 4) and n > 14. Then, by (4.2),

[Lna 77727,0-71—1—2] - [Lna nn5n+1] = 0.
By (6.9), [tn, ftn] # 0. Whence, we obtain

Grso(S™) = {V2 mueni1} = (Zy)?, if n =2 (mod 4) and n > 14.
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Let n =3 (mod 4) and n > 11. Then, by (2.1) and Example 3.2,

Gni9(S") = mpi9(S™), if n =3 (mod 4).

We recall m3(S*) = {13, pa, naes} =2 (Z2)3. We have [u4, vj] = 2v3ovd; = 0 and
L4, mae5] = (EV)nre8 # 0 [36, Theorem 7.6]. So, by (6.5), G13(S*) = {vi} =
Zs.

Let now n = 4 (mod 8) and n > 12. By Lemma 1.1.(1) and (3.7), we have
[tn, 3] = 0. In light of (6.9) and (4.17), [tn, MEnt1] = [tn, N20nia] # 0 and
[tn, pn] # 0. Suppose that P(ag,i1 + pians1) = 0 for ag,1 = Noni162n12 OF
Mani102n+3- By [36, Proposition 11.10.(i)], there exists an element 8 € 75,
satisfying F3 = 0 and Hf = 772n—3(a2n—2 + M2n—2) = TNop—3Han—2. On the
other hand, (PE&5, ;) implies a contradictory relation 8 € Pman s = 0. So,
[tny ] # [n, tn) and hence

Gnio(S") = {12} 2 Zy, if n =4 (mod 8).

By (2.7), (2.8) and (2.16), [w9, 3] = (nio11 + o9nis) © s = 0. By (2.15)
and (2.12), [to, 0onis] = 09(016m33) = 4oares = 0. So, we obtain Gi5(S°) =
{ognis, Ve, moc10} = (Z3)3. Let now n = 1 (mod 8) and n > 17. By (6.9),
[tny ptn] # 0 and by (4.2), [ty, MnEnt1] = 0. In light of IV, [1,, 3] = 0if n = 20 —7
for i > 4 and |1, V3] = [tn,n20ns2] # 0if n = 1 (mod 8) and n > 17 and
n # 20 — 7. We show [t,, 20 ns2] # [tn,in]. Suppose otherwise. Then, by
[36, Proposition 11.10.(ii)], there is an element 3 € 7%,; such that ES =
P13, 102n+2 + Hont1) = 0 and HB = 1g,_3p2,—2. On the other hand, by
(PEY L) and (3.8), HB = 0, and so we get the assertion. Hence, we obtain

{MEns1} 2 Zs, if n =1 (mod 8) and n > 17 and n # 2" — 7;

Gn+9<Sn) - )
{MnEns1, 3} 2 (Zs)?, ifn=2"—-7 (i >5).

By (2.4) and [36, (7.10)], [t5,m586] = vsnieio = 4vioy; = 0. So, we obtain
G14(S%) = {v3,mse6} = (Z2)?. Let n =5 (mod 8) and n > 13. By Proposition
4.4 and (6.9), 3 € G,,419(S™) and p,, € G19(S"). Furthermore, by Proposition
4.4, Npent1 € Gryo(S™) unless n = 53 (mod 64). So, we obtain

Gryo(S™) = {v2 muens1} = (Zy)?, if n =5 (mod 8) and n # 53 (mod 64).

At the end, we use the following:

Cn € {200, M, Qtnga F2 (mod 2¢,) for aug1 =151 0nt3 OF Mog1Enge, if n > 11
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Let n = 0 (mod 8) and n > 16. By [36, Proposition 11.11.(i)], there exists

an element 3 € 7, % such that [, ] = E?8 and HB € {2t2n 5, Mon_s,

Qon—ate D Con—s (mod 2(s,_5). Suppose that [i,, an] = 0. Then, (PESL,)
induces a relation FfS5 € Pm %Z;é = 0. By (P&5,7) and (3.8), we have a
contradictory relation (o,—5 € 2m5n1c. Whence, we get that [1,, ] # 0. In
light of (6.9) and (6.12), we know [in, ttn] # 0 and [tn, fn)Non+s # 0. This
implies that [t,,, @] # [tn, ftn] and [, V3] # [tn, fn].

By (2.9) and (4.16), [ts,vg] = (Eo’ vy = ngég and |18, 0snis] = (Eo’)o15m3 =
(Ed’)(mse1e + Vi) = [ts, nseo] + [Lg,l/s] We have [Lg, (Eo")n?] = 0. So, we
obtain G17(S) = {(Eo")n?s, 08mis + V3 + ngeo} = (Z2)*. By [32, p. 71],
Ker{P: 733 — mi5} = 0 and hence, Go5(S'®) = 0.

By [36, (7.14)],
. 5 = an n = nt2 for n > 5.
(6.13) 205 = £ E*)’ and 4¢, = 12 finso fi 5

Let n =2 (mod 4) and n > 6. By (6.13), Lemma 1.1.(1) and (2.2), 4[cy, (] =
0. So, by the relation H|i,,(,] = £2(2,_1, we obtain

(6.14) #[en, Ca] =4, if n =2 (mod 4) and n > 6.

By [29, 4.14], there exists an element 7, € 75,7, such that
[tn, n] Em, Hry = TMon—13K2n—12, if n =0 (mod 8) and n > 16.

Suppose that [1,,13] = 0. Then, by (PE5.};), we have E°r; = 0. So, by

(PESZS), we have Etry € Pragrid = {[tn—2, (u—2]}. By applying H: 75, %5 —

T5r 2 to this relation and by (6.14), we obtain E*ry = 4a[t, s, (o] = 0 for

a e {0,1}. By the fact that 7512 = ol = 0, we obtain E*r = 0. Hence,
by (PE%,2;) and (4.7), we have

ETl € Pﬂ'%z;g = E37_-n78 e} {U%nflh Iﬁgnfll}.
By (PE&%,2,), we obtain
T + E2(b77'n_80'§n_14 + bfn_glign_lg;) € Pﬂgglil with b, cE {0, ]_}

This induces a contradictory relation 7y, _13k9,_12 € 27r§ﬁjré3. Thus, we con-
clude that
[t 2] #0, if n =0 (mod 8) and n > 16.

Summing the above, we get
Proposition 6.4 The group G,.9(S™) is equal to the following: m,.9(S™) if

n="6orn=3(mod 4); {3, neni1} = (Zy)? if n =2 (mod 4) and n > 14,
n=2"—7fori>5orn=5 (mod 8) unless n =53 (mod 64); {13} = Zy if
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n =4 (mod 8) or 53 (mod 64) and n > 117; {n.ent1} = Zs if n = 1 (mod
8) andn > 17 andn # 2 —7; 0 if n = 0 (mod 8) and n > 16. Moreover,
G17(S%) = {(Eo")nt5, osnis T3 +nseo} = (Z2)?, G1s(S?) = {onis, v, noc10} =
(Z2)3 and 019(810) = {3[L10, Llo], I/?O,T]m{fll} = 37 ©® (Zz)z.

By (1.1), Propositions 1.2.(3), 1.3, (1.6) and (6.12), we can determine G,,110(S™)
for n > 12.

We have G14(S4,5) = 7T14(S4; 5) = Z5 and G14<S4; 3) = 714(84; 3) = (Z3)2 by
(1.7).

By [36, Theorem 7.3], 7i, = {wo’, Ee',nups} = Zs ® Zy ® Zos. We have
(L4, v40"] = 203E30" and |14, B€'] = 2v4E%’ — E(V'E3¢'). By the definition
of €' [36, p. 58], we obtain

VE €V o —{2ug,2v9, 119} = {VV, 206, 209} 0 113

= 2{V/, v, 209} 0 13 D 2’13 (mod V0" 1y3).

By the relations 2¢’ = n2es [36, Lemma 6.6] and 4015 = P(0g) [36, (7.13)], we
obtain 2¢'vy3 = 0. By (2.3), (2.13) and [36, (7.4)], E(V/0") = n3c’ = njodig =
0 and so, we obtain v'¢” = 0, V0”113 = 0. This implies v/E3¢' = 0. By
36, (7.10), (7.16)], vsE0’ = 2(vs083) = +E?¢'. Therefore, we conclude that
vio’ + Ee’ € G14(S*). We also obtain 2Fe’ € G14(S*), because [u4,2Ee’] =
4(vyE*e") = 0. By (2.6) and (6.10), G15(S°) = m15(S%).

We recall the following:
m16(S%) = {v609, Nepir, B1(6)} = Zgg & Zo,

7718(88) = {01135, V3011, N8ty 01 (15), B1(8)} = (224)2 @ Zs,
Ty = {916, Nopti0} = Zs & Lo,
o0 = {o10v17, Mott11} = Zy ® Ly, g1 = {01118, M1z} = (Za)?.

The order £[eg, £1(6)] = #[t6, 6] © f1(11) = 3. By (2.1), [t6, n6pe7] = 0. By (2.12),
[Lﬁ, 1/60'9] = [LG, LG](V110'14) = 0. This y161dS GlG(SG) = 371'16(86).

It holds that [ts, 81(8)] # 0 and [is, 0801 (15)] = [is, ts](aa(15)1(22)) = 0
(17) By (212), [[,8,0'87/15] = [Lg,l/gall] = 0. Hence, by (611), we get that
G15(S?) = {os115, V5011, 0801 (15) } = (Zg)* & Zs.

We have [ig,09116] = 0. So, by (6.7) and Proposition 1.2.(3), G19(S°?) =
{916, B1(9)} = Zau.

We obtain [L10,0'101/17] =0 by (212)7 [L1077710/1411] =0 by (42) and hence,
GQQ(SlO) = 7T%8
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By (21) and (217), [L11,7711,L612] = [L11,0'11V18] = 0. This ylelds Ggl(SH) =
7T21(Sll).

Therefore, we conclude that

{vyo' £ E¢’ ) 2E¢’, a1 (4)aa(7),
vy (7), vy (7)1, if n=4;
m15(SP), if n =5;
(S = 7l @ {33:(6)}, if n = 6;
{0815, V8011, 0801 (15) }, if n=3_§;
{o9v16, £1(9)}, ifn=29;
T30 = {10017, ok }, if n = 10;
o1 (S, if n = 11.

Thus, by summing up the above results, we get

Proposition 6.5 The group G, 10(S") is isomorphic to the following: Z190 @
ZG, Z72 D Zg, 224 D Zg, ZQ4 D Zg, Z24, Z4 D Zg, Z6 D ZQ CLCCOT’di’ﬂg as n =
4,5,6,8,9,10, 11. Furthermore, G,410(S™) is isomorphic to the group: 0 if n =
0 (mod 4) and n > 12; Zy if n = 2 (mod 4) and n > 14; Z3 if n = 1 (mod
4) and n > 13 and Zg if n =3 (mod 4) and n > 15.

We recall that 7,111 (S"; 3) = {as(n)} = Zs for n = 3,4 and that 7,111 (S™; 3) =
{af(n)} = Zg for n > 5, where 3aj(n) = az(n) for n > 5.

By [36, (10.14)], [t5,¢5] = 0. By (6.14), #[t6,Gs] = #[t10,C0] = 4. By [36,
Theorem 12.8, Lemma 12.12], f[s, (] = 8. By [36, (12.22)], E: w5y — mag is
an isomorphism, and so [ig, (o] = 0. By [24, pp. 307, 320], [t11,¢11] = 0 and
tt12, C12] = 8. By [25, (3.10)], [t13,¢13] = 0. By summing up these results,
flin, Cu] = 1,4,8,1,4,1,8,1 according as n = 5,6,8,9,10, 11,12, 13.

By (6.13), we have [u4, Ep/] = 4v4(7z # 0. By [36, (7.12)], [t4,€4v12] = 0. We
note that [t6, 7] = 0 (6.1) and [ty Uptnys] = 0 for n = 8,9 by (2.10). Hence,
by the group structure of 7)., |, [36, Theorem 7.4], we obtain Gy11(S";2) for
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5 <n < 12. Summing up, we obtain

{vao' 14, vair, vye7,
2EW  eq1na, (EV e}, if n = 4
m16(S?), if n =>5;
{4C, V114 }5 if n = 6;
Gni11(S") = {vs116}, if n==28;
m20(S?), ifn=29;
4rll)] it n = 10;
oo (S, if n =11;
{3[t12, t12]}, if n = 12.

By abuse of notations, (, for n > 5 represents a generator of the direct sum-
mands Zg of 77", 1, and Zsgs of m,411(S™), respectively.

We already know [i5,(5] = 0 and #[t12,(12] = 8. By [32, p. 139: (8.24)],
#]t20, Coo] = 8. Hence, by [21, Theorem C], Proposition 1.2.(3), (1.6), Theo-
rem 6.1 and (6.14), we obtain

1, ifn=1 (mod 2) and n > 5 unless n = 115 (mod 128);
2, if n=115 (mod 128) and n > 243;

252, if n =2 (mod 4) and n > 6;

504, if n =0 (mod 4) and n > 8.

ﬁ[L’NJ Cn] =

Thus, by summing up the above results, we get

Proposition 6.6 The group G,11(S") is isomorphic to the following: (Z5)°,
Lsos®(Zo)?, Lo®Zy, Lo, Lisos®DZL, Ly, Lisou, 3Z according asn = 4,5,6,8,9, 10,
11,12. Furthermore, Gy, 111(S") is isomorphic to the group: Zsos if n = 1 (mod
2) and n > 13 unlessn = 115(mod 128); Zgso if n = 115(mod 128) and n >
243; Zy if n =2 (mod 4) and n > 14 and 0 if n =0 (mod 4) and n > 16.

By use of [36, Theorem 7.6, p. 187: Table], we obtain G,,412(S™) = mp4+12(S™)
for n <9.

We recall 7T22(Slo) = {[5107 1/10]} = Zlg. By PI‘OpOSitiOIl 15(1), GQQ(SlO; 3) =0

and hence, GQQ(SlO) = 71'%3 By [24, (77)], G23(SH) = 7T23(Sll). By [367 (730)]
and [25, (4.29)], we obtain G,,412(S") = mp112(S™) for n = 12 and 13. Summing
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up, we obtain

Gri12(S™) = 7, 112(S™) unless n = 10 and G (S™) = m9.

By use of [36, Theorem 7.7, pp. 187-8: Table|, we obtain G,,.13(S"). In par-

ticular, we need the relations: [111,60] = 0 and [t12,60] = 0 for ¢ € 7} and

0 € mi2. We show the case n = 4. We recall

m17(SY) = {viow0, vaneps, (EV ) nzps, vaBi(7), a1 (4)B1(7)} =2 Zoy © Ze @ Zo.

We have G17(S*%;2) = nf,. We see that [14, v401(7)] = +2v40,(7)51(10) and
[ta, 1 (4)51(7)] = £(2v4 + a1(4))(1(7)51(10)). By making use of the exact
sequence in [36, Proposition 13.3], we have m9(S?;3) = {a1(3)a1(6)51(9)} =
Zs. S0, [t4,v431(7)] and [14, a1 (4)31(7)] generate the group man(S*; 3) = (Z3)?
and hence, G17(S*; 3) = 0.

Summing up, we obtain
Tnt13(S™), if n is odd or n = 2;

n . .
Gn13(S") = T 13 if n is even unless n = 2, 14;

{3[/,14, 014]} = BZ, if n = 14.

We close the paper with the two types of tables.

First, the table of the order of [¢,,, @], where o € 72, forn > k+2, k < 11 and
n=r (mod 8) with 0 <r <7, given except as otherwise noted. This corrects
the table in [27, the second page], where m = n (k) indicates m = n (mod k)
and symbols in italic stress irregular cases.
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Table of the order of [i,, o], .

a\r || 0 1 2 3 4 5 6 7
2, 6
n 2 2 2 1 2 2 1
1, =6
2, # 5
n? 2 2 1 1 2 1 1
1,=45
8, #£12 | 2,#42"—-3
v 8 2 4 2 4 4 1
4, =12 | 1,=2"-3
2, £ 20— 5
V2 2 2 2 7 _ 1 1 2 1
1,=2"-35
2, # 11 2, 7(16
o 16 2 16 7 16 2 16 (26)
1, =11 1, 15(16)
2, = 22(32)
2, #£ 10
no || 2 2 1 2 2 > 5/ 1
1, =10
1, otherwise
€ 2 2 1 1 2 2 2 1
2, # 10
1% 2 2 7 1 2 2 2 1
1, =10
_ 2, =53(64)
2, £ 2 =7 (
n*c || 2 _ 1 1 2 > 117 1 1
1,=2"-7
1, # 53(64)
2, =53(64)
ne || 2 1 1 1 2 > 117 1 1
1, # 53(64)
2, #£ 2" =7
V3 2 7 _ 1 1 1 1 1 1
1,=2"-7
14 2 2 2 1 2 2 2 1
np || 2 2 1 1 2 2 1 1
2, =115(128)
¢ 8 1 4 > 2/3 8 1 4 1

1, # 115(128)
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The next three tables of G, 4(S™) for 1 < k < 13 and 2 < n < 26 are given
by compiling our results. Like in [36, Chapter XIV], an integer n indicates
the cyclic group Z,, of order n, the symbol co the infinite cyclic group Z, the
symbol + the direct sum of groups and (2)* the direct sum of k-copies of Z,.

Table of G,x(S™), 11.

G (S") n=2 n=3 n=4 n=>s n=06 n="7 n=_8
k=1 00 2 0 0 2 2 0
k=2 2 2 0 2 2 2 0
k=3 2 12 300 + 2 24 2 24 0
k=4 12 2 (2)? 2 0 0 0
k=5 2 2 (2)2 2 300 0 0
k=6 2 3 24 +3 2 0 2 0
k=7 3 15 0 30 0 120 300 + 2
k=8 15 2 0 0 2u+2| (27 | (202
k=9 2 (2)? 2 (2)? 2° | (@ (2)*

k=10 (2)2 1242 | 120+ 6 72+ 2 24+2 | 24+2 | 24+8
k=11 | 1242 |84+(2?%| (2° |[504+(2)2| 442 |504+2]| 2
k=12 | 84+ (2?| (2)7? (2)° (2)? 240 0 0
k=13 (2) 6 8+ (2) 6+2 2 6 (2)
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Table of G, +x(S"), I11.

Gnir(S™) n=9 n=10 n=11 | n=12 | n=13 | n=14 | n=15 | n=16 | n=17
k=1 0 0 2 0 0 0 2 0 0
k=2 0 2 2 0 0 2 2 0 0
k=3 12 2 12 2 24 2 24 0 12
k=4 0 0 0 0 0 0 0 0 0
k=5 0 0 0 0 0 0 0 0 0
k=6 0 0 2 2 2 0 2 0 0
k=7 120 0 240 0 120 0 240 0 120
k=8 2 (2)2 2?2 o 0 2> | (@22 ] o 0
k=9 (2% | 300+ (2% (2)° 2 (2)2 | (22 | (2)® 0 2

k=10 24 4+2 6+ 2 0 3 2 6 0 3
k=11 504 + 2 2 504 300 504 2 204 0 004
k=12 0 4 2 | (22 | 2 0 0 0 0
k=13 6 2 6+2| 22| 6 | 300 | 3 0 3
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Table of G, (S"), IV.

Gnik(S™) || n=18 | n=19 | n=20 | n=21 | n=22 | n1=23 | n=24 | n=25 | n=26
k=1 0 2 0 0 0 2 0 0 0
k=2 2 2 0 0 2 2 0 0 2
k=3 2 12 0 12 2 24 0 12 2
k=4 0 0 0 0 0 0 0 0 0
k=5 0 0 0 0 0 0 0 0 0
k=6 0 0 2 2 0 2 0 0 0
k=7 0 120 0 120 0 120 0 120 0
k=8 2 (2)? 0 0 2 (2)? 0 0 2
k=0 [ @@ | 2 [e@le|e o] 2| e
k=10 2 6 0 3 2 6 0 3 2
k=11 2 504 0 504 2 504 0 504 2
k=12 0 0 0 0 0 0 0 0 0
k=13 0 3 0 3 0 3 0 3 0
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