HETEROCYCLES, Vol. 66, 2005, pp. 91 – 94. © The Japan Institute of Heterocyclic Chemistry Received, 30th August, 2005, Accepted, 11th October, 2005, Published online, 14th October, 2005. COM-05-S(K)35

## THE SYNTHESIS OF HETEROARYLAZULENE

## Taku Shoji,<sup>a)</sup> Shigeru Kikuchi,<sup>b)</sup> Shunji Ito,<sup>c)</sup> and Noboru Morita<sup>a)</sup>\*

<sup>a)</sup>Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

morita@funorg.chem.tohoku.ac.jp

<sup>b)</sup>Graduation School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan

<sup>c)</sup>Department of Material Science and Technology, Faculty of Science and Technology, Hirosaki University, Bunkyocho 3, Hirosaki 036-8561, Japan

**Abstract** – Palladium-catalyzed cross-coupling reaction of 2- and 6-haloazulenes with lithium tri(heteroaryl)magnesates gave corresponding heteroarylazulenes in excellent yields which were independent of binding position.<sup>†</sup>

Heteroaryl compounds are utilized as important building blocks in materials science and supramolecular chemistry.<sup>1</sup> As part of our on going interest in a series of developing the methodology for polyfunctionalization of azulenes,<sup>2</sup> we have investigated the synthesis of heteroarylazulene by palladium-catalyzed cross-coupling reaction of 2- and 6-haloazulenes (1, 2) with lithium tri(heteroaryl)magnesates which are easily prepared from commercially available bromothiophenes (3, 4), bromopyridines (5, 6),<sup>3</sup> and 3-bromoquinoline (7).<sup>3</sup> Establishment of general methodology for easily approach to heteroarylazulene from readily available materials is very difficult sometimes, because azulene resioisomers exhibit different character and the yields of reaction in azulene derivatives depend on binding position of the substituent. Pd-catalyzed cross-coupling reaction of haloazulenes with the heteroarylmagnesates gave corresponding heteroarylazulenes. As their high yields do not depend upon the binding position at C-2 and C-6 in azulene, we will report here.



Scheme 1

<sup>&</sup>lt;sup>†</sup>This paper is dedicated to the memory of Dr. Kenji Koga, Emeritus Professor of Tokyo University.

Previously we report the preparation of azulenyllithium and magnesium reagents utilizing halogen-metal exchange reaction and their reactivities toward electrophiles.<sup>4</sup> Using this condition lithium tri(2-thienyl)magnesate<sup>5</sup> was prepared *in situ* and react with 2-iodoazulene as follows.

To a solution of *n*-butylmagnesium chloride (1.3 mL, 0.9 M solution in THF) in ether (10 mL) was added *n*-BuLi (1.5 mL, 1.6 M solution in hexane) at 0 °C. After it was stirred for 30 min at 0 °C, 2-bromothiophene (163 mg, 1.00 mmol) was added dropwise. The mixture was allowed to react at 0 °C for 1h. After a solution of 2-iodoazulene (254 mg, 1.00 mmol) and  $PdCl_2(PPh_3)_2$  (35 mg, 0.05 mmol) in ether (20 mL) was added dropwise at 0 °C, it was allowed to warm to room temperature and it was stirring for 24 h. The reaction was quenched with water. The product was isolated and purified by the usual way to afford 2,2'-thienylazulene (**8**, 198 mg, 0.942 mmol, 94%). The optimal condition Pd-catalytic amount was examined due to decrease catalytic amount as possible as low. To get a high yield, at least, 5 mol% of Pd-catalysis was needed as shown in Table 1.

Table 1. Relationship between amount of Pd-catalysis and yield

| PdCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | Yield | Recover |
|----------------------------------------------------|-------|---------|
| 0 mol%                                             | 0     | 99      |
| 1 mol%                                             | 16    | 79      |
| 3 mol%                                             | 64    | 33      |
| 5 mol%                                             | 94    | 0       |



Another heteroarylmagnesates which were prepared *in situ* from compounds (4-7) gave corresponding heteroarylazulenes (9-12) in excellent yield as shown in Table 2. These <sup>1</sup>H NMR spectral data of heteroarylazulenes shown in Table 2 confirmed the structures of the products (8-12).



| 2-Heteroaryl- |       |               | 1                                                                                                                                              |
|---------------|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| azulene       | Yield | mp (°C)       | <sup>1</sup> H NMR (CDCl <sub>3</sub> )                                                                                                        |
|               |       |               | δ 8.22 (d, 2H, <i>J</i> =10. Hz, H-4,8 ), 7.58 (dd, 1H, <i>J</i> =4, 1.2 Hz, H-5' ), 7.53                                                      |
| 8             | 94    | 143-144(dec.) | (s, 2H, H-1, 3), /.4/(t, 1H, J=10 Hz, H-6), /.36 (dd, 1H, J=4, 1.2 Hz, H-3'), 7.14 (t, 2H, J=10. Hz, H-5, 7), 7.13 (dd, 1H, J=4, 1.2 Hz, H-4') |
|               |       |               | δ 8.25 (d, 2H, J=10. Hz, H-4,8), 7.77 (d, 1H, J=0.8 Hz, H-2'), 7.62 (dd,                                                                       |
| 9             | 96    | 132-133(dec.) | 1H, J =4.8, 0.8 Hz, H-4'), 7.55 (s, 2H, H-1,3), 7.48 (t, 1H, J =10 Hz,                                                                         |
|               |       | (             | H-6 ), 7.41 (dd, 1H, $J$ =4.8, 0.8 Hz, H-5' ), 7.14 (t, 2H, $J$ = 10 Hz, H-5,7 )                                                               |
|               |       |               | δ 8.74 (d, 1H, <i>J</i> =8 Hz, H-6'), 8.34 (d, 2H, <i>J</i> =10 Hz, H-4,8), 7.99 (dt, 1H,                                                      |
| 10            | 99    | 114 5-115 0   | <i>J</i> =8, 1.2 Hz, H-3'), 7.97 (s, 2H, H-1,3), 7.48 (dt, 1H, <i>J</i> =8, 1.2 Hz, H-5'),                                                     |
|               |       | 11.10 11010   | 7.41 (t, 1H, <i>J</i> =10 Hz, H-6), 7.22 (dt, 1H, <i>J</i> =8, 1.2 Hz, H-4'), 7.16 (t, 2H, <i>J</i>                                            |
|               |       |               | =10 Hz, H-5,7 )                                                                                                                                |
|               |       |               | δ 9.21 (d, 1H, <i>J</i> =1.6 Hz, H-2'), 8.57 (dd, 1H, <i>J</i> =4.8, 1.6, H-6'), 8.32 (d,                                                      |
| 11            | 72    | 155-158(dec.) | 2H, J=10 Hz, H-4,8 ), 8.18 (dt, 1H, J=8, 1.6 Hz, H-5' ), 7.67 (s, 2H,                                                                          |
|               |       |               | H-1,3 ), 7.56 (t, 1H, J=10 Hz, H-6 ), 7.37 (dd, 1H, J=4.8, 1.6 Hz, H-4' ),                                                                     |
|               |       |               | 7.19 (t, 2H, <i>J</i> =10 Hz, H-5,7)                                                                                                           |
| 12            | 80    | 184-185       | δ 9.53 (d, 1H, <i>J</i> =2.4 Hz, H-2'), 8.62 (d, 1H, <i>J</i> =2.4 Hz, H-4'), 8.34 (d, 2H,                                                     |
|               |       |               | J=10 Hz, H-4,8 ), 8.12 (d, 1H, J=8.4 Hz, H-8' ), 7.90(d, 1H, J=8.4 Hz,                                                                         |
|               |       |               | H-5'), 7.81 (s, 2H, H-1,3), 7.69 (t, 1H, J=8.4 Hz, H-6'), 7.59 – 7.53 (m,                                                                      |
|               |       |               | 2H H-67') 725(t 2H $I=10$ Hz H-57)                                                                                                             |

Table 2. Pd-catalyzed cross-coupling reaction of 2-iodoazulene with lithium tri(heteroaryl)magnesate

6-Bromoazulene (2) reacted with lithium tri(2-thienyl)magnesate in a similar manner to 2-iodoazulene to give 6-(2'-thienyl)azulene (13) in 94% yield.



Another heteroarylmagnesates which were prepared *in situ* from compounds (4-7) also gave corresponding heteroarylazulenes (14-17) by Pd-catalyzed cross-coupling reactions in excellent yield as shown in Table 3. There are no large differences between the yields of 2-heteroarylazulenes and 6-heteroarylazulenes. These <sup>1</sup>H NMR spectral data of heteroarylazulenes as shown in Table 3 confirmed the structures of the products (13-17).



In summary, the large difference of their yields was not observed depend on the binding position. The yields are excellent. The heteroarylation of haloazulene by utilizing Pd-catalyzed lithium tri(heteroaryl) magnesate is one of the excellent methodologies for functionalization of azulene.

| 6-Heteroaryl- |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | Yield | mp (°C)     | <sup>1</sup> H NMR (CDCl <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| azulene       |       | 1 ( )       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |       |             | 8820(4.2H) = 10 Hz H 48) 782 (t 1H J=4 Hz H 2) 753 (d 2H J=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 94    | 160-161     | 10  Hz = 15.7 (4, 211, 5 10 112, 11-4, 6), 7.02 (1, 111, 5 4 112, 11-2), 7.05 (4, 211, 5 10 112, 11 4, 6), 7.02 (1, 111, 5 4 112, 11-2), 7.05 (4, 211, 5 10 112, 11 4, 6), 7.02 (1, 111, 5 4 112, 11-2), 7.05 (4, 211, 5 10 112, 11 4, 6), 7.02 (1, 111, 5 4 112, 11-2), 7.05 (4, 211, 5 10 112, 11 4, 6), 7.02 (1, 111, 5 4 112, 11-2), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.02 (1, 111, 5 4 112, 11-2), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.02 (1, 111, 5 4 112, 11-2), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.05 (4, 211, 5 10 112, 11-4, 6), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10, 112), 7.05 (4, 211, 5 10) |
| 13            |       |             | $10 \Pi Z, \Pi - 5, 7, 7, 47$ (uu, $1\Pi, J = 4.4, 1.2 \Pi Z, \Pi - 5, 7, 7, 58$ (uu, $1\Pi, J = 4.4, 1.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |       |             | $Hz, H-3^{\circ}$ ), 7.34 (d, 2H, J=4 Hz, H-1,3), 7.11 (t, 1H, J=4.4 Hz, H-4^{\circ})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |       |             | $\delta$ 8.35 (d, 2H, J = 10.8 Hz, H-4,8 ), 7.82 (t, 1H, J = 4 Hz, H-2 ), 7.58 (dd,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14            | 08    | 180-181     | 1H, J=2.8, 1.6, H-2'), 7.49 – 7.41 (m, 4H, H-5,7,4',5'), 7.38 (d, 2H, J=4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | 90    |             | Hz, H-1,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |       |             | δ 8.75 (dd, 1H, J =4.8, 1.2 Hz, H-6'), 8.45 (d, 2H, J=10.8 Hz, H-4,8), 7.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15            | 93    | 113.5-114.0 | (t. 1H, J=4 Hz, H-2), 7.80 – 7.74 (m, 4H, H-5.7.3',5'), 7.41 (d, 2H, J=4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |       |             | Hz. H-1.3 ), 7.28 (dt. 1H. J=4.8, 1.2, H-4')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |       |             | δ 8.90 (d, 1H, J=2 Hz, H-2'), 8.65 (d, 2H, J=4.8 Hz, H-6'), 8.41 (d, 2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16            | 70    | 119-120     | J=10 Hz H-4 8) 7.95 – 7.91 (m 2H H-2.5') 7.45 (d 2H $J=4$ Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |       |             | H-13) 7 39 (dd $J=8$ 4 8 Hz 1H H-4') 7 32 (d 2H $J=10$ Hz H-57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |       |             | $80.22$ (d 1H $E_2$ H <sub>2</sub> H <sub>2</sub> ?) $844$ (d 2H $E_10$ H <sub>2</sub> H <sub>4</sub> $8)$ $826$ (a 1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 17            | 80    | 162-164     | $0.7.22$ (u, 111, $J=2.112$ , 11-2 ), 0.44 (u, 2 $\Pi$ , $J=10$ $\Pi$ Z, $\Pi$ -4,0 ), 0.50 (S, 1 $\Pi$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |       |             | $H-4^{-}$ ), 8.1/(d, 1H, J=8 Hz, H-8 <sup>-</sup> ), 7.96 (t, 1H, J=4 Hz, H-2), 7.89 (d, 1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |       |             | J=8 Hz, H-5'), 7.76 (t, 1H, J=8 Hz, H-6'), .7.61 (d, 1H, J=8Hz, H-7'),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |       |             | 7.47 – 7.44 ( m, 4H, H-1,3,5,7 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 3. Pd-catalyzed cross-coupling reaction of 6-bromoazulene with lithium tri(heteroaryl)magnesate

## **REFERENCES AND NOTES**

- A. R. Katritzky and C.W. Ress, 'In Comprehensive Heterocyclic Chemistry' Vol. 2, ed. by A. J. Boulton and A. McKillop, Pergamon Press, Inc., New York, 1984; R. E. Martin and F. Diederich, *Angew. Chem. Int. Ed.*, 1999, **38**, 1350; V. Balzani, A. Credi, F. M. Raymo, and J. F. Stoddart, *Angew. Chem. Int. Ed.*, 2000, **39**, 3348.
- We have already reported another several types of palladium-catalyzed coupling reactions which concern azulenes. See: R. Yokoyama, S. Ito, T. Okujima, T. Kubo, M. Yasunami, A. Tajiri, and N. Morita, *Trtrahedron*, 2003, **59**, 8191; S. Ito, H. Inabe, N. Morita, and A. Tajiri, *Eur. J. Org. Chem.*, **2004**, 1774; S. Ito, T. Terazono, T. Kubo, T. Okujima, N. Morita, T. Murafuji, Y. Sugihara, K. Fujimori, J. Kawakami, and A. Tajiri, *Tetrahedron*, 2004, **60**, 5357; S. Ito, T. Kubo, N. Morita, T. Ikoma, S. Tero-Kubota, J. Kawakami, and A. Tajiri, *J. Org. Chem.*, 2005, **70**, 2285; S. Ito, M. Ando, A. Nomura, N. Morita, C. Kabuto, H. Mukai, K. Ohta, J. Kawakami, A. Yoshizawa, and A. Tajiri, *J. Org. Chem.*, 2005, **70**, 3939.
- 3. S. Dumouchel, F. Mongin, F. Trécourt, and G. Quéguiner, *Tetrahedron*, 2003, **59**, 8629.
- 4. S. Ito, T. Kubo, N. Morita, Y. Matui, T. Watanabe, A. Ohta, K. Fujimori, T. Murafuji, Y. Sugihara, and A. Tajiri, *Tetrahedron Lett.*, 2004, **45**, 2891.
- It can be also prepared directly from thiophene itself using lithium magnesate. O. Bayh, H. Awad, F. Mongin, C. Hoarau, F. Trécourt, G. Quéguiner, F. Blanco, B. Abarca, and R. Ballesteros, *Tetrahedron*, 2005, 61, 4779.