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Abstract

This paper takes up the systematic study of the Gottlieb groups Gn+k(Sn) of spheres
for k ≤ 13 by means of the classical homotopy theory methods. We fully determine
the groups Gn+k(Sn) for k ≤ 13 except for the 2-primary components in the cases:
k = 9, n = 53; k = 11, n = 115. Especially, we show [ιn, η

2
nσn+2] = 0 if n = 2i− 7 for

i ≥ 4.
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Introduction

The Gottlieb groupsGk(X) of a pointed spaceX have been defined by Gottlieb
in [9] and [10]; first G1(X) and then Gk(X) for all k ≥ 1. The higher Gottlieb
groups Gk(X) are related in [10] to the existence of sectioning fibrations with
fiber X. For instance, if Gk(X) is trivial then there is a cross-section for every
fibration over the (k + 1)-sphere Sk+1, with fiber X.

This paper grew out of our attempt to develop techniques in calculating
Gn+k(Sn) for k ≤ 13 and any n ≥ 1. The composition methods developed by
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Toda [36] are the main tools used in the paper. Our calculations also deeply
depend on the results of [13], [16] and [21].

Section 1 serves as background to the rest of the paper. Write ιn for the
homotopy class of the identity map of Sn. Then, the homomorphism

P ′ : πk(Sn) −→ πk+n−1(Sn)

defined by P ′(α) = [ιn, α] for α ∈ πk(Sn) [11] leads to the formula Gk(Sn) =
KerP ′, where [−,−] denotes the Whitehead product. Let SO(n) be the rota-
tion group and J : πk(SO(n)) → πn+k(Sn) be the J-homomorphism. We recall
P ′ = J ◦∆ and so, we have

Ker{∆: πk(Sn) → πk−1(SO(n))} ⊂ Gk(Sn).

By use of this result and [13, Table 2], we can show the lower bounds of the
2-primary component of Gn+k(Sn) if n ≥ 13 and k ≤ 11.

Our main task is to consult first [11], [12], [20], [21], [35] and [36] about the
order of [ιn, α] and then to determine some Whitehead products in unsettled
cases as well. In light of Serre’s result [33, Proposition IV.5], the p-primary
component of G2m+k(S2m) vanishes for any odd prime p, if 2m ≥ k + 1.

Let EX be the suspension of a space X and denote by E : πk(X) → πk+1(EX)
the suspension map. Write η2 ∈ π3(S2), ν4 ∈ π7(S4) and σ8 ∈ π15(S8) for
the Hopf maps, respectively. We set ηn = En−2η2 ∈ πn+1(Sn) for n ≥ 2,
νn = En−4ν4 ∈ πn+3(Sn) for n ≥ 4 and σn = En−8σ8 ∈ πn+7(Sn) for n ≥ 8.
Write η2n = ηn ◦ ηn+1, ν

2
n = νn ◦ νn+3 and σ2

n = σn ◦ σn+7. Section 2 is a
description of Gn+k(Sn) for k ≤ 7. To reach that for Gn+6(Sn), we make use
of Theorem 2.2 partially extending the result of [17]: [ιn, ν

2
n] = 0 if and only

if n ≡ 4, 5, 7 (mod 8) or n = 2i − 5 for i ≥ 4; for the proof of which Section
3 and Section 4 are devoted.

Section 5 devotes to proving Mahowald’s result: [ι16s+7, σ16s+7] ̸= 0 for s ≥ 1.

Section 6 takes up computations of Gn+k(Sn) for 8 ≤ k ≤ 13. In a repeated
use of [21], we have found out the triviality of the Whitehead product [23]:

[ιn, η
2
nσn+2] = 0, if n = 2i − 7 (i ≥ 4),

which corrects thereby [21] for n = 2i − 7.
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1 Preliminaries on Gottlieb groups

Throughout this paper, spaces, maps and homotopies are based. We use the
standard terminology and notations from the homotopy theory, mainly from
[36]. We do not distinguish between a map and its homotopy class.

Let X be a connected space. The k-th Gottlieb group Gk(X) of X is the
subgroup of the k-th homotopy group πk(X) consisting of all elements which
can be represented by a map f : Sk → X such that f ∨ idX : Sk ∨ X → X
extends (up to homotopy) to a map F : Sk ×X → X. Define Pk(X) to be the
set of elements of πk(X) whose Whitehead product with all elements of all
homotopy groups is zero. It turns out that Pk(X) forms a subgroup of πk(X)
and, by [10, Proposition 2.3], Gk(X) ⊆ Pk(X). Recall from [18] that X is said
to be a G-space (resp. W -space) if πk(X) = Gk(X) (resp. πk(X) = Pk(X)) for
all k.

Given α ∈ πk(Sn) for k ≥ 1, we deduce that α ∈ Gk(Sn) if and only if
[ιn, α] = 0. In other words, consider the map

P ′ : πk(Sn) −→ πk+n−1(Sn)

defined by P ′(α) = [ιn, α] for α ∈ πk(Sn). Then, this leads to the formula

Gk(Sn) = KerP ′.

Write now ♯ for the order of a group or its any element. Then, from the above
interpretation of Gottlieb groups of spheres, we obtain

(1.1) Gk(Sn) = (♯[ιn, α])πk(Sn), if πk(Sn) is a cyclic group

with a generator α.

Since Sn is an H-space for n = 3, 7, we have

Gk(Sn) = πk(Sn) for k ≥ 1, if n = 3, 7.

We recall the following result from [12] and [42] needed in the sequel.

Lemma 1.1 (1) If ξ ∈ πm(X), η ∈ πn(X), α ∈ πk(Sm), β ∈ πl(Sn) and if
[ξ, η] = 0 then [ξ ◦ α, η ◦ β] = 0.

(2) Let α ∈ πk+1(X), β ∈ πl+1(X), γ ∈ πm(Sk) and δ ∈ πn(Sl).

Then [α ◦ Eγ, β ◦ Eδ] = [α, β] ◦ E(γ ∧ δ).
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(3) If α ∈ πk(S2) and β ∈ πl(S2) then [α, β] = 0 unless k = l = 2.

(4) [β, α] = (−1)(k+1)(l+1)[α, β] for α ∈ πk+1(X) and β ∈ πl+1(X).

In particular, 2[α, α] = 0 for α ∈ πn(X) if n is odd.

(5) If α1, α2 ∈ πp+1(X), β ∈ πq+1(X) and p ≥ 1, then [α1 + α2, β] =

[α1, β] + [α2, β] and [β, α1 + α2] = [β, α1] + [β, α2].

(6) E[α, β] = 0 for α ∈ πk(X) and β ∈ πl(X).

(7) Let α ∈ πn+1(X). If n is even, 2[α, α] = 0 and [α, [α, α]] = 0. If n is odd,
3[α, [α, α]] = 0 and all Whitehead products in α of weight ≥ 4 vanish.

Let Gk(X; p) and πk(X; p) be the p-primary components of Gk(X) and πk(X)
for a prime p, respectively. But for X = Sn, recall the notation from [36]:

πn
k =


πn(Sn), if k = n;

E−1π2n(Sn+1; 2), if k = 2n− 1;

πk(Sn; 2), if k ̸= n, 2n− 1.

As it is well-known, [ιn, ιn] = 0 if and only if n = 1, 3, 7 and ♯[ιn, ιn] = 2
for n odd and n ̸= 1, 3, 7, and it is infinite provided n is even. Thus, we
have reproved the result [10] that Gn(Sn) = πn(Sn) ∼= Z for n = 1, 3, 7,
Gn(Sn) = 2πn(Sn) ∼= 2Z for n odd and n ̸= 1, 3, 7, and Gn(Sn) = 0 for n
even, where Z denotes the additive group of integers. It is easily obtained that
Gk(Sn) = Pk(Sn) for all k, n [18, Theorem I.9]. In other words, on the level of
spheres the class of G-spaces coincides with that of W -spaces.

We show

Proposition 1.2 (1) (2 + (−1)n)[ιn, ιn] ∈ G2n−1(Sn). In particular, the infi-
nite direct summand of G4n−1(S2n) is {3[ι2n, ι2n]} unless n = 1, 2, 4.

(2) If k ≥ 3 then Gk(S2) = πk(S2).

(3) If n is odd and n ̸= 1, 3, 7 then 2πk(Sn) ⊂ Gk(Sn). In particular,

Gk(Sn; p) = πk(Sn; p) for any odd prime p and k ≥ 1.

(4) Gk(Sn) = πk(Sn) provided that E : πk+n−1(Sn) → πk+n(Sn+1) is

a monomorphism.
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PROOF. By Lemma 1.1.(7), [ιn, [ιn, ιn]] = 0 for n odd. In light of [19, The-
orem 1.2.2],

(1.2) ♯[ι2n, [ι2n, ι2n]] = 3, if n ≥ 2.

Hence, (1) follows.

(2) follows from Lemma 1.1.(3) what it was shown in [8] as well.

By Lemma 1.1.(4);(5), [2ιn, ιn] = 0. So, by Lemma 1.1.(1), [ιn, 2α] = [2ιn, α] =
0 for α ∈ πk(Sn). This leads to (3).

(4) is a direct consequence of Lemma 1.1.(6). This completes the proof.

We note that P ′ : πk(Sn) −→ πk+n−1(Sn) and the homomorphism

P : πk+n+1(S2n+1) −→ πk+n−1(Sn) (k ≤ 2n− 2)

in the EHP sequence defined as the notation “∆” in [36, Chapter II] are related
as follows:

P ′ = P ◦ En+1 for k ≤ 2n− 2.

Denote by in(R) : SO(n−1) ↪→ SO(n) and pn(R) : SO(n) → Sn−1 the inclusion
and projection maps, respectively. We use the following exact sequence induced

from the fibration SO(n+ 1)
SO(n)−→ Sn:

(SOn
k) πk+1(Sn)

∆−→πk(SO(n))
i∗−→πk(SO(n+ 1))

p∗−→πk(Sn) −→ · · · ,

where i = in+1(R), p = pn+1(R) and ∆: πk(Sn) → πk−1(SO(n)) the connecting
map.

We recall, for the J-homomorphism J : πk(SO(n)) → πn+k(Sn),

(1.3) P ′ = J ◦∆

and so,

(1.4) Ker{∆: πk(Sn) → πk−1(SO(n))} ⊂ Gk(Sn).

Denote by Vn,k the Stiefel manifold consisting of k-frames in Rn for k ≤ n−1.
We consider the commutative diagram:
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πk(Vn+1,1) πk(V2n,n)

πk(Sn) πk−1(SO(n)),

-i∗

?

=

?

∆′

-∆

where i : Vn+1,1 ↪→ V2n,n is the inclusion and ∆′ is the connecting map associ-

ated with the fibration SO(2n)
SO(n)−→ V2n,n.

By [5, Theorem 2], ∆′ is a split monomorphism if k ≤ 2n− 2 and n ≥ 13. So,
we have ♯(∆α) = ♯(i∗α) for α ∈ πk(Sn) if k ≤ 2n − 2 and n ≥ 13. Hence, by
(1.4) and [13, Table 2], we obtain the following.

Proposition 1.3 Let n ≥ 13. Then, Gn+k(Sn) = πn+k(Sn) for k = 1, 2, 8, 9 if
n ≡ 3 (mod 4); Gn+3(Sn; 2) = πn

n+3 if n ≡ 7 (mod 8); Gn+6(Sn) = πn+6(Sn)
if n ≡ 4, 5, 7 ( mod 8); Gn+7(Sn; 2) = πn

n+7 if n ≡ 15 ( mod 16); Gn+10(Sn; 2) =
πn
n+10 if n ≡ 2, 3 (mod 4); Gn+11(Sn; 2) = πn

n+11 if n is odd unless n ≡
115 (mod 128).

In virtue of [33, Proposition IV.5] ([36, (13.1)]), Serre’s isomorphism

(1.5) πi−1(S2m−1; p)⊕ πi(S4m−1; p) ∼= πi(S2m; p)

is given by the correspondence (α, β) 7→ Eα + [ι2m, ι2m] ◦ β.

By (1.5), the Freudenthal suspension theorem and the EHP sequence, we
obtain

(1.6) G2n+k(S2n; p) = 0, if p is an odd prime and k ≤ 2n− 1.

The notation πn+m(Sn) = {αn} (resp. {α(n)}) means that there exist some
k ≥ 1 and an element αk ( resp. α(k)) ∈ πk+m(Sk) satisfying αn = En−kαk

(resp. α(n) = En−kα(k)) for n ≥ k. For the p-primary component with any
prime p, the notation is available.

Hereafter, we omit the reference [36] unless otherwise stated. Now, we know
that πn+3(Sn; 3) = {α1(n)} ∼= Z3 and πn+7(Sn; 3) = {α2(n)} ∼= Z3 for n ≥ 3.
We have the relations [36, (13.7), Lemma 13.8, Theorem 13.9]:

(1.7) α1(5)α1(8) = 0 and α1(7)α2(10) = 0.

Write {−,−,−}n for the Toda bracket, where n ≥ 0 and {−,−,−} = {−,−,−}0.
We recall that there exists the element β1(5) ∈ π15(S5) satisfying β1(5) ∈
{α1(5), α1(8), α1(11)}1, 3β1(5) = −α1(5)α2(8) and that πn+10(Sn; 3) = {β1(n)} ∼=
Z9 for n = 5, 6 and ∼= Z3 for n ≥ 7.

6



Let Ω2S2m+1 = Ω(ΩS2m+1) be the double loop space of S2m+1 and Q2m−1
2 =

Ω(Ω2S2m+1, S2m−1) the homotopy fiber of the canonical inclusion (the double
suspension map) i : S2m−1 → Ω2S2m+1. Then, the (mod p) EHP sequence [39,
(2.1.3)] or [36, (13.2)] is stated as follows:

(1.8) · · · E2

−→πi+3(S2m+1)
H−→πi(Q

2m−1
2 )

P−→πi(S2m−1)
E2

−→πi+2(S2m+1)
H−→· · · .

By making use of [36, Corollary 13.2], we obtain the generators of the following
groups which are all isomorphic to Z3:

(1.9) π6m−3(Q
2m−1
2 ; 3) = {i(2m− 1)},

where i2m−1 : S6m−3 ↪→ Q2m−1
2 is the inclusion;

π6m(Q
2m−1
2 ; 3) = {a1(2m− 1)} (a1(2m− 1) = i(2m− 1)α1(6m− 3));

π6m+4(Q
2m−1
2 ; 3) = {a2(2m− 1)} (a2(2m− 1) = i(2m− 1)α2(6m− 3));

π6m+7(Q
2m−1
2 ; 3) = {b1(2m− 1)} (b1(2m− 1) = i(2m− 1)β1(6m− 3)).

The following result and its proof have been shown by Toda [40].

Theorem 1.4 Let n ≥ 2. Then, [ι2n, [ι2n, α1(2n)]] ̸= 0 if and only if n ̸= 2
and 2n ≡ 1 (mod 3).

PROOF. First of all, observe that using the proof of [14, Corollary (5.9)],
the formula

(1.10) [[α, β], γ] ∈ Eπ6n−2(X) for α, β, γ ∈ π2n(X)

holds. By (1.2), (1.3) and (1.10), we obtain

(1.11) [ι2n, [ι2n, ι2n]] = J∆[ι2n, ι2n] ∈ Eπ6n−3(S2n−1; 3).

By (1.8) and (1.9), [ι2n, [ι2n, ι2n]] = ±EP (i(2n − 1)). By the naturality [39,
(2.1.5)], we obtain [ι2n, [ι2n, α1(2n)]] = ±EP (a1(2n − 1)). By [39, (4.15),
Proposition 4.4], (n + 1)a1(2n − 1) = HP (i(2n + 1)). So, P (a1(2n − 1)) =
±PHP (i(2n+ 1)) = 0 if 2n ̸≡ 1 (mod 3). For the case n = 2, the assertion is
trivial.

Next, assume that n ̸= 2 and 2n ≡ 1 (mod 3). Then, by [38, Theorem 10.3],
there exists an element v ∈ π6n−2(S2n−3) satisfying H(v) = b1(2n − 5) and
E2v = P (a1(2n − 1)). Furthermore, by [38, Proposition 5.3.(ii)], we obtain
P (a2(2n − 3)) = 3v. Hence, by the (mod 3) EHP sequence (1.8), we have
P (a1(2n − 1)) ̸= 0. This implies the sufficient condition and completes the
proof.

We show
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Proposition 1.5 (1) Let 3 ≤ n ≤ 27. Then, G4n+2(S2n; 3) = 0 if n =
5, 8, 11, 14, 17, 20, 23, 26 and G4n+2(S2n; 3) = {[ι2n, α1(2n)]} ∼= Z3 otherwise.
(2) Let 3 ≤ n ≤ 9. Then, G6n−2(S2n; 3) = {[ι2n, [ι2n, ι2n]]} ∼= Z3 for n = 3, 5, 9,
G22(S8; 3) = {[ι8, [ι8, ι8]], [ι8, α2(8)]} ∼= (Z3)

2,
G34(S12; 3) = {[ι12, [ι12, ι12]], [ι12, α′

3(12)]} ∼= Z3 ⊕ Z9,
G40(S14; 3) = {[ι14, [ι14, ι14]], [ι14, α1(14)β1(17)]} ∼= (Z3)

2 and
G46(S16; 3) = {[ι16, [ι16, ι16]], [ι16, α4(16)]} ∼= (Z3)

2.

PROOF. Notice that G6n−2(S2n) ∋ [ι2n, [ι2n, ι2n]] by Lemma 1.1.(7).

The assertion is obtained from [39, pp. 60-1: Table], (1.5), (1.2), Theorem 1.4.
We determine π38(S18; 3) and π34(S12; 3). The rest is similar.

(1) By [39, pp. 60-1: Table], πn+20(Sn; 3) = {β2
1(n)} ∼= Z3 for n ≥ 5. So,

by (1.5), π38(S18; 3) = {β2
1(18), [ι18, α1(18)]} ∼= (Z3)

2. Again, by (1.5), we get
[ι18, β

2
1(18)] ̸= 0. Hence, by Theorem 1.4, G38(S18; 3) = {[ι18, α1(18)]} ∼= Z3.

(2) By (1.5), π34(S12; 3) = Eπ23(S11; 3) ⊕ {[ι12, ι12] ◦ α′
3(23)}. By [39, pp. 60-

1: Table] and (1.11), [ι12, [ι12, ι12]] ∈ E3π31(S9; 3) and so, [ι12, [ι12, α
′
3(12)]] ∈

E3π42(S9; 3). Moreover, π42(S9; 3) ∼= Z3 and E4 : π42(S9; 3) → π45(S13; 3) ∼= Z9

is injective. This implies [ι12, [ι12, α
′
3(12)]] = 0 and hence, the group G34(S12; 3)

follows.

Remark 1.6 In virtue of (1.10) and Lemma 1.1.(2);(6), [ι2n, [ι2n, [ι2n, ι2n]]] =
[ι2n, ι2n] ◦ E2n−1[ι2n, [ι2n, ι2n]] = 0.

2 Gottlieb groups of spheres with stems for k ≤ 7

According to [11], [12], [17], [20], [35] and [36], we know the following results:

(2.1) [ιn, ηn] = 0 if and only if n ≡ 3 (mod 4) or n = 2, 6;

(2.2) [ιn, η
2
n] = 0 if and only if n ≡ 2, 3 (mod 4) or n = 5.

Hence, (1.1) completely determines Gn+k(Sn) for k = 1, 2 overlaping with
Proposition 1.3.

We recall that π3
6 = {ν ′} ∼= Z4, where 2ν ′ = η33. Write ω for a generator

of the J-image Jπ3(SO(3)) = π6(S3) ∼= Z12 satisfying ω = ν ′ − α1(3). We
recall the relation [ι4, ι4] = ±(2ν4 − Eω). By abuse of notation, νn represents
a generator of πn

n+3 and πn+3(Sn) for n ≥ 4, respectively. Then, π7(S4) =
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{ν4, Eω} ∼= Z⊕ Z12, πn+3(Sn) = {νn} ∼= Z24 for n ≥ 5. Here, we write up the
relations:

(2.3) η33 = 2ν ′ and η3n = 4νn for n ≥ 5.

By [36, (5.9-11), Proposition 5.11],

(2.4) η3ν4 = ν ′η6, η5ν6 = 0, [ι4, η4] = (Eν ′)η7,

[ι5, ι5] = ν5η8, ν6η9 = 0 and ν ′ν6 = 0.

By [2, Corollary (7.4)],

(2.5) [ι4, ν4] = ±2ν2
4 .

In light of Lemma 1.1.(2) and (2.4), we obtain

[ι4, Eν ′] = (2ν4 − Eν ′) ◦ 2ν7 = 4ν2
4 .

So, we have 2Eν ′ ∈ G7(S4). Consequently, by Proposition 1.2.(1) and (1.6),

G7(S4) = {3[ι4, ι4], 2Eν ′} ∼= 3Z⊕ Z2.

By Lemma 1.1.(2) and (2.4), we obtain

(2.6) [ι5, ν5] = 0.

We recall the relations [36, (7.1), (7.4), p. 64, Lemma 6.3]:

(2.7) η7σ8 = σ′η14 + ν̄7 + ε7, ε3η11 = η3ε4, η6ν̄7 = ν̄6η14 = ν3
6 .

and

(2.8) [ι9, ι9] = η9σ10 + σ9η16; [ι9, η9] = η29σ11 + σ9η
2
16.

By [36, Lemma 6.2],
[ι6, ν6] = ±2ν̄6.

By [36, (7.19-20)],

(2.9) σ′ν14 = xν7σ10 and [ι8, ν8] = 2σ8ν15 − xν8σ11 (x : odd), 4ν9σ12 = 0.

By [36, (7.22), Theorem 7.6]

(2.10) [ι9, ν9] = ν̄9ν17
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and ♯[ι10, ν10] = 4. In light of [17], [20], [21], [34], [35], [36], Proposition 1.2.(3)
and (1.5), we know the following:

(2.11) ♯[ιn, νn] =



1, if n ≡ 7 (mod 8) or n = 2i − 3 for i ≥ 3;

2, if n ≡ 1, 3, 5 (mod 8) and n ≥ 9 and n ̸= 2i − 3;

12, if n ≡ 2 (mod 4) and n ≥ 6 or n = 4, 12;

24, if n ≡ 0 (mod 4) and n ≥ 8 unless n = 12.

Thus, (1.1) leads to a complete description of Gn+3(Sn) for n ≥ 5.

By [36, (7.20-1)],

(2.12) [ι10, η10] = 2σ10ν17, [ι11, ι11] = σ11ν18, ν11σ14 = 0 and σ12ν19 = 0.

By (2.4), (2.5) and (2.6), we have [ι4, ν4η7] = [ι4, (Eν ′)η7] = [ι5, ν5η8] = 0.
Hence, by the group structures of πn+k(Sn) for k = 4, 5 and Proposition 1.2.(1),
we get

Proposition 2.1 Gn+4(Sn) = πn+4(Sn); Gn+5(Sn) = πn+5(Sn) unless n = 6
and G11(S6) = 3π11(S6) ∼= 3Z.

In the next two sections, we will prove the following result partially extending
that of [17, Theorem 1.3].

Theorem 2.2 [ιn, ν
2
n] = 0 if and only if n ≡ 4, 5, 7 (mod 8) or n = 2i− 5 for

i ≥ 4.

We recall that π10(S4) = {ν2
4 , α1(4)α1(7), ν4α1(7)} ∼= Z8 ⊕ (Z3)

2. By (2.5) and
(1.7), we get that [ι4, ν4α1(7)] = [ι4, α1(4)α1(7)] = 0. Recall from [36, Lemma
5.14] that π5

12 = {σ′′′} ∼= Z2, π
6
13 = {σ′′} ∼= Z4 and π7

14 = {σ′} ∼= Z8, where

(2.13) Eσ′′′ = 2σ′′, Eσ′′ = 2σ′ and E2σ′ = 2σ9.

By [2, Corollary (7.4)], (2.4) and (2.13), we obtain

[ι5, σ
′′′] = [ι5, ι5] ◦ E4σ′′′ = 0, [ι6, σ

′′] = [ι6, ι6] ◦ E5σ′′ = 4([ι6, ι6] ◦ σ11)

and 2[ι6, σ
′′] ̸= 0. We recall the relation [ι8, ι8] = ±(2σ8 − Eσ′). In π8

22 =
Z16{σ2

8}⊕Z8{(Eσ′)σ15}⊕Z4{κ8}, we have [ι8, Eσ′] = 2[ι8, ι8]σ15 = ±2(2σ2
8 −

(Eσ′)σ15) and in view of [2, Corollary (7.4)], we obtain [ι8, σ8] = [ι8, ι8]◦σ15 =
±(2σ2

8 − (Eσ′)σ15). We know that πn+7(Sn; 5) = {α′
1(n)} ∼= Z5 for n ≥ 3.

Thus, by Propositions 1.2, 1.3 and Theorem 2.2, we obtain

Proposition 2.3 (1) Gn+6(Sn) = πn+6(Sn) if n ≡ 4, 5, 7 (mod 8) or n =
2i − 5 and Gn+6(Sn) = 0 otherwise.
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(2) Gn+7(Sn) = 0 if n = 4, 6, G12(S5) = π12(S5) and G15(S8) = {3[ι8, ι8], 4Eσ′} ∼=
3Z⊕ Z2.

Let H : πk(Sn) → πk(S2n−1) be the Hopf homomorphism. Then, by [1] and [31,
Proposition 4.5], there exists an element γ ∈ πn−7

2n−8 satisfying

(2.14) [ιn, ιn] = E7γ, if n ≡ 7 (mod 8); Hγ = σ2n−15, if n ≡ 7 (mod 16)

and n ≥ 23.

Concerning (2.14), we obtain

Theorem 2.4 (Mahowald [23]) [ιn, σn] ̸= 0, if n ≡ 7 (mod 16) and n ≥
23. It desuspends seven dimensions whose Hopf invariant is σ2

2n−15.

In virtue of Theorem 6.1.(2), the first half of Theorem 2.4 is obtained and this
will be proved in Section 5.

By abuse of notation, σn represents a generator of π
n
n+7 and πn+7(Sn) for n ≥ 9,

respectively.

By [36, (10.18), Theorem 10.5],

(2.15) [ι9, σ9] = σ9(ν̄16 + ε16) ̸= 0

and

(2.16) σ11ν̄18 = σ11ε18 = 0.

In view of [36, Theorem 12.16], ♯[ι10, σ10] = 16 and, by [36, Lemma 12.14],

(2.17) [ι11, σ11] = 0.

We know that ♯[ι12, σ12] = 16 [36, Lemma 12.19, Theorem 12.22] and [ι13, σ13] ̸=
0 [36, p. 166]. We also know that ♯[ι14, σ14] = 16 [26, p. 52], [ι15, σ15] = 0
[24, Lemma 6.2], ♯[ι16, σ16] = 16 [24, p. 323], [ι17, σ17] ̸= 0 [25, p. 27] and
♯[ι18, σ18] = 16 [25, (5.36)]. By [32, p. 72: (7.23)], [ι19, σ19] ̸= 0. By [32, p.
142, Theorem 3.(b)], ♯[ι20, σ20] = 16. Hence, by combining the results of [20,
Theorem (1.1.2c)], [21, Theorem C], [36, Theorem 10.3], Proposition 1.2.(3),
(1.5) and Theorem 2.4, we obtain
(2.18)

♯[ιn, σn] =



1, if n = 11 or n ≡ 15 (mod 16);

2, if n is odd and n ≥ 9 unless n = 11 and n ≡ 15 (mod 16);

120, if n = 8;

240, if n is even and n ≥ 10.
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Whence, by means of (1.1), the group Gn+7(Sn) for n ≥ 9 has been fully
described as well.

3 Proof of Theorem 2.2, part I

Since SO(n) ∼= SO(n− 1)× Sn−1 for n = 4, 8, we get that

(3.1) ∆πk+1(Sn) = 0, if n = 3, 7.

By the exact sequence (SOn
n) and the fact that πn(SO(n)) ∼= Z for n ≡

3 (mod 4) [16, pp. 161-2], we have

(3.2) ∆ηn = 0, if n ≡ 3 (mod 4).

We recall the formula [16, Lemma 1]

(3.3) ∆(α ◦ Eβ) = ∆α ◦ β.

By (3.2) and (3.3),

(3.4) ∆(η2n) = 0, if n ≡ 3 (mod 4).

Given elements α ∈ πn+k(Sn) and β ∈ πn+k(SO(n+1)) satisfying pn+1(R)β =
α, then β is called a lift of α and we write

β = [α].

For m ≤ n − 1, set im,n = in(R) ◦ · · · ◦ im+1(R). We set [α]n = im,n∗[α] ∈
πk(SO(n)), where [α] ∈ πk(SO(m)) is a lift of α ∈ πk(Sm−1). Observe that
J [ι3] = ν4 and J [ι7] = σ8.

Next, we need

Lemma 3.1 Let n ≡ 3 (mod 4) and n ≥ 7. Then,

(1) {∆ιn, ηn−1, 2ιn} = 0;

(2) ∆(E{ηn−1, 2ιn, α}) = 0, where α ∈ πk(Sn) is an element satisfying 2ιn◦α =
0.

PROOF. By [36, Proposition 1.4] and the fact that 2πn+1(SO(n + 1)) = 0
[16, p. 161], we obtain

in+1(R)◦{∆ιn, ηn−1, 2ιn} = −{in+1(R),∆ιn, ηn−1}◦2ιn+1 ⊂ 2πn+1(SO(n+1)) = 0.
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It follows from (SOn
n+1) and (3.4) that in+1(R)∗ : πn+1(SO(n)) → πn+1(SO(n+

1)) is a monomorphism. This leads to (1).

By (3.3) and (1), for any β ∈ {ηn−1, 2ιn, α}, we obtain

∆(Eβ) ∈ ∆ιn ◦ {ηn−1, 2ιn, α} = −{∆ιn, ηn−1, 2ιn} ◦ Eα = 0.

This leads to (2) and completes the proof.

We recall that εn−1 ∈ {ηn−1, 2ιn, ν
2
n} and µn−1 ∈ {ηn−1, 2ιn, E

n−5σ′′′} for n ≥
5. By (3.1) and Lemma 3.1.(2), we obtain

Example 3.2 ∆εn = 0 and ∆µn = 0, if n ≡ 3 (mod 4).

We show

Lemma 3.3 (1) ∆(ν2
n) = 0, if n ≡ 5 (mod 8);

(2) ∆(ν2
4n) = 0, if n is odd.

PROOF. Since π7(SO(5)) ∼= Z [16, p. 162], ∆: π8(S5) → π7(SO(5)) is trivial
and ∆ν5 = 0. So, by (3.3), ∆(ν2

5) = 0. Let now n ≡ 5 (mod 8) and n ≥ 13.
We consider the exact sequence (SOn

n+5):

πn+6(Sn)
∆→ πn+5(SO(n))

i∗→ πn+5(SO(n+ 1)) → 0.

By [5, Theorem 2], we obtain

πn+5(SO(n)) ∼= πn+5(SO)⊕ πn+6(Vn+8,8).

In light of [13, Table 1], πn+6(Vn+8,8) ∼= Z8 and by [6], πn+5(SO) = 0. So,
πn+5(SO(n)) ∼= Z8. By [16, p. 161], πn+5(SO(n+1)) ∼= Z8. From the fact that
πn+6(Sn) = {ν2

n} ∼= Z2, we obtain ∆(ν2
n) = 0, and hence (1) follows.

We obtain π9(SO(4)) ∼= π9(SO(3)) ⊕ π9(S3) ∼= (Z3)
2, and so ∆(ν2

4) = 0. Let
now n ≥ 3. Then, we consider the exact sequence (SO4n

4n+5):

π4n+6(S4n)
∆→ π4n+5(SO(4n))

i∗→ π4n+5(SO(4n+ 1)) → 0.

By [16, p. 161],

(3.5) π4n+5(SO(4n+ 1)) ∼= Z2 (n ≥ 2).

By [15, Theorem 1.(iii)], π17(SO(12)) = {[ι7]12η7µ8} ∼= Z2. Since J([ι7]12η7µ8) =
σ12η19µ20 ̸= 0 in π29(S12), we get that ∆(ν2

12) = 0. Let n be odd and n ≥ 5. In
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light of [5, Theorem 2],

π4n+5(SO(4n)) ∼= π4n+5(SO)⊕ π4n+6(V4n+8,8).

By means of [6] and [13, Table 1], π4n+5(SO) ∼= Z2 and π4n+6(V4n+8,8) = 0.
Hence, we obtain ∆(ν2

4n) = 0 if n is odd with n ≥ 5. This leads to (2) and
completes the proof.

[17, Theorem 1.3] suggests the non-triviality of [ιn, ν
2
n] for n ≡ 0, 1, 2, 3, 6 ( mod

8) and n ≥ 6 and [28, Proposition 3.4] gives an explicit proof of its non-
triviality for n ≡ 2 (mod 4) and n ≥ 6.

By Lemma 1.1.(1) and (2.11), we have [ιn, ν
2
n] = 0 if n ≡ 7 (mod 8) or n =

2i − 3 for i ≥ 3. In virtue of Lemma 3.3 and (1.3), we get that

(3.6) [ιn, ν
2
n] = 0, if n ≡ 5 (mod 8)

and

(3.7) [ιn, ν
2
n] = 0, if n ≡ 4 (mod 8).

Let now n ≡ 0 (mod 4) and n ≥ 8. By [5, Theorem 2], [6] and [13, Table
1], π2n+3(SO(2n − 2)) ∼= Z ⊕ Z4. In the exact sequence (SO2n−3

2n+3), the map
p2n−2(R)∗ : π2n+3(SO(2n − 2)) → π2n+3(S2n−3) is an epimorphism by Lemma
3.3.(1). So, the direct summand Z4 of π2n+3(SO(2n−2)) is generated by [ν2

2n−3].
By [16, p. 161], π2n+3(SO(2n + 1)) ∼= Z⊕ Z2 and π2n+3(SO(2n + 2)) ∼= Z. It
follows from (SO2n+1

2n+3) that the direct summand Z2 of π2n+3(SO(2n+1)) is gen-
erated by ∆ν2n+1. By [16, p. 161], π2n+3(SO(2n+k−1)) ∼= Z⊕Z2 for 0 ≤ k ≤ 2.
Hence, by use of (SO2n+k−1

2n+3 ) for −1 ≤ k ≤ 2, (i2n−2,2n+1)∗ : π2n+3(SO(2n −
2)) → π2n+3(SO(2n+ 1)) is an epimorphism and we get the relation

[ν2
2n−3]2n+1 = ∆ν2n+1.

Thus, we conclude

Lemma 3.4 E3J [ν2
2n−3] = [ι2n+1, ν2n+1], if n ≡ 0 (mod 4) and n ≥ 8.

Hereafter, we use often the EHP sequence of the following type:

(PEn
n+k) π2n+1

n+k+2
P−→πn

n+k
E−→πn+1

n+k+1.

It is well-known that

H[ιn, ιn] = 0 for n odd, and H[ιn, ιn] = ±2ι2n−1 for n even.
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So, by [36, Proposition 2.5], we obtain

(3.8) HP (E3γ) = ±(1 + (−1)n)Eγ for γ ∈ π2n−2
k .

Suppose that ∆α = 0 for α ∈ πk(Sn). Then, by [41, pp. 214-5], we obtain

(3.9) H(J [α]) = ±En+1α for k ≤ 2n.

Now, we show

I. [ιn, ν
2
n] ̸= 0 if n ≡ 1(mod 8) and n ≥ 9.

In virtue of (2.10) and [36, Lemmas 9.2,10.1, Theorem 20.3], [ι9, ν
2
9 ] = ν̄9ν

2
17 ≡

2κ9 + 8aσ2
9 ̸= 0 for a ∈ {0, 1}.

Let n ≡ 0 (mod 4) and n ≥ 8. By Lemma 3.4, [ι2n+1, ν
2
2n+1] = E3(J [ν2

2n−3] ◦
ν4n+1). Suppose that E

3(J [ν2
2n−3]◦ν4n+1) = 0. Then, by use of (PE2n

4n+6), we ob-
tain E2(J [ν2

2n−3] ◦ ν4n+1) = 8a[ι2n, σ2n] for a ∈ {0, 1}. By means of [36, Propo-
sition 11.11.(i)], there exists an element β ∈ π2n−2

4n+4 such that P (8σ4n+1) =
E2β and Hβ ∈ {2ι4n−5, η4n−5, 8σ4n−4}2. By [36, (1.15), Proposition 1.2.0);ii),
Lemma 1.1] and the relation 2η4n−5 = 0, we see that

{2ι4n−5, η4n−5, 8σ4n−4}2 ⊂ {2ι4n−5, η4n−5, 8σ4n−4} ⊂
{2ι4n−5, 0, 4σ4n−4} = 2ι4n−5 ◦ π4n−5

4n+4 + π4n−5
4n−3 ◦ 4σ4n−3 = 0.

So, there exists an element β′ ∈ π2n−3
4n+3 such that β = Eβ′. Hence, E2(J [ν2

2n−3]◦
ν4n+1) = aE3β′.

In virtue of Lemma 1.1.(1) and (2.1), [ι2n−1, η2n−1σ2n] = 0. In light of (1.3) and
Example 3.2, [ι2n−1, ε2n−1] = 0, and so Pπ4n−1

4n+7 = 0. Therefore, by (PE2n−1
4n+5),

E(J [ν2
2n−3] ◦ ν4n+1) = aE2β′. Finally, by use of (PE2n−2

4n+4) and (3.9), we have a
contradictory relation ν3

4n−5 = 0. Thus, we get [ι2n+1, ν
2
2n+1] = E3(J [ν2

2n−3] ◦
ν4n+1) ̸= 0.

We denote by RP n the real n-dimensional projective space, by γn : Sn → RP n

the covering map and by p′n : RP n → Sn the collapsing map, respectively.
Then, we can take ∆ιn = j ◦ γn−1, where j : RP n−1 ↪→ SO(n) is the canonical
embedding. Hence, by the relations j ◦ pn(R) = p′n−1 and p′n ◦ γn = (1 +
(−1)n+1)ιn, we obtain

(3.10) pn(R)(∆ιn) = (1 + (−1)n)ιn−1.

Let n ≡ 0 (mod 8) and n ≥ 8. By use of (SOn−1
n+1) and [16, pp. 161-2], we

get that in(R)∗ : πn+1(SO(n−1)) → πn+1(SO(n)) is a monomorphism. So, we
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obtain

(3.11) ∆νn−1 = 0, if n ≡ 0 (mod 8) and n ≥ 8.

Hence, by Lemma 3.3.(2), νn−1 and ν2
n−4 are lifted to [νn−1] ∈ πn+2(SO(n))

and [ν2
n−4] ∈ πn+2(SO(n− 3)), respectively. We show the following

Lemma 3.5 Let n ≡ 0 (mod 8) and n ≥ 16. Then,

(1) 2[νn−1]−∆νn = x[ν2
n−4]n for odd x;

(2) πn+5(SO(n+ 1)) = {[νn−1]n+1νn+2} ∼= Z2.

PROOF. By use of (SOn−k
n+2) for 2 ≤ k ≤ 4, Lemma 3.3 and [16, p. 161], we see

that (in−3,n−1)∗ : πn+2(SO(n−3)) → πn+2(SO(n−1)) ∼= Z8 is an isomorphism
and πn+2(SO(n− 3)) = {[ν2

n−4]}. In virtue of [16, p. 161], πn+2(SO(n+ 1)) ∼=
Z8 and πn+2(SO(n)) ∼= Z24 ⊕ Z8. So, by (SOn−k

n+2) for k = 0, 1, we get
πn+2(SO(n)) = {∆νn, [νn−1]}. By (3.10), we obtain pn(R)(∆νn) = 2νn−1, and
hence 2[νn−1] −∆νn ∈ Im {in(R)∗ : πn+2(SO(n − 1)) → πn+2(SO(n))}. Since
♯(2[νn−1]−∆νn) = 8, we have the required relation of (1).

We consider the exact sequence (SOn
n+5):

πn+6(S
n)

∆−→πn+5(SO(n))
i∗−→πn+5(SO(n+ 1))−→0.

By (3.5), πn+5(SO(n+ 1)) ∼= Z2. In view of [5, Theorem 2], [6] and [13, Table
1], we obtain

(3.12) πn+5(SO(n)) ∼= (Z2)
2 (n ≡ 0 (mod 8) and n ≥ 8).

By (3.11), ν2
n−1 is lifted to [νn−1]νn+2. Consequently, we obtain πn+5(SO(n)) =

{∆(ν2
n), [νn−1]νn+2} and πn+5(SO(n+1)) = {[νn−1]n+1νn+2}. This leads to (2)

and completes the proof.

The relation in [36, Lemma 11.17] is regarded as the J-image of that in Lemma
3.5.(1).

Remark 3.6 The results in (3.2), (3.4), Lemma 3.3, Example 3.2 and (3.11)
overlaps with [13, Table 2].

Now, we present a proof of the non-triviality of [ιn, ν
2
n] in the case n ≡ 0 (mod

8) and n ≥ 8.

II. [ιn, ν
2
n] ̸= 0 if n ≡ 0 (mod 8) and n ≥ 8.
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By (2.9) and [36, Theorem 7.7], [ι8, ν
2
8 ] = ν8σ11ν18 ̸= 0. Let n ≡ 0 (mod

8) and n ≥ 16. In light of (3.12), πn+5(SO(n)) ∼= (Z2)
2. So, by (3.3) and

Lemma 3.5,

∆(ν2
n) = [ν2

n−4]nνn+2

and hence [ιn, ν
2
n] = E3(J [ν2

n−4] ◦ ν2n−1).

Suppose that E3(J [ν2
n−4] ◦ ν2n−1) = 0. Then, E2(J [ν2

n−4] ◦ ν2n−1) ∈ Pπ2n−1
2n+6 =

{[ιn−1, σn−1]}. By [36, Proposition 11.11.(ii)], it holds Pπ2n−3
2n+5 ⊂ E2πn−4

2n+1. So,
by (2.14) and using (PEn−1−k

2n+4−k) for k = 0, 1, we get that

J [ν2
n−4] ◦ ν2n−1 − aE5(γσ2n−10)− Eβ ∈ Pπ2n−5

2n+4

for some β ∈ πn−4
2n+1 and a ∈ {0, 1}. Hence, (3.8) and (3.9) imply a contradictory

relation ν3
2n−7 = 0, and thus [ιn, ν

2
n] ̸= 0.

We note that Nomura [30] has a different proof of II.

4 Proof of Theorem 2.2, part II

Let ωn(R) ∈ πn−1(O(n)), ωn(C) ∈ π2n(U(n)) and ωn(H) ∈ π4n+2(Sp(n)) be
the characteristic elements for the orthogonal O(n), unitary U(n) and sym-
plectic Sp(n) groups, respectively. We note that ωn(R) = ∆ιn and ♯(∆ιn) =
2 for odd n ≥ 9.

Let rn : U(n) → SO(2n) and cn : Sp(n) → SU(2n) be the canonical maps,
respectively. Set in(C) : U(n − 1) ↪→ U(n) for the inclusion map. As it is
well-known,

i2n+1(R)rnωn(C) = ω2n+1(R) and i2n+1(C)cnωn(H) = ω2n+1(C).

Let

τ ′2n = rnωn(C) ∈ π2n(SO(2n)) and τ̄ ′4n = r2ncnωn(H) ∈ π4n+2(SO(4n)).

By use of the exact sequence (SO2n
2n) and [16, p. 161], we obtain the following:

(4.1) i2n+1(R)τ ′2n = ∆ι2n+1 for n ≥ 4.

Let n ≡ 2 (mod 4) and n ≥ 10. Then, by use of (SOn
n), (4.1) and [16, p. 161],
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we obtain

(4.2) πn(SO(n)) = {τ ′n} ∼= Z4 and 2τ ′n = ∆ηn, if n ≡ 2 ( mod 4) and n ≥ 10.

By the commutative diagram

π4n+2(U(2n)) π4n+2(U(2n+ 1))

π4n+2(SO(4n)) π4n+2(SO(4n+ 2)),

-
i2n+1(C)∗

?

r2n∗

?

r2n+1∗

-
i4n,4n+2∗

we obtain

(4.3) (i4n,4n+2)τ̄
′
4n = τ ′4n+2.

It is well-known that

(4.4) p2n(R)τ ′2n = (n− 1)η2n−1 and p4n(R)τ̄ ′4n = ±(n+ 1)ν4n−1 for n ≥ 2.

By use of (SO4n+1
4n+2), (4.1), (4.3) and [16, p. 161], we obtain

(4.5) ∆(η24n+1) = 4i4n+1(R)τ̄ ′4n, ifn ≥ 2.

So, by (SO4n
4n+2), (4.1) and (4.5), we have τ ′4nη

2
4n− 4τ̄ ′4n ∈ {∆ν4n}. Composing

p4n(R) with this relation, using the fact that η34n−1 = 12ν4n−1 (2.3), (3.10) and
(4.4),

τ ′4nη
2
4n ≡ 4τ̄ ′4n (mod 2a∆ν4n), for a odd and n ≥ 2.

Set τ2n = Jτ ′2n ∈ π4n(S2n) and τ̄4n = Jτ̄ ′4n ∈ π8n+2(S4n). Then, we note that

(4.6) Eτ2n = [ι2n+1, ι2n+1], Hτ2n = (n− 1)η4n−1

and

(4.7) E3τ̄4n = [ι4n+3, ι4n+3], Hτ̄4n = ±(n+ 1)ν8n−1

By (4.5), we have

(4.8) [ι4n+1, η
2
4n+1] = 4Eτ̄4n.

Let ιX be the identity class of a space X. Denote by Pn(2) the Moore space of
type (Z2, n− 1) and by in : Sn−1 ↪→ Pn(2), pn : P

n(2) → Sn the inclusion and
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collapsing maps, respectively. We recall from [37, p. 307, Corollary] that

(4.9) 2ιPn(2) = inηn−1pn, if n ≥ 3.

Let η̄n ∈ [Pn+2(2),Sn] ∼= Z4 and η̃n ∈ πn+2(P
n+1(2)) ∼= Z4 for n ≥ 3 be an

extension and a coextension of ηn, respectively. We note that

(4.10) η̄n ∈ {ηn, 2ιn+1, pn+1}, if n ≥ 3

and

(4.11) η̃n ∈ {in+1, 2ιn, ηn}, if n ≥ 3.

We have

(4.12) 2η̄n = η2npn+2 and 2η̃n = in+1η
2
n, if n ≥ 3.

We recall that η̄nη̃n+1 = ±En−3ν ′ for n ≥ 3. Furthermore, we recall that
πn+8(Sn) = {εn} ∼= Z2 for 3 ≤ n ≤ 5 and ε3 ∈ {η3, Eν ′, ν7}. We need

Lemma 4.1 εn = {ηnη̄n+1, η̃n+2, νn+4}n−5 for n ≥ 5.

PROOF. By the fact that η̃7 ∈ {i8, 2ι7, η7} and [36, Propositon 1.4],

η̃7 ◦ ν9 ∈ {i8, 2ι7, η7} ◦ ν9 = i8 ◦ {2ι7, η7, ν8} ⊂ i8 ◦ π12(S7) = 0.

So, by [36, Proposition 1.2.(ii)], we can take

ε5 ∈ {η5, 2ν6, ν9} = {η5, η̄6η̃7, ν9} = {η5η̄6, η̃7, ν9}

and

εn = En−5ε5 ∈ En−5{η5η̄6, η̃7, ν9} ⊂ {ηnη̄n+1, η̃n+2, νn+4}n−5 if n ≥ 5.

The indeterminacy of the bracket {ηnη̄n+1, η̃n+2, νn+4} is ηnη̄n+1◦πn+8(P
n+3(2))+

πn+5(Sn) ◦ νn+5. Since ηn+4νn+5 = 0 (2.4) and πn+5(Sn) = {νnη2n+3} if n ≥ 5,
we obtain πn+5(Sn) ◦ νn+5 = 0. By use of the homotopy exact sequence of
a pair (P n+3(2), Sn+2), we obtain πn+8(P

n+3(2)) = {in+3ν
2
n+2}. So η̄n+1 ◦

πn+8(P
n+3(2)) = {ηn+1ν

2
n+2} = 0, and hence ηnη̄n+1 ◦ πn+8(P

n+3(2)) = 0.
Thus, the indeterminacy is trivial. This completes the proof.

Although the following result is directly obtained from [13, Table 2], we show

Theorem 4.2 [ιn, ηnεn+1] = 0 if n ≡ 1 (mod 8) and n ≥ 9.
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PROOF. For n = 9, the assertion is obtained in [17, p. 336]. By [16, p. 161]
and Lemma 3.5.(2), we get that

πn+3(SO(n)) = 0

and

πn+4(SO(n)) = {[νn−2]nνn+1} ∼= Z2.

We consider the exact sequence (SOn
n+1):

0−→πn+2(Sn)
∆−→πn+1(SO(n))

i∗−→πn+1(SO(n+ 1))−→0,

where πn+1(SO(n)) ∼= Z8 and πn+1(SO(n+1)) = {τ ′n+1} ∼= Z4 (4.2). By (4.3),
in(R)τ̄ ′n−1 becomes a generator of πn+1(SO(n)) and we have 4in(R)τ̄ ′n−1 =
∆(η2n). Hence, we obtain ∆ηn ◦ ηnη̄n+1 = 0 and we can define a Toda bracket
{∆ηn, ηnη̄n+1, η̃n+2}n−5 ⊂ πn+5(SO(n)). By [36, the second formula in Propo-
sition 1.6 and Proposition 1.2.0)] and the relation 2(η5η̄6) = 0, we obtain

2{∆ηn, ηnη̄n+1, η̃n+2}n−5 = {∆ηn, E
n−5(2(η5η̄6)), E

n−5η̃7}n−5

=∆ηn ◦ En−5π5
10 + [P n+4(2), SO(n)] ◦ η̃n+3.

Since En−5π5
10 = {En−5(ν5η

2
8)} = 0, we have ∆ηn ◦ En−5π5

10 = 0. By the fact
that πn+3(SO(n)) = 0 and the relation νn+1ηn+4 = 0, we obtain [P n+4(2), SO(n)]◦
η̃n+3 = πn+4(SO(n)) ◦ ηn+4 = 0. This implies

(∗) 2{∆ηn, ηnη̄n+1, η̃n+2}n−5 = 0.

In virtue of [5, Theorem 2], [6] and [13, Table 1],

(4.13) πn+4(SO(n)) ∼= Z8d, where d = 2 or 1 according as

n ≡ 2 (mod 8) and n ≥ 18 or n ≡ 6 (mod 8) and n ≥ 14

and πn+5(SO(n)) ∼= Z16 ⊕ Z2. By use of the exact sequence (SOn
n+5), we see

that the direct summand Z2 is generated by ∆(ν2
n). So, by (∗),

{∆ηn, ηnη̄n+1, η̃n+2}n−5 contains possibly ∆(ν2
n) ( mod 8πn+5(SO(n)). By Lemma

4.1 and [36, Proposition 1.4],

∆(ηnεn+1) = ∆ηn ◦ εn ∈ {∆ηn, ηnη̄n+1, η̃n+2}n−5 ◦ νn+4.

Thus, we obtain ∆(ηnεn+1) = a∆(ν3
n) for a ∈ {0, 1}.

Suppose that [ιn, ηnεn+1] ̸= 0. Then, [ιn, ηnεn+1] = [ιn, ν
3
n]. On the other

hand, by [31, Proposition 4.2], [ιn, ηnεn+1] = b[ιn, η
2
nσn+2] for b ∈ {0, 1}. The

assumption induces the equality [ιn, ηnεn+1] = [ιn, η
2
nσn+2]. Then, we have
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[ιn, ηnεn+1] = [ιn, ν
3
n] + [ιn, η

2
nσn+2] = 2[ιn, ηnεn+1] = 0. This completes the

proof.

Since π4n(SO(4n)) ∼= (Z2)
3 or (Z2)

2, if n ≥ 2 [16, p. 161], we obtain

(4.14) ♯τ ′4n = 2, if n ≥ 2.

Next, we show

Lemma 4.3 If n ≡ 0, 1 (mod 4) and n ≥ 8 then [ιn, α] ̸= 0 for α =
εn, ν̄n, ηnσn+1 and µn.

PROOF. We show [ιn, εn] ̸= 0. Let n ≡ 0 (mod 4) and n ≥ 8. By [36,
Proposition 11.10.(i)], there exists an element β ∈ πn−1

2n+6 such that Eβ =
[ιn, εn] and Hβ = η2n−3ε2n−2. Suppose that [ιn, εn] = 0. Then, by (PEn−1

2n+6),
we have β ∈ Pπ2n−1

2n+8. This induces a contradictory relation η2n−3ε2n−2 = 0, and
hence [ιn, εn] ̸= 0. Next, consider the case n ≡ 1 (mod 4) and n ≥ 9. Then,
by (4.6), [ιn, εn] = E(τn−1ε2n−2) and H(τn−1ε2n−2) = η2n−3ε2n−2. Suppose that
[ιn, εn] = 0. Then, (PEn−1

2n+6), (3.8) and (4.6) lead to a contradictory relation
η2n−3ε2n−2 = 0, and so [ιn, εn] ̸= 0. For other elements, the argument goes
ahead similarly.

By (1.3) and Lemma 4.3, ∆: πn+8(Sn) → πn+7(SO(n)) is a monomorphism, if
n ≡ 0, 1 (mod 4) and n ≥ 12. So, by (SOn

n+8), we obtain the exact sequence

(4.15) πn+9(Sn)
∆−→πn+8(SO(n))

i∗−→πn+8(SO(n+ 1))−→0,

if n ≡ 0, 1 (mod 4) and n ≥ 12.

By (2.9) and [36, Lemma 12.10],

(4.16) σ′ν3
14 = η7ε̄8.

(4.16) and [36, Theorem 12.6] yield
[ι8, η

2
8σ10] = (Eσ′)(η15ε16 + ν3

15) = η8ε̄9 + E2ζ ′ ̸= 0.

By (2.8), (2.3) and (2.9), [ι9, η
2
9σ11] = (η29σ11 + σ9η

2
16) ◦ (η18σ19) = 0.

The formula (2.2) and [23, Theorem C] yield
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(4.17) ♯[ιn, η
2
nσn+2] =

 1, if n ≡ 2, 3 (mod 4) and n ≥ 6;

2, if n ≡ 0 (mod 4) and n ≥ 8

and

(4.18) ♯[ιn, η
2
nσn+2] = 2, if n ≡ 1 (mod 8) and n ≥ 17.

Now, we conclude

Proposition 4.4 [ιn, ν
3
n] = 0 if n ≡ 5 ( mod 8) and [ιn, ηnεn+1] = [ιn, η

2
nσn+2] =

0 provided n ≡ 5 (mod 8) and n ≥ 13 unless n ≡ 53 (mod 64).

PROOF. By (3.3) and Lemma 3.3.(1), ∆(ν3
n) = 0 if n ≡ 5 (mod 8). So,

the first assertion holds. In light of [24, (7.9)], the second assertion holds for
n = 13. Let n ≡ 5 (mod 8) and n ≥ 21. We consider the exact sequence
(4.15). By [5, Theorem 2], [6] and [13, Table 1], we see that

πn+8(SO(n+ 1)) ∼=


Z4 ⊕ Z2, if n ≡ 5 (mod 32) and n ≥ 37;

(Z4)
2, if n ≡ 21 (mod 32);

Z4, if n ≡ 13 (mod 16)

and

πn+8(SO(n)) ∼=



Z4 ⊕ (Z2)
2, if n ≡ 5 (mod 32) and n ≥ 37;

(Z4)
2 ⊕ Z2, if n ≡ 21 (mod 64);

Z8 ⊕ Z4 ⊕ Z2, if n ≡ 53 (mod 64);

Z4 ⊕ Z2, if n ≡ 13 (mod 16).

By (3.3) and (4.5), we obtain

∆(η2nσn+2) = 4in(R)τ̄ ′n−1σn+1

and hence

∆(η2nσn+2) =

 0, if n ̸≡ 53 (mod 64);

4in(R)τ̄ ′n−1σn+1 ̸= 0, if n ≡ 53 (mod 64).

This leads to the second assertion and the proof is complete.

Next, we show the following
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Lemma 4.5 Let n ≡ 1 ( mod 4) and n ≥ 5. Then E(τ̄2n−2ν
2
4n−2) = [ι2n−1, ν̄2n−1]

if and only if [ι2n+1, ν
2
2n+1] = 0.

PROOF. By (4.7), E3(τ̄2n−2ν
2
4n−2) = [ι2n+1, ν

2
2n+1] and this implies the nec-

essary condition.

Suppose that [ι2n+1, ν
2
2n+1] = 0. Then, by (PE2n

4n+6),

π4n+1
4n+8

P−→π2n
4n+6

E−→π2n+1
4n+7,

E2(τ̄2n−2ν
2
4n−2) ∈ Pπ4n+1

4n+8
∼= Z16. We can set E2(τ̄2n−2ν

2
4n−2) = 8xP (σ4n+1) for

x ∈ {0, 1}.

Apply [36, Proposition 11.11.(ii)] to the case α = 8σ4n−6, then there exists an
element β ∈ π2n−2

4n+4 such that

P (8σ4n+1) = E2β and H(β) ∈ {η4n−5, 2ι4n−4, 8σ4n−4}2.

By [36, Lemma 6.5, Theorem 7.1] and (2.7),

µ4n−5 ∈ {η4n−5, 2ι4n−4, 8σ4n−4}2 mod η4n−5 ◦ E2π4n−6
4n+2 = {ν3

4n−5, η4n−5ε4n−4}.

So we obtain

H(β) = µ4n−5 + yν3
4n−5 + zη4n−5ε4n−4 (y, z ∈ {0, 1}).

By using (PE2n−1
4n+5) and the assumption,

E(τ̄2n−2ν
2
4n−2)− xEβ ∈ Pπ4n−1

4n+7 = {P (ν̄4n−1), P (ε4n−1)}.

By Lemma 4.1, P (ν̄4n−1) = E(τ2n−2ν̄4n−4) and P (ε4n−1) = E(τ2n−2ε4n−4). So,
by using (PE2n−2

4n+4),

τ̄2n−2ν
2
4n−2 − xβ − aτ2n−2ν̄4n−4 − bτ2n−2ε4n−4 ∈ Pπ4n−3

4n+6 (a, b ∈ {0, 1}).

By applying H : π2n−2
4n+5 → π4n−5

4n+5 to the equation, by use of (4.6), (4.7) and
(2.7), we obtain

ν3
4n−5 − x(µ4n−5 + yν3

4n−5 + zη4n−5ε4n−4) = aν3
4n−5 + bη4n−5ε4n−4.

Since µ4n−5, ν
3
4n−5, η4n−5ε4n−4 generate π

4n−5
4n+4 independently, we have x = 0, a =

1 and b = 0. Hence, E(τ̄2n−2ν
2
4n−2) = E(τ2n−2ν̄4n−4). This completes the proof.

Since νnηn+3 = 0 (2.4) and ν̄nηn+8 = ν3
n (2.7) for n ≥ 6, Lemma 4.5 implies

Corollary 4.6 If [ι8n+3, ν
2
8n+3] = 0, then [ι8n+1, ν

3
8n+1] = 0.
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Now, we show

III. [ιn, ν
2
n] = 0 if n = 2i − 5 (i ≥ 4).

We recall the Mahowald element η′i ∈ πS
2i(S0) [22, Theorem 1] for i ≥ 3. We set

η′i−1,m = η′i−1 on Sm for m = 2i−1−2 with i ≥ 4, that is, η′i−1,m ∈ π2i−1+m(Sm).
It satisfies the relation H(η′i−1,m) = ν2m−1. Then, the assertion follows directly
from [3, Proposition] taking α = β = η′i−1,m.

Finally, we show

IV. [ιn, ν
2
n] ̸= 0 if n ≡ 3 (mod 8) and n ≥ 19 unless n = 2i − 5.

By III and Corollary 4.6, we obtain

[ιn, ν
3
n] = 0, if n = 2i − 7 (i ≥ 4).

Hence, from Theorem 4.2 and the relation η2nσn+2 = ν3
n + ηnεn+1,

[ιn, η
2
nσn+2] = 0, if n = 2i − 7 (i ≥ 4).

Let n ≡ 1 (mod 8) and n ≥ 17. Considering the exact sequence (4.15), in
virtue of [5, Theorem 2], [6] and [13, Table 1], we obtain

πn+8(SO(n)) ∼= Z2 ⊕ Z2 ⊕ Z8 and πn+8(SO(n+ 1)) ∼= Z2 ⊕ Z4.

By (4.8) and (4.18), we get the relation

4E(τ̄n−1σ2n) = [ιn, η
2
nσn+2] ̸= 0.

Hence, by (4.18) and Theorem 4.2, we obtain

[ιn, ν
3
n] = [ιn, η

2
nσn+2] ̸= 0, if n ≡ 1 (mod 8) and n ≥ 17 and n ̸= 2i − 7.

Thus, by Corollary 4.6, we obtain the assertion.

We are in a position to assert that Mahowald’s result [21, Table 2 for η2ρ1]
should be stated as follows.

Theorem 4.7 Let n ≡ 1 (mod 8) and n ≥ 9. Then [ιn, η
2
nσn+2] ̸= 0 if and

only if n ̸= 2i − 7.

5 Proof of [ι16s+7, σ16s+7] ̸= 0 for s ≥ 1

We give a proof of the first part of Theorem 2.4: [ι16s+7, σ16s+7] ̸= 0 for s ≥ 1.
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We recall from [36, pp. 95-6] the construction of the element κ7 ∈ π21(S7). It
is a representative of a Toda bracket

{ν7, Eα,E2β}1,

where α = η̄9 ∈ [P11(2),S9] is an extension of η9 and β = ˜̄ν9 ∈ π18(P
10(2)) is a

coextension of ν̄9 satisfying α ◦ Eβ = 0. Furthermore, κn = En−7κ7 for n ≥ 7
and set ˜̄νn = En−9 ˜̄ν9 for n ≥ 9. Then, we can take

κn ∈ {νn, η̄n+3, ˜̄νn+4} for n ≥ 7.

By [16, p. 161], πn+4(SO(n + k)) ∼= Z ⊕ Z2 for k = 1, 2 if n ≡ 7 (mod 8).
And, by (SOn+2

n+4), the direct summand Z2 of πn+4(SO(n + 2)) is generated
by ∆νn+2. So, the non-triviality of [νn]ηn+3 ∈ πn+4(SO(n + 1)) induces the
relation in+2(R)∗([νn]ηn+3) = ∆νn+2. Because of the fact that [ιn+2, ν

2
n+2] ̸= 0,

this induces a contradictory relation 0 = ∆ν2
n+2 ̸= 0. Hence, we obtain

[νn]ηn+3 = 0, if n ≡ 7 (mod 8).

Next, by [16, p. 161],

{[νn], ηn+3, 2ιn+4} ⊂ πn+5(SO(n+ 1)) = 0, if n ≡ 7 (mod 8).

So, by (4.10), we have [νn]η̄n+3 ∈ {[νn], ηn+3, 2ιn+4} ◦ pn+5 = 0 and hence we
can define a lift of κn for n ≡ 7 (mod 8), as follows:

[κn] ∈ {[νn], η̄n+3, ˜̄νn+4} ⊂ πn+14(SO(n+ 1)) for n ≡ 7 (mod 8).

Let n ≡ 7 (mod 8) and n ≥ 15. By use of (SOn−k
n−4) for k = 3, 4, (SOn−l

n−3) for
l = 2, 3, 5, (SOn−m

n−2 ) for 2 ≤ m ≤ 5 and [16, p. 161], we obtain

πn−4(SO(n− 4)) = {β} ∼= Z; πn−4(SO(n− 3)) = {in−3(R)β,∆ιn−3} ∼= (Z)2;

πn−3(SO(n−4)) = {[η2n−5]} ∼= Z2; πn−3(SO(n−3)) = {[ηn−4],∆ηn−3} ∼= (Z2)
2;

πn−2(SO(n− 4)) = {[η2n−5]ηn−3,∆νn−4} ∼= (Z2)
2;

πn−2(SO(n−3)) = {[ηn−4]ηn−3,∆η2n−3} ∼= (Z2)
2; πn−2(SO(n−2)) = {∆ηn−2} ∼= Z2,

where β is a generator of πn−4(SO(n− 4)) and

(5.1) ∆ηn−3 = [η2n−5]n−3.

We need

(5.2) {pn(R), in(R),∆ιn−1} ∋ ιn−1 (mod 2ιn−1) for n ≥ 9.

By the same reason as (3.1), we obtain ∆(η̄3) = 0 ∈ [P4(2), SO(3)]. Let
n ≡ 7 (mod 8) and n ≥ 15. Then, by Lemma 3.1.(1) and (4.10), we obtain

∆(η̄n−4) = ∆ιn−4 ◦ η̄n−5 ∈ −{∆ιn−4, ηn−5, 2ιn−4} ◦ pn−3 = 0.
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So, η̄n−4 is lifted to [η̄n−4] ∈ [Pn−2(2), SO(n − 3)] for n ≡ 7 (mod 8). We set
[η̄n−4] ◦ in−2 = [ηn−4], which is a lift of ηn−4. By (5.1) and (5.2), we get

(5.3) [ηn−4] ∈ {in−3(R),∆ιn−4, ηn−5} (mod in−3(R) ◦ πn−3(SO(n− 4))

+ πn−4(SO(n− 3)) ◦ ηn−4 = {∆ηn−3}) for n ≡ 7 (mod 8) and n ≥ 15.

By use of the cofiber sequence Sn−3 in−2−→Pn−2(2)
pn−2−→Sn−2 and the relation

[η̄n−4] ◦ in−2 = [ηn−4], we obtain

(5.4) [ηn−4] ≡ [η̄n−4] (mod πn−2(SO(n−3))◦pn−2 = 2[P n−2(2), SO(n−3)]).

We show

Lemma 5.1 Let n ≡ 7 (mod 8) and n ≥ 15. Then,

(1) [ηn−4] ∈ {in−3(R),∆ιn−4, η̄n−5} (mod {∆(η̄n−3)}+K), where
K = in−3(R)∗[Pn−2(2), SO(n− 4)] + πn−4(SO(n− 3)) ◦ η̄n−4;

(2) in−2(R)∗K ⊂ {(∆ηn−2)pn−2}.

PROOF. By (4.9), (5.4) and (5.3), we have (1).

We see that [Pn−2(2), SO(n − 4)] = {[η2n−5], (∆νn−4)pn−2} ∼= Z4 ⊕ Z2, where

[η2n−5] is an extension of [η2n−5] and 2[η2n−5] = [η2n−5]ηn−3pn−2. Hence, by (5.1),

in−4,n−2∗[η
2
n−5] ∈ in−2(R) ◦ {∆ηn−3, 2ιn−3, pn−3} =

−{in−2(R),∆ηn−3, 2ιn−3} ◦ pn−2.

Since {in−2(R),∆ηn−3, 2ιn−3} ⊂ πn−2(SO(n− 2)) = {∆ηn−2}, we have
in−4,n−2∗[P

n−2(2), SO(n− 4)] ⊂ {(∆ηn−2)pn−2}.

From the relation pn−3(R)β = 0, we obtain βηn−4 = 0 ∈ πn−3(SO(n− 4)). So,
by (4.10), we have βη̄n−4 ∈ {β, ηn−4, 2ιn−3} ◦ pn−2 ⊂ πn−2(SO(n− 2)) ◦ pn−2.
Hence,we obtain in−2(R)∗(πn−4(SO(n − 3)) ◦ η̄n−4) ⊂ {(∆ηn−2)pn−2}. This
leads to (2) and completes the proof.

We show

Lemma 5.2 [κn−8]n−1 = ∆ν̄n−1 if n ≡ 7 (mod 8) and n ≥ 15.
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PROOF. By use of (SOn−7+k
n−5 ) for 0 ≤ k ≤ 3 and [16, p. 161], we have

[νn−8]n−4 = ∆ιn−4, and so

[κn−8]n−1 ∈ (in−4,n−1)∗{∆ιn−4, η̄n−5, ˜̄νn−4}.

By (5.4) and Lemma 5.1, we obtain

in−3(R)∗{∆ιn−4, η̄n−5, ˜̄νn−4} = −{in−3(R),∆ιn−4, η̄n−5} ◦ ˜̄νn−3

≡ [ηn−4] ◦ ˜̄νn−3 ∈ {[ηn−4], 2ιn−3, ν̄n−3}
(mod [ηn−4] ◦ πn+6(Sn−3) + πn−2(SO(n− 3)) ◦ ν̄n−2 +K ◦ ˜̄νn−3).

By Lemma 5.1 and (3.6), in−2(R)∗(K◦ ˜̄νn−3) ⊂ {∆ηn−2}◦ν̄n−3 = {∆ν3
n−2} = 0.

From the relation [ηn−4]n−2 = ∆ιn−2, we see that

[κn−8]n−2 ∈ {∆ιn−2, 2ιn−3, ν̄n−3} (mod ∆πn+7(Sn−2))

and

[κn−8]n−1 ∈−in−1(R) ◦ {∆ιn−2, 2ιn−3, ν̄n−3}
= {in−1(R),∆ιn−2, 2ιn−3} ◦ ν̄n−2.

Since {in−1(R),∆ιn−2, 2ιn−3} ≡ ∆ιn−1 (mod 2∆ιn−1) by (5.2), we have

{in−1(R),∆ιn−2, 2ιn−3} ◦ ν̄n−2 = ∆ν̄n−1.

This completes the proof.

Hereafter, we fix n = 16s + 7 ≥ 23. Suppose that E7(γσ2n−8) = [ιn, σn] =
0, where γ is the element in (2.14). Then, by (PEn−1

2n+5) and Lemma 5.2,
E6(γσ2n−8) ∈ {[ιn−1, ν̄n−1] = E6J [κn−7], [ιn−1, ηn−1σn]}.

By [29, p. 382: Table], there exists an element δ ∈ πn−8
2n−10 such that

(5.5) [ιn−1, ηn−1] = E7δ and Hδ = σ2n−17

and so, [ιn−1, ηn−1σn] desuspends until we reach seven dimensions. Hence, in
the sequel argument, it suffices to consider E6(γσ2n−8) = aE6J [κn−7] for a ∈
{0, 1}. By (PEn−2

2n+4), we have

E5(γσ2n−8 − aJ [κn−7]) ∈ Pπ2n−3
2n+6.

By Lemma 4.3 and Proposition 4.4, Pµ2n−3 ̸= 0 and P (ν3
2n−3) = 0. By [29,

p. 383: Table], [ιn−2, η
2
n−2] and [ιn−2, η

2
n−2σn] desuspend until 7 dimensions.

Hence, for x ∈ {0, 1}, we have

E5(γσ2n−8 − aJ [κn−7]) = xPµ2n−3.
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By [36, Proposition 11.10.(ii)], there exists an element β ∈ πn−3
2n+3 such that

Pµ2n−3 = Eβ and Hβ = η2n−7µ2n−6. Then, by (PEn−3
2n+3), we have

E4(γσ2n−8 − aJ [κn−7])− xβ ∈ Pπ2n−5
2n+5.

This induces the relation xη2n−7µ2n−6 = 0. Hence, x = 0 and we can set

E4(γσ2n−8 − aJ [κn−7]) = yP (η2n−5µ2n−4) for y ∈ {0, 1}.

By [36, Proposition 11.10.(i)], there exists an element β′ ∈ πn−4
2n+2 such that

P (η2n−5µ2n−4) = Eβ′ and Hβ′ = η22n−9µ2n−7. So, we have

E3(γσ2n−8 − aJ [κn−7])− yβ′ ∈ Pπ2n−7
2n+4.

This leads to the relation yη22n−9µ2n−7 = 0, and hence y = 0. Therefore, by
(4.7), we obtain

E3(γσ2n−8 − aJ [κn−7]− bτ̄n−7ζ2n−12) = 0 (b ∈ {0, 1}).

By (PEn−5−k
2n+1−k) for k = 0, 1 and 2, we have

E2(γσ2n−8 − aJ [κn−7]− bτ̄n−7ζ2n−12) ∈ Pπ2n−9
2n+3 = 0

E(γσ2n−8 − aJ [κn−7]− bτ̄n−7ζ2n−12) ∈ Pπ2n−11
2n+2 = 0

and

γσ2n−8 − aJ [κn−7]− bτ̄n−7ζ2n−12 ∈ Pπ2n−13
2n+1 .

By (4.7) and [36, Lemma 9.2, Theorem 10.3],
H(τ̄n−7ζ2n−12) = ±(n−3

4
)ν2n−15ζ2n−12 = ±2(n − 3)σ2

2n−15 = 0. Then, the last
relation induces the contradictory relation σ2

2n−15 = aκ2n−15. Thus, we obtain
the non-triviality of [ιn, σn] if n ≡ 7 (mod 16) and n ≥ 23.

By Lemma 5.2, we have [ιn, ν̄n] = E6J [κn−7] if n ≡ 6 (mod 8) and n ≥ 14.
By the parallel arguments to the above, we obtain

Corollary 5.3 [ιn, ν̄n] ̸= 0, if n ≡ 6 (mod 8) and n ≥ 14.

6 Gottlieb groups of spheres with stems for 8 ≤ k ≤ 13

By [36, Theorems 7.1,7.4,7.6, p. 186: Table], πn+8(Sn) = {εn} ∼= Z2 for n = 4, 5
and [ι4, ε4] = (Eν ′)ε7 ̸= 0, [ι5, ε5] = ν5η8ε9 ̸= 0.

We recall π14(S6) = {ν̄6, ε6, [ι6, α1(6)]} ∼= Z24 ⊕ Z2. By [36, (7.27)],

(6.1) [ι6, ν̄6] = [ι6, ε6] = 0.
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So, we obtain G14(S6; 2) = π6
14. By Proposition 1.5.(1), G14(S6; 3) = π14(S6; 3).

This shows G14(S6) = π14(S6).

We recall π16(S8) = {σ8η15, (Eσ′)η15, ν̄8, ε8} ∼= (Z2)
4 and π17(S9) = {σ9η16, ν̄9, ε9} ∼=

(Z2)
3. We have [ι8, σ8η15] = (Eσ′)σ15η22 = (Eσ′)(ν̄15 + ε15) = [ι8, ν̄8] + [ι8, ε8].

By (2.15) and [36, Theorem 12.6], [ι9, σ9η16] = σ9(ν
3
16+ η16ε17) ̸= 0. So, obtain

G16(S8) = {(Eσ′)η15, σ8η15 + ν̄8 + ε8} ∼= (Z2)
2 and G17(S9) = {[ι9, ι9]} ∼= Z2.

Hence, by Lemma 4.3, we get that

Gn+8(Sn) = 0, if n ≡ 0, 1 (mod 4) and n ≥ 4 unless n = 8, 9.

Since π27(S10) → π28(S11) is a monomorphism [36, (12.21)], we obtain

G18(S10) = π18(S10).

Let n ≡ 3 ( mod 4) and n ≥ 11. Then, by Lemma 1.1.(1) and (2.1), [ιn, ηnσn+1] =
0. In virtue of (1.3) and Example 3.2, we obtain [ιn, εn] = 0. Thus, as it is
expected in Proposition 1.3,

Gn+8(Sn) = πn+8(Sn), if n ≡ 3 (mod 4).

By Lemma 4.3 and [21, Theorem C],
(6.2)

♯[ιn, ηnσn+1] =

 2, if n ≡ 0, 1, 2, 4, 5 (mod 8) and n ≥ 8 unless n = 10;

1, if n ≡ 3 (mod 4) and n ≥ 7.

Here we recall from [4, p. 137, Corollary 1.6] and [7, p. 48: Theorem], the
following

Theorem 6.1 (Barratt-Jones-Feder-Gitler-Lam-Mahowald) Let β’s gen-
erate the J-image in the s-stem and assume 3s− 2 ≤ 2n. Then,

(1) [ιn, β] = 0, provided n and s satisfy 3 ≤ ν2(n+ s+ 2) ≤ ϕ(s);

(2) [ιn, β] ̸= 0 provided n and s satisfy ν2(n + s + 2) ≥ ϕ(s) + 1 ≥ 3, but
n+ s+ 2 ̸= 2ϕ(s)+1.

Here ν2(m) is the exponent of 2 in the factorization of m and ϕ(s) denotes the
number of integers in the closed interval [1, s] which are congruent to 0, 1, 2
or 4 modulo 8.
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By use of Theorem 6.1, we obtain
(6.3)

♯[ιn, ηnσn+1] =

 2, if n ≡ 22 (mod 32) and n ≥ 54;

1, if n ≡ 14 (mod 16) or n ≡ 6 (mod 32) and n ≥ 14

and
(6.4)

♯[ιn, η
2
nσn+1] =

 2, if n ≡ 53 (mod 64) and n ≥ 117;

1, if n ≡ 13 (mod 16), 5 (mod 32) or 21 (mod 64) and n ≥ 13.

Now, we show

Lemma 6.2 (1) Let n ≡ 2 (mod 8) and n ≥ 18. Then, ∆εn = 0.

(2) Let n ≡ 6 (mod 8) and n ≥ 14. Then, ∆εn = ±2[ν2
n−2]nνn+4.

PROOF. Although (1) is directly obtained by [13, Table 2], we give a differ-
ent proof.

Let n ≡ 2 (mod 4) and n ≥ 18. Then, by the fact that πn+1(SO(n)) ∼= Z [16,
p. 161], we have τ ′nηn = 0. So, by (3.3), (4.12) and (4.2), we obtain

∆(ηnη̄n+1) = 2τ ′n ◦ η̄n = τ ′n ◦ η2npn+2 = 0.

Therefore, by Lemma 4.1, we get

∆εn = ∆ιn ◦ εn−1 = ∆ιn ◦ {ηn−1η̄n, η̃n+1, νn+3} = −{∆ιn, ηn−1η̄n, η̃n+1} ◦ νn+4.

We have
{∆ιn, ηn−1η̄n, η̃n+1} ⊂ πn+4(SO(n)).

Noting the relation 4η̃n+1 = 0, we obtain

4{∆ιn, ηn−1η̄n, η̃n+1} = −∆ιn◦{ηn−1η̄n, η̃n+1, 4ιn+3} ⊂ −∆ιn◦πn+4(Sn−1) = 0.

This induces ∆εn ∈ (2d)(πn+4(SO(n))◦νn+4), where d is the number in (4.13).
Since 4πn+7(SO(n)) = 0 by [5, Theorem 2], [6] and [13, Table 1], we obtain
(1).

Let n ≡ 6 (mod 8) and n ≥ 14. By the exact sequences (SOn+k
n+4) for k =

−2,−1 and Lemma 3.3 we get that in(R)∗ : πn+4(SO(n− 1)) → πn+4(SO(n))
is an isomorphism and πn+4(SO(n− 1)) = {[ν2

n−2]} ∼= Z8.

By [13, Table 2], ∆εn ̸= 0 for n ≡ 6 (mod 8) and n ≥ 14. Hence, (2) follows
and the proof is complete.
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Now, by Lemma 6.2.(1) and (6.2),

[ιn, εn] = 0 and [ιn, ν̄n] = [ιn, ηnσn+1] ̸= 0, if n ≡ 2 (mod 8) and n ≥ 18.

Whence, we conclude that

Gn+8(Sn) = {εn} ∼= Z2, if n ≡ 2 (mod 8) and n ≥ 18.

We show [ιn, εn] ̸= 0 if n ≡ 22 (mod 32) and n ≥ 22. By (5.5), there exists an
element δ ∈ πn−7

2n−8 such that [ιn, ηn] = E7δ andHδ = σ2n−15. Hence, by Lemma
5.2, [ιn, εn] = E6(J [κn−7] + E(δσ2n−7)). Suppose that [ιn, εn] = 0. Then, by
the parallel argument to that in the proof the non-triviality of [ιn+1, σn+1], we
get a contradiction.

By [24, (7.13)], Ker{P : π37(S29) → π35(S14)} = {η14σ15} and hence,G22(S14) =
{η14σ15} ∼= Z2. By [32, p. 134: (7.29)], Ker{P : π45

53 → π22
51} = {η45σ46} and

hence, G30(S22) = {η22σ23} ∼= Z2. Thus, we have shown

Proposition 6.3 The group Gn+8(Sn) is equal to the following: 0 if n ≡
0, 1 (mod 4) and n ≥ 4 unless n = 8, 9 or n ≡ 22 (mod 32) and n ≥
54; πn+8(Sn) if n = 6, 10 or n ≡ 3 (mod 4); {εn} ∼= Z2, if n ≡ 2 (mod
8) and n ≥ 18. Moreover, Gn+8(Sn) = {ηnσn+1} ∼= Z2 if n = 22, n ≡
14 (mod 16) or n ≡ 6 (mod 32) with n ≥ 14; G16(S8) = {(Eσ′)η15, σ8η15 +
ν̄8 + ε8} ∼= (Z2)

2 and G17(S9) = {[ι9, ι9]} ∼= Z2.

By [36, Theorem 7.6],

(6.5) [ι4, µ4] = (Eν ′)µ7 ̸= 0.

We have [ι5, µ5] = ν5η8µ9 ̸= 0 [36, Theorem 7.7].

By [36, (10.6)],

(6.6) [ι6, µ6] = 0.

We have [ι8, µ8] = (Eσ′)µ15 ̸= 0 [36, Theorem 12.6] and [ι9, µ9] = η9µ10σ19 +
σ9η16µ17 ̸= 0 [36, (12.21), Theorem 12.7].

We recall the relations (2.8) and [36, Proposition 3.1, Lemma 12.12]: σ10η17 =
η10σ11, σ11µ18 = µ11σ20 and 4ζ9σ20 = 8σ9ζ16 = 0. By these relations, (2.8) and
(6.13), [ι9, η9µ10] = (η29σ11 + σ9η

2
16)µ18 = 4ζ9σ20 + 4σ9ζ16 = 4σ9ζ16 ̸= 0. That

is,

(6.7) [ι9, η9µ10] = 4σ9ζ16 ̸= 0.

Making use of the EHP sequence (PE9
17), by [36, Theorem 12.8] and (6.7), we

have
♯(σ10ζ17) = 4.
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So, by [36, (12.25)],

(6.8) [ι10, µ10] = 2σ10ζ17 ̸= 0.

By Example 3.2, [ι11, µ11] = 0. We have [ι12, µ12] ̸= 0 [36, Lemma 16.2] and
[ι13, µ13] ̸= 0 [24, p. 309]. By [24, pp. 321-2], [ι14, µ14] ̸= 0. By [32, p. 140:
(8.31), Theorem 3.(b)], [ι22, µ22] ̸= 0. Hence, by Lemma 4.3 and [21, Theorem
C],

(6.9) ♯[ιn, µn] =

 1, if n = 6 or n ≡ 3 (mod 4);

2, if n ≡ 0, 1, 2 (mod 4) and n ≥ 4 unless n = 6.

We have [ι4, η4µ5] = (Eν ′)η7µ8 ̸= 0 and [ι5, η5µ6] = ν5η
2
8µ10 = 4ν5ζ8 = 0

(6.13), [36, Theorem 10.3]. That is,

(6.10) [ι5, η5µ6] = 0.

By (2.1) and (4.2), [ιn, ηnµn+1] = 0 for n = 6, 10 and 11. By [36, Theorem
12.7],

(6.11) [ι8, η8µ9] = (Eσ′)η15µ16 ̸= 0

and [ι11, η11µ11] = 0 (2.1). By [24, (7.8)], [ι12, η12µ13] ̸= 0. By [24, p. 321],
[ι13, η13µ14] = 8ρ13σ28 ̸= 0. By [32, p. 139: (8.27)], [ι21, η21µ22] ̸= 0. Hence, by
[21, Theorem C],

(6.12) ♯[ιn, ηnµn+1] =

 1, if n = 5 or n ≡ 2, 3 (mod 4);

2, if n ≡ 0, 1 (mod 4) and n ≥ 4 unless n = 5.

We recall π15(S6) = {ν3
6 , µ6, η6ε7} ∼= (Z2)

3. Since [ι6, η6] = 0 and ν3
6 = η6ν̄7

(2.7), we have [ι6, ν
3
6 ] = [ι6, η6ε7] = 0. So, by (6.6), we obtain G15(S6) =

π15(S6).

Next, we recall π19(S10) = {[ι10, ι10], ν3
10, µ10, η10ε11} ∼= Z ⊕ (Z2)

3. By (4.2)
and (2.7), [ι10, ν

3
10] = [ι10, η10ε11] = 0. So, by (6.8), G19(S10) = {3[ι10, ι10],

ν3
10, η10ε11} ∼= 3Z⊕ (Z2)

2.

Let n ≡ 2 (mod 4) and n ≥ 14. Then, by (4.2),

[ιn, η
2
nσn+2] = [ιn, ηnεn+1] = 0.

By (6.9), [ιn, µn] ̸= 0. Whence, we obtain

Gn+9(Sn) = {ν3
n, ηnεn+1} ∼= (Z2)

2, if n ≡ 2 (mod 4) and n ≥ 14.
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Let n ≡ 3 (mod 4) and n ≥ 11. Then, by (2.1) and Example 3.2,

Gn+9(Sn) = πn+9(Sn), if n ≡ 3 (mod 4).

We recall π13(S4) = {ν3
4 , µ4, η4ε5} ∼= (Z2)

3. We have [ι4, ν
3
4 ] = 2ν2

4 ◦ν2
10 = 0 and

[ι4, η4ε5] = (Eν ′)η7ε8 ̸= 0 [36, Theorem 7.6]. So, by (6.5), G13(S4) = {ν3
4} ∼=

Z2.

Let now n ≡ 4 (mod 8) and n ≥ 12. By Lemma 1.1.(1) and (3.7), we have
[ιn, ν

3
n] = 0. In light of (6.9) and (4.17), [ιn, ηnεn+1] = [ιn, η

2
nσn+2] ̸= 0 and

[ιn, µn] ̸= 0. Suppose that P (α2n+1 + µ2n+1) = 0 for α2n+1 = η2n+1ε2n+2 or
η22n+1σ2n+3. By [36, Proposition 11.10.(i)], there exists an element β ∈ πn−1

2n+7

satisfying Eβ = 0 and Hβ = η2n−3(α2n−2 + µ2n−2) = η2n−3µ2n−2. On the
other hand, (PEn−1

2n+7) implies a contradictory relation β ∈ Pπ2n−1
2n+9 = 0. So,

[ιn, αn] ̸= [ιn, µn] and hence

Gn+9(Sn) = {ν3
n} ∼= Z2, if n ≡ 4 (mod 8).

By (2.7), (2.8) and (2.16), [ι9, ν
3
9 ] = (η29σ11 + σ9η

2
16) ◦ ν̄18 = 0. By (2.15)

and (2.12), [ι9, σ9η
2
16] = σ9(σ16η

3
23) = 4σ2

9ν23 = 0. So, we obtain G18(S9) =
{σ9η

2
16, ν

3
9 , η9ε10} ∼= (Z2)

3. Let now n ≡ 1 (mod 8) and n ≥ 17. By (6.9),
[ιn, µn] ̸= 0 and by (4.2), [ιn, ηnεn+1] = 0. In light of IV, [ιn, ν

3
n] = 0 if n = 2i−7

for i ≥ 4 and [ιn, ν
3
n] = [ιn, η

2
nσn+2] ̸= 0 if n ≡ 1 (mod 8) and n ≥ 17 and

n ̸= 2i − 7. We show [ιn, η
2
nσn+2] ̸= [ιn, µn]. Suppose otherwise. Then, by

[36, Proposition 11.10.(ii)], there is an element β ∈ πn−1
2n+7 such that Eβ =

P (η22n+1σ2n+2 + µ2n+1) = 0 and Hβ = η2n−3µ2n−2. On the other hand, by
(PEn−1

2n+7) and (3.8), Hβ = 0, and so we get the assertion. Hence, we obtain

Gn+9(Sn) =

 {ηnεn+1} ∼= Z2, if n ≡ 1 (mod 8) and n ≥ 17 and n ̸= 2i − 7;

{ηnεn+1, ν
3
n} ∼= (Z2)

2, if n = 2i − 7 (i ≥ 5).

By (2.4) and [36, (7.10)], [ι5, η5ε6] = ν5η
2
8ε10 = 4ν2

5σ11 = 0. So, we obtain
G14(S5) = {ν3

5 , η5ε6} ∼= (Z2)
2. Let n ≡ 5 (mod 8) and n ≥ 13. By Proposition

4.4 and (6.9), ν3
n ∈ Gn+9(Sn) and µn ̸∈ Gn+9(Sn). Furthermore, by Proposition

4.4, ηnεn+1 ∈ Gn+9(Sn) unless n ≡ 53 (mod 64). So, we obtain

Gn+9(Sn) = {ν3
n, ηnεn+1} ∼= (Z2)

2, if n ≡ 5 (mod 8) and n ̸≡ 53 (mod 64).

At the end, we use the following:

ζn ∈ {2ιn, ηn, αn+1}2 (mod 2ζn) for αn+1 = η2n+1σn+3 or ηn+1εn+2, if n ≥ 11.
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Let n ≡ 0 (mod 8) and n ≥ 16. By [36, Proposition 11.11.(i)], there exists
an element β ∈ πn−2

2n+6 such that [ιn, αn] = E2β and Hβ ∈ {2ι2n−5, η2n−5,
α2n−4}2 ∋ ζ2n−5 (mod 2ζ2n−5). Suppose that [ιn, αn] = 0. Then, (PEn−1

2n+7)
induces a relation Eβ ∈ Pπ2n−1

2n+9 = 0. By (PEn−2
2n+6) and (3.8), we have a

contradictory relation ζ2n−5 ∈ 2π2n−5
2n+6. Whence, we get that [ιn, αn] ̸= 0. In

light of (6.9) and (6.12), we know [ιn, µn] ̸= 0 and [ιn, µn]η2n+8 ̸= 0. This
implies that [ιn, αn] ̸= [ιn, µn] and [ιn, ν

3
n] ̸= [ιn, µn].

By (2.9) and (4.16), [ι8, ν
3
8 ] = (Eσ′)ν3

15 = η8ε̄9 and [ι8, σ8η
2
16] = (Eσ′)σ15η

2
22 =

(Eσ′)(η15ε16 + ν3
15) = [ι8, η8ε9] + [ι8, ν

3
8 ]. We have [ι8, (Eσ′)η215] = 0. So, we

obtain G17(S8) = {(Eσ′)η215, σ8η
2
15 + ν3

8 + η8ε9} ∼= (Z2)
2. By [32, p. 71],

Ker{P : π33
42 → π16

40} = 0 and hence, G25(S16) = 0.

By [36, (7.14)],

(6.13) 2ζ5 = ±E2µ′ and 4ζn = η2nµn+2 for n ≥ 5.

Let n ≡ 2 (mod 4) and n ≥ 6. By (6.13), Lemma 1.1.(1) and (2.2), 4[ιn, ζn] =
0. So, by the relation H[ιn, ζn] = ±2ζ2n−1, we obtain

(6.14) ♯[ιn, ζn] = 4, if n ≡ 2 (mod 4) and n ≥ 6.

By [29, 4.14], there exists an element τ1 ∈ πn−6
2n+2 such that

[ιn, ν
3
n] = E6τ1, Hτ1 = η2n−13κ2n−12, if n ≡ 0 (mod 8) and n ≥ 16.

Suppose that [ιn, ν
3
n] = 0. Then, by (PEn−1

2n+7), we have E5τ1 = 0. So, by
(PEn−2

2n+6), we have E4τ1 ∈ Pπ2n−3
2n+8 = {[ιn−2, ζn−2]}. By applying H : πn−2

2n+6 →
π2n−5
2n+6 to this relation and by (6.14), we obtain E4τ1 = 4a[ιn−2, ζn−2] = 0 for

a ∈ {0, 1}. By the fact that π2n−5
2n+7 = π2n−7

2n+6 = 0, we obtain E2τ1 = 0. Hence,
by (PEn−5

2n+3) and (4.7), we have

Eτ1 ∈ Pπ2n−9
2n+5 = E3τ̄n−8 ◦ {σ2

2n−11, κ2n−11}.

By (PEn−6
2n+2), we obtain

τ1 + E2(bτ̄n−8σ
2
2n−14 + bτ̄n−8κ2n−14) ∈ Pπ2n−11

2n+4 with b, c ∈ {0, 1}.

This induces a contradictory relation η2n−13κ2n−12 ∈ 2π2n−13
2n+2 . Thus, we con-

clude that
[ιn, ν

3
n] ̸= 0, if n ≡ 0 (mod 8) and n ≥ 16.

Summing the above, we get

Proposition 6.4 The group Gn+9(Sn) is equal to the following: πn+9(Sn) if
n = 6 or n ≡ 3 (mod 4); {ν3

n, ηnεn+1} ∼= (Z2)
2 if n ≡ 2 (mod 4) and n ≥ 14,

n = 2i − 7 for i ≥ 5 or n ≡ 5 (mod 8) unless n ≡ 53 (mod 64); {ν3
n} ∼= Z2 if
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n ≡ 4 (mod 8) or 53 (mod 64) and n ≥ 117; {ηnεn+1} ∼= Z2 if n ≡ 1 (mod
8) and n ≥ 17 and n ̸= 2i − 7; 0 if n ≡ 0 (mod 8) and n ≥ 16. Moreover,
G17(S8) = {(Eσ′)η215, σ8η

2
15+ν3

8+η8ε9} ∼= (Z2)
2, G18(S9) = {σ9η

2
16, ν

3
9 , η9ε10} ∼=

(Z2)
3 and G19(S10) = {3[ι10, ι10], ν3

10, η10ε11} ∼= 3Z⊕ (Z2)
2.

By (1.1), Propositions 1.2.(3), 1.3, (1.6) and (6.12), we can determineGn+10(Sn)
for n ≥ 12.

We have G14(S4; 5) = π14(S4; 5) ∼= Z5 and G14(S4; 3) = π14(S4; 3) ∼= (Z3)
2 by

(1.7).

By [36, Theorem 7.3], π4
14 = {ν4σ′, Eε′, η4µ5} ∼= Z8 ⊕ Z4 ⊕ Z2. We have

[ι4, ν4σ
′] = 2ν2

4E
3σ′ and [ι4, Eε′] = 2ν4E

4ε′ − E(ν ′E3ε′). By the definition
of ε′ [36, p. 58], we obtain

ν ′E3ε′ ∈ ν ′ ◦ −{2ν6, 2ν9, ν12} = {ν ′, 2ν6, 2ν9} ◦ ν13

= 2{ν ′, ν6, 2ν9} ◦ ν13 ∋ 2ε′ν13 (mod ν ′σ′′ν13).

By the relations 2ε′ = η23ε5 [36, Lemma 6.6] and ε4ν12 = P (ν̄9) [36, (7.13)], we
obtain 2ε′ν13 = 0. By (2.3), (2.13) and [36, (7.4)], E(ν ′σ′′) = η34σ

′ = η24 ◦4ν̄6 =
0 and so, we obtain ν ′σ′′ = 0, ν ′σ′′ν13 = 0. This implies ν ′E3ε′ = 0. By
[36, (7.10), (7.16)], ν5Eσ′ = 2(ν5σ8) = ±E2ε′. Therefore, we conclude that
ν4σ

′ ± Eε′ ∈ G14(S4). We also obtain 2Eε′ ∈ G14(S4), because [ι4, 2Eε′] =
4(ν4E

4ε′) = 0. By (2.6) and (6.10), G15(S5) = π15(S5).

We recall the following:

π16(S6) = {ν6σ9, η6µ7, β1(6)} ∼= Z72 ⊕ Z2,

π18(S8) = {σ8ν15, ν8σ11, η8µ9, σ8α1(15), β1(8)} ∼= (Z24)
2 ⊕ Z2,

π9
19 = {σ9ν16, η9µ10} ∼= Z8 ⊕ Z2,

π10
20 = {σ10ν17, η10µ11} ∼= Z4 ⊕ Z2, π11

21 = {σ11ν18, η11µ12} ∼= (Z2)
2.

The order ♯[ι6, β1(6)] = ♯[ι6, ι6]◦β1(11) = 3. By (2.1), [ι6, η6µ7] = 0. By (2.12),
[ι6, ν6σ9] = [ι6, ι6](ν11σ14) = 0. This yields G16(S6) = 3π16(S6).

It holds that [ι8, β1(8)] ̸= 0 and [ι8, σ8α1(15)] = [ι8, ι8](α2(15)α1(22)) = 0
(1.7). By (2.12), [ι8, σ8ν15] = [ι8, ν8σ11] = 0. Hence, by (6.11), we get that
G18(S8) = {σ8ν15, ν8σ11, σ8α1(15)} ∼= (Z8)

2 ⊕ Z3.

We have [ι9, σ9ν16] = 0. So, by (6.7) and Proposition 1.2.(3), G19(S9) =
{σ9ν16, β1(9)} ∼= Z24.

We obtain [ι10, σ10ν17] = 0 by (2.12), [ι10, η10µ11] = 0 by (4.2) and hence,
G20(S10) = π10

20.
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By (2.1) and (2.17), [ι11, η11µ12] = [ι11, σ11ν18] = 0. This yields G21(S11) =
π21(S11).

Therefore, we conclude that

Gn+10(Sn) =



{ν4σ′ ± Eε′, 2Eε′, α1(4)α2(7),

ν4α2(7), ν4α
′
1(7)}, if n = 4;

π15(S5), if n = 5;

π6
16 ⊕ {3β1(6)}, if n = 6;

{σ8ν15, ν8σ11, σ8α1(15)}, if n = 8;

{σ9ν16, β1(9)}, if n = 9;

π10
20 = {σ10ν17, η10µ11}, if n = 10;

π21(S11), if n = 11.

Thus, by summing up the above results, we get

Proposition 6.5 The group Gn+10(Sn) is isomorphic to the following: Z120⊕
Z6, Z72 ⊕ Z2, Z24 ⊕ Z2, Z24 ⊕ Z8, Z24, Z4 ⊕ Z2, Z6 ⊕ Z2 according as n =
4, 5, 6, 8, 9, 10, 11. Furthermore, Gn+10(Sn) is isomorphic to the group: 0 if n ≡
0 (mod 4) and n ≥ 12; Z2 if n ≡ 2 (mod 4) and n ≥ 14; Z3 if n ≡ 1 (mod
4) and n ≥ 13 and Z6 if n ≡ 3 (mod 4) and n ≥ 15.

We recall that πn+11(Sn; 3) = {α3(n)} ∼= Z3 for n = 3, 4 and that πn+11(Sn; 3) =
{α′

3(n)} ∼= Z9 for n ≥ 5, where 3α′
3(n) = α3(n) for n ≥ 5.

By [36, (10.14)], [ι5, ζ5] = 0. By (6.14), ♯[ι6, ζ6] = ♯[ι10, ζ10] = 4. By [36,
Theorem 12.8, Lemma 12.12], ♯[ι8, ζ8] = 8. By [36, (12.22)], E : π9

28 → π10
29 is

an isomorphism, and so [ι9, ζ9] = 0. By [24, pp. 307, 320], [ι11, ζ11] = 0 and
♯[ι12, ζ12] = 8. By [25, (3.10)], [ι13, ζ13] = 0. By summing up these results,
♯[ιn, ζn] = 1, 4, 8, 1, 4, 1, 8, 1 according as n = 5, 6, 8, 9, 10, 11, 12, 13.

By (6.13), we have [ι4, Eµ′] = 4ν4ζ7 ̸= 0. By [36, (7.12)], [ι4, ε4ν12] = 0. We
note that [ι6, ν̄6] = 0 (6.1) and [ιn, ν̄nνn+8] = 0 for n = 8, 9 by (2.10). Hence,
by the group structure of πn

n+11 [36, Theorem 7.4], we obtain Gn+11(Sn; 2) for
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5 ≤ n ≤ 12. Summing up, we obtain

Gn+11(Sn) =



{ν4σ′η14, ν4ν̄7, ν4ε7,

2Eµ′, ε4ν12, (Eν ′)ε7}, if n = 4;

π16(S5), if n = 5;

{4ζ6, ν̄6ν14}, if n = 6;

{ν̄8ν16}, if n = 8;

π20(S9), if n = 9;

4π10
21, if n = 10;

π22(S11), if n = 11;

{3[ι12, ι12]}, if n = 12.

By abuse of notations, ζn for n ≥ 5 represents a generator of the direct sum-
mands Z8 of πn

n+11 and Z504 of πn+11(Sn), respectively.

We already know [ι5, ζ5] = 0 and ♯[ι12, ζ12] = 8. By [32, p. 139: (8.24)],
♯[ι20, ζ20] = 8. Hence, by [21, Theorem C], Proposition 1.2.(3), (1.6), Theo-
rem 6.1 and (6.14), we obtain

♯[ιn, ζn] =



1, if n ≡ 1 (mod 2) and n ≥ 5 unless n ≡ 115 (mod 128);

2, if n ≡ 115 (mod 128) and n ≥ 243;

252, if n ≡ 2 (mod 4) and n ≥ 6;

504, if n ≡ 0 (mod 4) and n ≥ 8.

Thus, by summing up the above results, we get

Proposition 6.6 The group Gn+11(Sn) is isomorphic to the following: (Z2)
6,

Z504⊕(Z2)
2, Z2⊕Z4, Z2, Z504⊕Z2, Z2, Z504, 3Z according as n = 4, 5, 6, 8, 9, 10,

11, 12. Furthermore, Gn+11(Sn) is isomorphic to the group: Z504 if n ≡ 1 ( mod
2) and n ≥ 13 unless n ≡ 115(mod 128); Z252 if n ≡ 115(mod 128) and n ≥
243; Z2 if n ≡ 2 (mod 4) and n ≥ 14 and 0 if n ≡ 0 (mod 4) and n ≥ 16.

By use of [36, Theorem 7.6, p. 187: Table], we obtain Gn+12(Sn) = πn+12(Sn)
for n ≤ 9.

We recall π22(S10) = {[ι10, ν10]} ∼= Z12. By Proposition 1.5.(1), G22(S10; 3) = 0
and hence, G22(S10) = π10

22. By [24, (7.7)], G23(S11) = π23(S11). By [36, (7.30)]
and [25, (4.29)], we obtain Gn+12(Sn) = πn+12(Sn) for n = 12 and 13. Summing
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up, we obtain

Gn+12(Sn) = πn+12(Sn) unless n = 10 and G22(S10) = π10
22.

By use of [36, Theorem 7.7, pp. 187-8: Table], we obtain Gn+13(Sn). In par-
ticular, we need the relations: [ι11, θ

′] = 0 and [ι12, θ] = 0 for θ′ ∈ π11
23 and

θ ∈ π12
24. We show the case n = 4. We recall

π17(S4) = {ν2
4σ10, ν4η7µ8, (Eν ′)η7µ8, ν4β1(7), α1(4)β1(7)} ∼= Z24 ⊕ Z6 ⊕ Z2.

We have G17(S4; 2) = π4
17. We see that [ι4, ν4β1(7)] = ±2ν4α1(7)β1(10) and

[ι4, α1(4)β1(7)] = ±(2ν4 + α1(4))(α1(7)β1(10)). By making use of the exact
sequence in [36, Proposition 13.3], we have π19(S3; 3) = {α1(3)α1(6)β1(9)} ∼=
Z3. So, [ι4, ν4β1(7)] and [ι4, α1(4)β1(7)] generate the group π20(S4; 3) ∼= (Z3)

2

and hence, G17(S4; 3) = 0.

Summing up, we obtain

Gn+13(Sn) =


πn+13(Sn), if n is odd or n = 2;

πn
n+13, if n is even unless n = 2, 14;

{3[ι14, ι14]} ∼= 3Z, if n = 14.

We close the paper with the two types of tables.

First, the table of the order of [ιn, α], where α ∈ πn
n+k for n ≥ k+2, k ≤ 11 and

n ≡ r (mod 8) with 0 ≤ r ≤ 7, given except as otherwise noted. This corrects
the table in [27, the second page], where m ≡ n (k) indicates m ≡ n (mod k)
and symbols in italic stress irregular cases.
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Table of the order of [ιn, α], I.

α\r 0 1 2 3 4 5 6 7

η 2 2 2 1 2 2
2, ̸= 6

1, = 6
1

η2 2 2 1 1 2
2, ̸= 5

1, = 5
1 1

ν 8 2 4 2
8, ̸= 12

4, = 12

2, ̸= 2 i − 3

1, = 2 i − 3
4 1

ν2 2 2 2
2, ̸= 2 i − 5

1, = 2 i − 5
1 1 2 1

σ 16 2 16
2, ̸= 11

1, = 11
16 2 16

2, 7 (16 )

1, 15 (16 )

ησ 2 2
2, ̸= 10

1, = 10
1 2 2

2, ≡ 22 (32 )

≥ 54

1, otherwise

1

ε 2 2 1 1 2 2 2 1

ν̄ 2 2
2, ̸= 10

1, = 10
1 2 2 2 1

η2σ 2
2, ̸= 2 i − 7

1, = 2 i − 7
1 1 2

2, ≡ 53 (64 )

≥ 117

1, ̸≡ 53 (64 )

1 1

ηε 2 1 1 1 2

2, ≡ 53 (64 )

≥ 117

1, ̸≡ 53 (64 )

1 1

ν3 2
2, ̸= 2 i − 7

1, = 2 i − 7
1 1 1 1 1 1

µ 2 2 2 1 2 2 2 1

ηµ 2 2 1 1 2 2 1 1

ζ 8 1 4

2, ≡ 115 (128 )

≥ 243

1, ̸≡ 115 (128 )

8 1 4 1
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The next three tables of Gn+k(Sn) for 1 ≤ k ≤ 13 and 2 ≤ n ≤ 26 are given
by compiling our results. Like in [36, Chapter XIV], an integer n indicates
the cyclic group Zn of order n, the symbol ∞ the infinite cyclic group Z, the
symbol + the direct sum of groups and (2)k the direct sum of k-copies of Z2.

Table of Gn+k(Sn), II.

Gn+k(Sn) n=2 n=3 n=4 n=5 n=6 n=7 n=8

k=1 ∞ 2 0 0 2 2 0

k=2 2 2 0 2 2 2 0

k=3 2 12 3∞+ 2 24 2 24 0

k=4 12 2 (2)2 2 0 0 0

k=5 2 2 (2)2 2 3∞ 0 0

k=6 2 3 24 + 3 2 0 2 0

k=7 3 15 0 30 0 120 3∞+ 2

k=8 15 2 0 0 24 + 2 (2)3 (2)2

k=9 2 (2)2 2 (2)2 (2)3 (2)4 (2)2

k=10 (2)2 12 + 2 120 + 6 72 + 2 24 + 2 24 + 2 24 + 8

k=11 12 + 2 84 + (2)2 (2)6 504 + (2)2 4 + 2 504 + 2 2

k=12 84 + (2)2 (2)2 (2)6 (2)3 240 0 0

k=13 (2)2 6 8 + (2)2 6 + 2 2 6 (2)2
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Table of Gn+k(Sn), III.

Gn+k(Sn) n=9 n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17

k=1 0 0 2 0 0 0 2 0 0

k=2 0 2 2 0 0 2 2 0 0

k=3 12 2 12 2 24 2 24 0 12

k=4 0 0 0 0 0 0 0 0 0

k=5 0 0 0 0 0 0 0 0 0

k=6 0 0 2 2 2 0 2 0 0

k=7 120 0 240 0 120 0 240 0 120

k=8 2 (2)2 (2)2 0 0 2 (2)2 0 0

k=9 (2)3 3∞+ (2)2 (2)3 2 (2)2 (2)2 (2)3 0 2

k=10 24 4 + 2 6 + 2 0 3 2 6 0 3

k=11 504 + 2 2 504 3∞ 504 2 504 0 504

k=12 0 4 2 (2)2 2 0 0 0 0

k=13 6 2 6 + 2 (2)2 6 3∞ 3 0 3
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Table of Gn+k(Sn), IV.

Gn+k(Sn) n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26

k=1 0 2 0 0 0 2 0 0 0

k=2 2 2 0 0 2 2 0 0 2

k=3 2 12 0 12 2 24 0 12 2

k=4 0 0 0 0 0 0 0 0 0

k=5 0 0 0 0 0 0 0 0 0

k=6 0 0 2 2 0 2 0 0 0

k=7 0 120 0 120 0 120 0 120 0

k=8 2 (2)2 0 0 2 (2)2 0 0 2

k=9 (2)2 (2)3 2 (2)2 (2)2 (2)3 0 2 (2)2

k=10 2 6 0 3 2 6 0 3 2

k=11 2 504 0 504 2 504 0 504 2

k=12 0 0 0 0 0 0 0 0 0

k=13 0 3 0 3 0 3 0 3 0
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