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Classifying subcategories of modules over
a commutative noetherian ring

Ryo Takahashi

Abstract

Let R be a quotient ring of a commutative coherent regular ring by a finitely generated ideal.
Hovey gave a bijection between the set of coherent subcategories of the category of finitely
presented R-modules and the set of thick subcategories of the derived category of perfect R-
complexes. Using this bijection, he proved that every coherent subcategory of finitely presented
R-modules is a Serre subcategory. In this paper, it is proved that this holds whenever R is a
commutative noetherian ring. This paper also yields a module version of the bijection between
the set of localizing subcategories of the derived category of R-modules and the set of subsets of
Spec R which was given by Neeman.

1. Introduction

Around 1990, Hopkins [6] and Neeman [9] gave a classification theorem of the thick
subcategories of the derived category of perfect complexes (that is, finite complexes of finitely
generated projective modules) over a commutative noetherian ring in terms of the ring
spectrum. Later, Thomason [10] generalized this classification theorem to quasi-compact and
quasi-separated schemes, in particular, to arbitrary commutative rings. Let Dperf(R) denote the
derived category of perfect complexes over a commutative ring R. The classification theorem
(for commutative rings) can be stated as follows.

Theorem (Hopkins–Neeman–Thomason). Let R be a commutative ring. Then there is an
isomorphism

{
thick subcategories of Dperf(R)

}
∼=

{
complements of intersections of quasi-compact open subsets of Spec R

}

of lattices.

Here we recall the definitions of several subcategories of an abelian category. A coherent
subcategory is defined to be a full subcategory which is closed under kernels, cokernels and
extensions. A Serre subcategory is defined to be a coherent subcategory which is closed under
subobjects. A torsion class is defined to be a Serre subcategory which is closed under arbitrary
direct sums. Let R be a commutative ring. We denote by ModR the category of R-modules
and by modR the full subcategory of finitely presented R-modules. If R is noetherian, then the
lattice of Serre subcategories of mod R, the lattice of torsion classes of ModR, and the lattice
of subsets of Spec R which are closed under specialization are isomorphic to each other. Taking
advantage of the Hopkins–Neeman–Thomason theorem, Garkusha and Prest [3, 4] gave the
following result very recently. (A torsion class X of M = ModR is said to be of finite type if the
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inclusion functor M/X → M, where M/X denotes the quotient category, preserves arbitrary
direct sums.)

Theorem (Garkusha and Prest). Let R be a commutative ring. Then the following hold.

(1) One has lattice isomorphisms

{
thick subcategories of Dperf(R)

}
∼=

{
torsion classes of finite type of Mod R

}
∼=

{
complements of intersections of quasi-compact open subsets of Spec R

}
.

(2) Suppose that R is coherent. Then one has lattice isomorphisms

{
thick subcategories of Dperf(R)

}
∼=

{
Serre subcategories of modR

}
∼=

{
complements of intersections of quasi-compact open subsets of Spec R

}
.

Also by using the Hopkins–Neeman–Thomason theorem, Hovey [7] proved the following
classification theorem of coherent subcategories.

Theorem (Hovey). Let R be a quotient ring of a commutative coherent regular ring by a
finitely generated ideal. Then the following hold.

(1) One has a lattice isomorphism

{
thick subcategories of Dperf(R)

} ∼=
{
coherent subcategories of mod R

}
.

(2) Every coherent subcategory of mod R is a Serre subcategory.

As Hovey pointed it out as an interesting fact, there was no direct proof of the second
assertion of the above theorem; it could not be proved without resorting to the rather difficult
classification of thick subcategories of the derived category, namely the Hopkins–Neeman–
Thomason theorem. Hovey conjectures that the isomorphism stated in the above theorem
always holds for commutative coherent rings. (Recall that a commutative ring is called coherent
if every finitely generated ideal is finitely presented.)

Conjecture (Hovey). Let R be a commutative coherent ring. Then one has a lattice
isomorphism

{
thick subcategories of Dperf(R)

} ∼=
{
coherent subcategories of mod R

}
.

One of the main purposes of this paper is to prove that this conjecture holds if R is noetherian.
First of all, we will directly prove that every coherent subcategory of modR is Serre; in the
proof, we will not apply the Hopkins–Neeman–Thomason theorem. Actually, we will not use the
notion of a derived category in the proof. Furthermore, the proof we will give is much simpler
than Hovey’s. Later, we will prove that if R is noetherian then all the lattices appearing in the
above part are isomorphic to each other. Our first main theorem is the following.



CLASSIFYING SUBCATEGORIES OF MODULES 769

Theorem A. Let R be a commutative noetherian ring. Then every coherent subcategory
of mod R is a Serre subcategory, and one has the following isomorphisms of lattices:

{
thick subcategories of Dperf(R)

} ∼=
{
coherent subcategories of mod R

}

=
{
Serre subcategories of mod R

}
∼=

{
torsion classes of Mod R

}
∼=

{
subsets of Spec R closed under specialization

}

=
{
complements of intersections of quasi-compact

open subsets of Spec R
}
.

On the other hand, Neeman [9] showed the following theorem.

Theorem (Neeman). Let R be a commutative noetherian ring. Then one has an
isomorphism

{
localizing subcategories of D(R)

} ∼=
{
subsets of Spec R

}

of lattices. Moreover, this induces an isomorphism
{
smashing subcategories of D(R)

} ∼=
{
subsets of Spec R closed under specialization

}

of lattices.

Here, D(R) denotes the derived category of ModR. A localizing subcategory is defined as
a full triangulated subcategory that is closed under arbitrary direct sums, and a smashing
subcategory is defined as a localizing subcategory such that Bousfield localization commutes
with arbitrary direct sums. The second main purpose of this paper is to construct a module
version of the above Neeman’s theorem.

Theorem B. Let R be a commutative noetherian ring. Then one has an isomorphism
{
full subcategories of mod R closed under submodules and extensions

}
∼=

{
subsets of Spec R

}

of lattices. Moreover, this induces the isomorphism
{
Serre subcategories of mod R

} ∼=
{
subsets of Spec R closed under specialization

}

of lattices given in Theorem A.

In Section 2, we will give the precise definitions of subcategories which are stated above, and
study several of their basic properties. In Sections 3 and 4, we shall give proofs of Theorems
A and B, respectively.

Remark. It is known that Hovey’s paper [7] contains an error, but it is not relevant to
the results and arguments in this paper. The error has recently been corrected by Krause [8].

2. Basic properties

In this section, we will give some definitions and several basic results, most of which are
necessary to state and prove the main results of this paper.

Let A be an additive category. A full subcategory X of A is said to be closed under
isomorphisms (or replete), provided that if X is an object of X and Y is an object of A
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which is isomorphic to X, then Y is also an object of X . In this paper, by a subcategory we
always mean a nonempty full subcategory which is closed under isomorphisms.

First of all, we recall the definitions of various types of closedness of a subcategory of an
additive category.

Definition 2.1. Let A be an additive category, and let X be a subcategory of A. We
say that

(1) X is closed under subobjects (or closed under quotient objects) provided that if X is an
object of X and Y ∈ A is a subobject (or a quotient object, respectively) of X, then Y
is also an object of X ;

(2) X is closed under direct summands (or closed under retracts) provided that if X is an
object of X and Y ∈ A is a direct summand of X, then Y is also an object of X ;

(3) X is closed under finite direct sums (respectively closed under arbitrary direct sums)
if all finite direct sums (respectively arbitrary direct sums) of objects of X are objects
of X ;

(4) X is closed under extensions provided that for any exact sequence 0 → A → B → C → 0
in A, if both A and C are objects of X , then so is B;

(5) X is closed under kernels (respectively closed under images, closed under cokernels) if
the kernel (resp. the image, the cokernel) of every morphism of objects of X is also an
object of X ;

(6) X is closed under homologies if the homologies of every chain complex of objects of X
are objects of X ;

(7) X is closed under direct limits provided that if {Xλ}λ∈Λ is a direct system of objects of
X then the direct limit lim−→λ∈Λ

Xλ is an object of X .

Here we study the relationships among the closed properties of a subcategory which are
defined above.

Proposition 2.2. Let A be an abelian category and X a subcategory of A. Then the
following hold.

(1) If X is closed under kernels or cokernels, then X is closed under direct summands and
contains the zero object of A.

(2) If X is closed under extensions, then X is closed under finite direct sums.
(3) If X is closed under kernels and cokernels, then X is closed under images and homologies.
(4) If X is closed under subobjects and cokernels, then X is closed under quotient objects.
(5) If X is closed under arbitrary direct sums and quotient objects, then X is closed under

direct limits.

Proof. (1) Let X be an object of X and Y an object of A which is a direct summand of X.
Then we can write X = Y ⊕ Z for some object Z of A. Considering the morphism f : X → X
given by (y, z) �→ (0, z) for y ∈ Y and z ∈ Z, we see that both the kernel and the cokernel of f
are isomorphic to Y . By the assumption that X is closed under kernels or cokernels, the object
Y is in X . Therefore X is closed under direct summands.

On the other hand, since X is nonempty, there exists an object W ∈ X . Let g : W → W be
the identity morphism. Then both the kernel and the cokernel of g are the zero object. Since
X is closed under kernels or cokernels, X contains the zero object.

(2) Let X and Y be two objects of X . Then there exists a natural split exact sequence

0 −→ X −→ X ⊕ Y −→ Y −→ 0
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in A. Since X is closed under extensions, we see from this exact sequence that the direct sum
X ⊕ Y is an object of X . This argument shows that X is closed under finite direct sums.

(3) Let f : X → Y be a morphism of objects of X . Then there is an exact sequence

0 −→ Im f −→ Y
π−→ Coker f −→ 0

in A. Since X is closed under cokernels, the object Coker f is in X . Noting that the object
Im f is the kernel of π and X is closed under kernels, we see that Im f is in X . Therefore X is
closed under images. That X is closed under kernels and images implies that X is closed under
homologies.

(4) Let X be an object of X and let Y ∈ A be a quotient object of X. Then there exists a
subobject Z ∈ A of X such that Y = X/Z. Since X is closed under subobjects, Z is an object
of X . Let i : Z → X be the natural inclusion. Since Y coincides with the cokernel of i and X
is closed under cokernels, we have Y ∈ X . This says that X is closed under quotient objects.

(5) Let {Xλ}λ∈Λ be a direct system of objects of X , and let X = lim−→λ∈Λ
Xλ be the direct

limit. Then, by definition, X is a quotient object of Y :=
⊕

λ∈Λ Xλ. Since X is closed under
arbitrary direct sums, Y is an object of X . Since X is closed under quotient objects, X is an
object of X . Consequently, X is closed under direct limits.

Next, we recall the definitions of a coherent subcategory, a Serre subcategory and a torsion
class, which will play important roles throughout this paper.

Definition 2.3. Let A be an abelian category, and let X be a subcategory of A. Then
(1) X is called a coherent subcategory of A if it is closed under kernels, cokernels and

extensions;
(2) X is called a Serre subcategory of A if it is a coherent subcategory which is closed under

subobjects;
(3) X is called a (hereditary) torsion class of A if it is a Serre subcategory which is closed

under arbitrary direct sums.

Remark 2.4. The original definition of a coherent subcategory is as follows: let A be an
abelian category, and let X be a subcategory of A. It is said that X is coherent, provided that
for any exact sequence

A −→ B −→ C −→ D −→ E

in A, if A, B, D and E are in A, then so is C. One can easily check that this definition is
equivalent to our definition.

A coherent subcategory, a Serre subcategory and a torsion class have the following properties,
which immediately follow from Proposition 2.2.

Corollary 2.5. Let A be an abelian category.
(1) Let X be a coherent subcategory of A. Then X contains the zero object of A, and X is

closed under finite direct sums, direct summands, images and homologies.
(2) Let X be a Serre subcategory of A. Then X is closed under quotient objects.
(3) Let X be a torsion class of A. Then X is closed under direct limits.

Throughout the rest of this paper, let R be a commutative ring. We denote by ModR the
category of R-modules, and by modR the full subcategory of ModR consisting of finitely
presented R-modules. Let us recall the definitions of a lattice and a homomorphism of lattices.
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Definition 2.6. (1) Let L be an ordered set.
(i) Let x, y ∈ L be elements. If the supremum (respectively infimum) of the set {x, y}
exists, then it is called the join (respectively meet) of x and y, and is denoted by x ∨ y
(respectively x ∧ y).
(ii) It is said that L is a lattice if any two elements of L have both the join and the meet.

(2) A map f : L → L′ of lattices is called a (lattice) homomorphism if f(x ∨ y) = f(x) ∨
f(y) and f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ L. A bijective lattice homomorphism is called a
(lattice) isomorphism.

This paper will deal with the following lattices of subcategories of modules.

Definition 2.7. (1) Let coh(R) be the coherent subcategory of ModR generated by R.
We denote by Lcoh(coh(R)) the lattice of all coherent subcategories of coh(R).

(2) Let Serre(R) be the Serre subcategory of ModR generated by R. We denote by
LSerre(Serre(R)) the lattice of all Serre subcategories of Serre(R).

(3) We denote by Ltors(Mod R) the lattice of all torsion classes of ModR.

Remark 2.8. If R is noetherian, then one has coh(R) = Serre(R) = mod R; see the first
sentence and the latter half of [7, p. 3185]. Hence, whenever R is a noetherian ring, one has
Lcoh(coh(R)) = Lcoh(mod R) and LSerre(Serre(R)) = LSerre(mod R).

A perfect R-complex P• is defined to be an R-complex of the form

P• = (0 −→ Ps −→ Ps−1 −→ · · · −→ Pt+1 −→ Pt −→ 0),

where each Pi is a finitely generated projective R-module. We denote by D(R) the derived
category of the category ModR, and by Dperf(R) the full subcategory of D(R) consisting of
R-complexes which are isomorphic to perfect R-complexes.

Remark 2.9. Recall that an object X of an additive category A is called small (or compact)
if the functor HomA(X,−) preserves arbitrary direct sums. It is well known that a complex of
R-modules is quasi-isomorphic to a perfect complex if and only if it is a small object of D(R)
(cf. [2, 3.7]).

Definition 2.10. (1) Let T be a triangulated category and let X be a subcategory of T .
Then we say that X is a thick subcategory if it satisfies the following two conditions.

(a) X is closed under direct summands.
(b) For any exact triangle A → B → C → ΣA in T , if two of the objects A,B,C are in
X , then so is the third.

(2) We denote by Lthick(Dperf(R)) the lattice of all of the thick subcategories of D(R) whose
objects are small, namely, the lattice of all thick subcategories of Dperf(R).

Recall that a subset S of SpecR is said to be closed under specialization, provided that if
p is a prime ideal in S and q is a prime ideal containing p then q is also in S. Dually, S is
said to be closed under generalization, provided that if p is a prime ideal in S and q is a prime
ideal contained in p then q is also in S. Note that every union of closed subsets of SpecR is
closed under specialization. Similarly, every intersection of open subsets of SpecR is closed
under generalization.
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Definition 2.11. We denote by Lspcl(SpecR) the lattice of all subsets of Spec R that are
closed under specialization, and by L0

spcl(Spec R) the sublattice of Lspcl(SpecR) consisting of
all complements of arbitrary intersections of quasi-compact open subsets of SpecR.

Remark 2.12. An open subset U of SpecR is quasi-compact if and only if U = D(I) :=
{p ∈ Spec R | I � p} for some finitely generated ideal I of R; see the argument on the top of
[5, p. 72]. Therefore, if R is noetherian, then every open subset of SpecR is quasi-compact,
and L0

spcl(Spec R) consists of all unions of closed subsets of SpecR.

Hovey [7] constructs the following order-preserving maps among the lattices which we defined
above:

Lspcl(Spec R)

τ

�⏐⏐
⏐⏐�σ

Ltors(Mod R)

ν

�⏐⏐
⏐⏐�μ

LSerre(Serre(R))

β

�⏐⏐
⏐⏐�α

Lcoh(coh(R))

g

�⏐⏐
⏐⏐�f

Lthick(Dperf(R))

The above maps are defined as follows.
(1) For S ∈ Lspcl(Spec R), let σ(S) be the full subcategory of ModR consisting of all R-

modules M with SuppM ⊆ S. For X ∈ Ltors(Mod R), let τ(X ) be the union
⋃

M∈X SuppM .
(2) For X ∈ Ltors(Mod R), let μ(X ) be the full subcategory of ModR consisting of all R-

modules M in the intersection of X and Serre(R). For Y ∈ LSerre(Serre(R)), let ν(Y) be the
torsion class of ModR generated by Y.

(3) For Y ∈ LSerre(Serre(R)), let α(Y) be the full subcategory of ModR consisting of all
R-modules M in the intersection of Y and coh(R). For Z ∈ Lcoh(coh(R)), let β(Z) be the
Serre subcategory of ModR generated by Z.

(4) For Z ∈ Lcoh(coh(R)), let f(Z) be the full subcategory of D(R) consisting of all
complexes X• ∈ Dperf(R) such that the ith homology Hi(X•) is in Z for any i ∈ Z. For W ∈
Lthick(Dperf(R)), let g(W) be the coherent subcategory of ModR generated by {Hi(X•) |X• ∈
W, i ∈ Z}.

We recall here the definition of an adjoint pair of order-preserving maps. Let φ : A → B and
ψ : B → A be two order-preserving maps between ordered sets. Then the pair (φ, ψ) is said to
be an adjoint pair, provided that φ(a) � b if and only if a � ψ(b) for any a ∈ A and b ∈ B.
Concerning the above order-preserving maps among lattices, the following proposition holds.

Proposition 2.13. (1a) The pair (τ, σ) is an adjoint pair.
(1b) The composite map τσ is the identity map.
(1c) If R is noetherian, then σ is a lattice isomorphism and τ is the inverse homomorphism.
(2a) The pair (ν, μ) is an adjoint pair.
(2b) The composite map νμ is the identity map.
(2c) If R is noetherian, then μ is a lattice isomorphism and ν is the inverse homomorphism.
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(3a) The pair (β, α) is an adjoint pair.
(3b) If R is noetherian, then the composite map βα is the identity map.
(4a) The pair (g, f) is an adjoint pair.
(4b) The composite map fg is the identity map.

Proof. It is easy to check that every order-preserving bijective map between two lattices
is a lattice isomorphism. Hence we see from the arguments in [7, p. 3185] that the assertions
(1)–(3) hold. (Here, note that derived categories do not appear in those arguments.)

Assertions (4a) and (4b) are shown in [7, Proposition 1.4 and Corollary 2.2], respectively.

The above proposition especially says that one has the following relationships between two
modules whose supports have inclusion relation.

Corollary 2.14. Let R be a noetherian ring, and let M,N be R-modules with SuppM ⊆
SuppN . Then M belongs to the torsion class of ModR generated by N . If M and N are finitely
generated, then M belongs to the Serre subcategory of mod R generated by N .

Proof. Proposition 2.13 says that the maps σ, μ are isomorphisms whose inverse maps
are τ, ν, respectively. Let T be the torsion class of Mod R generated by N . We have T =
στ(T ), which is the full subcategory of ModR consisting of all R-modules K with SuppK ⊆⋃

L∈T SuppL. Since N is in T , we get SuppM ⊆ SuppN ⊆
⋃

L∈T SuppL. Therefore M is
in T .

Suppose that both M and N are finitely generated. Let S be the Serre subcategory of modR
generated by N . Then we have S = μστν(S), which consists of all finitely generated R-modules
K with SuppK ⊆

⋃
L∈T SuppL(=

⋃
L∈S SuppL). Hence M is in S.

3. Coherent subcategories are Serre

Throughout this section, let R be a commutative ring. We begin with proving the following
theorem.

Theorem 3.1. Let R be a noetherian ring. Let X be a full subcategory of mod R, which
is closed under finite direct sums, kernels and cokernels. Then X is closed under submodules
and quotient modules.

Proof. According to Proposition 2.2(4), it is enough to prove that X is closed under
submodules. Assume that X is not closed under submodules. Then there exist an R-module X
in X and an R-submodule M of X such that M does not belong to X . Since R is noetherian
and X is a finitely generated R-module, X is a noetherian R-module. Hence we can choose M
to be a maximal element, with respect to the inclusion relation, of the set of R-submodules M ′

of X such that M ′ does not belong to X . Since M does not coincide with X, there is an element
x ∈ X − M . Set Y = M + Rx. Note that Y is an R-submodule of X strictly containing M . By
the maximality of M , the module Y is in X . Put I = (M : x) := {a ∈ R | ax ∈ M}. This is an
ideal of R, and we easily see that the quotient R-module Y/M is isomorphic to R/I. There is
an exact sequence

0 −→ M −→ Y
π−→ R/I −→ 0
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of R-modules. Since M /∈ X and Y ∈ X and X is closed under kernels, we see from this exact
sequence that R/I must not be in X .

On the other hand, the map π in the exact sequence induces a surjective homomorphism

π : Y/IY −→ R/I

of R/I-modules, which sends the residue class of y ∈ Y in Y/IY to π(y). Of course R/I is
a projective R/I-module, and so π is a split epimorphism. Therefore R/I is isomorphic to a
direct summand of Y/IY . The noetherian property of R implies that the ideal I is finitely
generated; write I = (a1, a2, . . . , an)R for some elements a1, a2, . . . , an ∈ R. There is an exact
sequence

R⊕n (a1,...,an)−−−−−−→ R −→ R/I −→ 0

of R-modules. Tensoring the R-module Y with this exact sequence yields another exact
sequence of R-modules:

Y ⊕n (a1,...,an)−−−−−−→ Y −→ Y/IY −→ 0.

The assumption of the theorem says that X is closed under finite direct sums, cokernels and
direct summands; see Proposition 2.2(1). Hence the direct sum Y ⊕n belongs to X , and so does
the module Y/IY and, therefore, so does R/I. This is a contradiction, which says that X is
closed under submodules. Thus the proof of the theorem is completed.

Corollary 2.5(1) says that any coherent subcategory of modR is closed under finite direct
sums, kernels and cokernels. Thus, according to Theorem 3.1, we obtain the following result,
which is the former half part of Theorem A in the first section of this paper.

Corollary 3.2. Let R be a noetherian ring. Then every coherent subcategory of mod R
is a Serre subcategory of mod R.

Now, let us check that the subset Lspcl(Spec R) coincides with L0
spcl(Spec R) if R is a

noetherian ring.

Proposition 3.3. (1) Let Z be a subset of Spec R, which is closed under specialization.
Then one has

Z =
⋃
p∈Z

V (p).

(2) Let R be a noetherian ring. Then

Lspcl(SpecR) = L0
spcl(Spec R).

Proof. (1) Let q be a prime ideal in Z. Then q is in V (q), which is contained in
⋃

p∈Z V (p).
As to the opposite inclusion relation, take a prime ideal q in

⋃
p∈Z V (p). Then q is in V (p) for

some p ∈ Z. Since Z is closed under specialization, we get q ∈ Z, as required.
(2) This immediately follows from Remark 2.12 and assertion (1).

To prove our next result, we postulate the following two lemmas.

Lemma 3.4. Let R be a noetherian ring and let M be a subcategory of mod R, which is
closed under finite direct sums and cokernels. Let M be a cyclic R-module in M. Then there
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exists a perfect R-complex X• such that H0(X•) is isomorphic to M and that Hj(X•) belongs
to M for any j ∈ Z.

Proof. Since M is cyclic, there exists an ideal I of R such that M is isomorphic to R/I. The
noetherian property of R implies that the ideal I is finitely generated; let x = x1, x2, . . . , xr

be a system of generators of I. Consider the Koszul complex K• := K•(x, R) of the sequence
x. The complex K• is a perfect R-complex, and the zeroth homology H0(K•) is equal to R/I,
which is isomorphic to M . Thus, to show the lemma, it suffices to check that the homology
Hj(K•) belongs to M for each j ∈ Z. Note from [1, Proposition 1.6.5(b)] that the R-module
Hj(K•) = Hj(x, R) is annihilated by the ideal I = xR. Hence Hj(K•) can be regarded as an
R/I-module. Since R is noetherian, Hj(K•) is finitely generated, and hence finitely presented
as an R/I-module. It follows that there is an exact sequence

(R/I)⊕n −→ (R/I)⊕m −→ Hj(K•) −→ 0

of R/I-modules. Since M is closed under finite direct sums, the sum (R/I)⊕i ∼= M⊕i is an
object of M for any i � 0. Since M is closed under cokernels, the module Hj(K•) is in M,
as desired.

Lemma 3.5. Let M be a finitely generated R-module. Then there exist exact sequences

0 −→ R/I1 −→ M0 −→ M1 −→ 0,

0 −→ R/I2 −→ M1 −→ M2 −→ 0,

...

0 −→ R/In−1 −→ Mn−2 −→ Mn−1 −→ 0,

0 −→ R/In −→ Mn−1 −→ Mn −→ 0

of R-modules such that I1, I2, . . . , In−1, In are ideals of R, and M0 = M and Mn = 0.

Proof. Let x1, x2, . . . , xn be a system of generators of M . Set M0 = M . We have an
isomorphism Rx1

∼= R/I1, where I1 = Ann(x1). Putting M1 = M0/Rx1, we have an exact
sequence

0 −→ R/I1 −→ M0 −→ M1 −→ 0

of R-modules. Note that the R-module M1 is generated by n − 1 elements. By induction on n,
we can obtain such a system of exact sequences as in the lemma.

Now we are in a position to prove the following theorem, which is the latter half part of
Theorem A in the first section. In the proof, we should note that all the isomorphisms in the
theorem except Lcoh(coh(R)) ∼= Lthick(Dperf(R)) are obtained without using derived categories.

Theorem 3.6. Let R be a noetherian ring. Then the homomorphisms σ, μ, α, f (defined in
the previous section) are lattice isomorphisms, and τ, ν, β, g are their inverse homomorphisms,
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respectively. Consequently, one has

L0
spcl(SpecR) = Lspcl(Spec R)

∼= Ltors(Mod R)
∼= LSerre(Serre(R))
= Lcoh(coh(R))
∼= Lthick(Dperf(R)).

Proof. The equality L0
spcl(SpecR) = Lspcl(Spec R) is already shown in Proposition 3.3.

Proposition 2.13 says that the homomorphisms σ, μ are lattice isomorphisms and τ, ν are the
inverse homomorphisms of σ, μ, respectively. Hence we have Lspcl(Spec R) ∼= Ltors(Mod R) ∼=
LSerre(Serre(R)). It is seen from Corollary 3.2 and Remark 2.8 that both of the homomorphisms
α and β are the identity maps, and we have LSerre(Serre(R)) = Lcoh(coh(R)).

It remains to prove that f is an isomorphism with the inverse homomorphism g. The
composite map fg is the identity homomorphism by Proposition 2.13(4b), and the subcategory
gf(X ) is contained in X for every X ∈ Lcoh(coh(R)) by Proposition 2.13(4a). Let us show that
X is contained in gf(X ). Let M be an R-module in X . Since Remark 2.8 guarantees that
X is a subcategory of mod R, M is a finitely generated R-module, and we have a system of
exact sequences as in Lemma 3.5. (In the following, we use the same notation.) Since X is a
coherent subcategory of mod R by Remark 2.8, we see from Corollary 3.2 that X is a Serre
subcategory of mod R. Hence X is closed under submodules and quotient modules in modR
by Corollary 2.5(2). From the above exact sequences we easily see that the cyclic R-module
R/Ii belongs to X for every 1 � i � n. Note by Corollary 2.5(1) that X is closed under finite
direct sums. Hence Lemma 3.4 shows that for each integer 1 � i � n there exists a perfect
R-complex X

(i)
• such that R/Ii is isomorphic to H0(X

(i)
• ) and that Hj(X

(i)
• ) belongs to X for

any j ∈ Z. It easily follows from the definitions of the homomorphisms f, g that the R-module
R/Ii belongs to gf(X ). Since gf(X ) is a coherent subcategory, it is closed under extensions.
Hence from the system of exact sequences, we see that M belongs to gf(X ). Therefore X is
contained in gf(X ), and thus gf is the identity homomorphism. This completes the proof of
our theorem.

4. In relation to Neeman’s classification

In this section, we shall give a module version of Neeman’s classification theorem of localizing
categories and smashing categories, which we stated in the first section of this paper.
Throughout this section, let R be a commutative noetherian ring.

We denote by Lsubext(mod R) the lattice of all subcategories of modR which are closed under
submodules and extensions, and by L(Spec R) the lattice of all subsets of SpecR. We define
maps

Φ : L(Spec R) −→ Lsubext(mod R),
Ψ : Lsubext(mod R) −→ L(Spec R)

by Φ(S) = {M ∈ mod R | Ass M ⊆ S} and Ψ(M) =
⋃

M∈M AssM . It is easy to check that
these maps are lattice homomorphisms. Let φ : Lspcl(Spec R) → LSerre(mod R) and ψ :
LSerre(mod R) → Lspcl(Spec R) be the composite maps μσ and τν, where σ, τ , μ, ν are
the homomorphisms defined in Section 2. Note that the maps φ, ψ are given by φ(S) =
{M ∈ mod R | SuppM ⊆ S} and ψ(M) =

⋃
M∈M SuppM for S ∈ Lspcl(Spec R) and M ∈

LSerre(mod R).
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Recall that φ is an isomorphism and ψ is its inverse homomorphism since R is noetherian.
This section is mainly devoted to proving the following theorem.

Theorem 4.1. Let R be a commutative noetherian ring. Then the homomorphism Φ is an
isomorphism and Ψ is its inverse homomorphism. Moreover, Φ and Ψ induce the isomorphisms
φ and ψ, respectively. Thus one has the following commutative diagram.

Lsubext(mod R) Ψ−−−−→∼=
L(Spec R) Φ−−−−→∼=

Lsubext(mod R)
�⏐⏐⊆

�⏐⏐⊆
�⏐⏐⊆

LSerre(mod R)
ψ−−−−→∼=

Lspcl(Spec R)
φ−−−−→∼=

LSerre(mod R)

This theorem will be proved after showing the following two lemmas.

Lemma 4.2. Let M be a subcategory of mod R, which is closed under submodules and
extensions, and let M be a finitely generated R-module. Suppose that M has a unique
associated prime p. If R/p is in M, then so is M .

Proof. Assume that M is not in M. Set M0 = M , and let f0,1, . . . , f0,s0 be a system of
generators of the R-module HomR(M0, R/p). There is an exact sequence

0 −−−−→ M1 −−−−→ M0

⎛
⎜⎜⎜⎝

f0,1

...
f0,s0

⎞
⎟⎟⎟⎠

−−−−−−→ (R/p)⊕s0

of R-modules. Since M0 = M is not in M and (R/p)⊕s0 is in M and M is closed under
submodules and extensions, it is easily seen that M1 must not be in M. In particular, M1 
=
0 and hence p is the unique associated prime of M1. Letting f1,1, . . . , f1,s1 be a system of
generators of the R-module HomR(M1, R/p), we have an exact sequence

0 −−−−→ M2 −−−−→ M1

⎛
⎜⎜⎜⎝

f1,1

...
f1,s1

⎞
⎟⎟⎟⎠

−−−−−−→ (R/p)⊕s1 .

Since M1 is not in M and (R/p)⊕s1 is in M, we see that M2 is not in M, and that p is the
unique associated prime of M2. Iterating this procedure, for each integer i � 0 we obtain an
exact sequence

0 −−−−→ Mi+1 −−−−→ Mi

⎛
⎜⎜⎜⎝

fi,1

...
fi,si

⎞
⎟⎟⎟⎠

−−−−−→ (R/p)⊕si ,

where fi,1, . . . , fi,si
is a system of generators of the R-module HomR(Mi, R/p) and p is the

unique associated prime of Mi. Localizing the descending chain M = M0 ⊇ M1 ⊇ M2 ⊇ . . . at
p yields a descending chain

Mp = (M0)p ⊇ (M1)p ⊇ (M2)p ⊇ . . .
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of Rp-modules. Since the Rp-module (Mi)p has finite length for every i, there exists an integer
t such that (Mt)p = (Mt+1)p = (Mt+2)p = . . .. The exact sequence

0 −−−−→ (Mt+1)p
=−−−−→ (Mt)p

⎛
⎜⎜⎜⎝

(ft,1)p

...
(ft,st )p

⎞
⎟⎟⎟⎠

−−−−−−−→ κ(p)⊕st

shows that HomRp((Mt)p, κ(p)) = Rp(ft,1)p + . . . + Rp(ft,st
)p = 0. Therefore (Mt)p = 0. This

is a contradiction since p ∈ Ass Mt ⊆ SuppMt. Thus we conclude that M is in M.

Lemma 4.3. Let M be a subcategory of mod R, which is closed under submodules and
extensions. Let M be a finitely generated R-module. Suppose that R/p belongs to M for every
p ∈ Ass M . Then M also belongs to M.

Proof. Let p1, . . . , ps be the associated primes of M , and let

0 = N1 ∩ . . . ∩ Ns

be an irredundant primary decomposition of the zero submodule 0 of M , where Ni is a
pi-primary submodule of M for 1 � i � s. Then the natural homomorphism

M = M/N1 ∩ . . . ∩ Ns −→ M/N1 ⊕ . . . ⊕ M/Ns

is injective. Since pi is the unique associated prime of the R-module M/Ni, Lemma 4.2 implies
that M/Ni belongs to M for 1 � i � s. Hence M/N1 ⊕ . . . ⊕ M/Ns belongs to M, and so
does M .

Now we can achieve the main purpose of this section.

Proof of Theorem 4.1. Let S be a subset of SpecR. The set ΨΦ(S) is the union of AssM ,
where M runs through finitely generated R-modules all of whose associated primes are in S. It
is trivial that this set is contained in S. For a prime ideal p ∈ S, we have AssR R/p = {p} ⊆ S.
Hence p belongs to ΨΦ(S), and therefore ΨΦ(S) = S. Let M be a subcategory of modR which
is closed under submodules and extensions. We have that ΦΨ(M) is the subcategory of mod R
consisting of all finitely generated R-modules N with Ass N ⊆

⋃
M∈M Ass M , and it is obvious

that ΦΨ(M) contains M. Let N be a finitely generated R-module with Ass N ⊆
⋃

M∈M Ass M .
Fix a prime ideal p ∈ Ass N . Then there exists an R-module M ∈ M with p ∈ Ass M . There
is an injective homomorphism R/p → M , and R/p belongs to M since M is closed under
submodules. It follows from Lemma 4.3 that N is in M. Hence ΦΨ(M) = M. Thus we conclude
that Φ is an isomorphism whose inverse homomorphism is Ψ.

On the other hand, let S be a subset of Spec R, which is closed under specialization. Let
M be a finitely generated R-module such that Ass M is contained in S, and take p ∈ SuppM .
Then there is a prime ideal q ∈ MinM ⊆ Ass M that is contained in p. Since q is in S and S is
closed under specialization, p is also in S. Thus Φ(S) = {M ∈ mod R | Ass M ⊆ S } coincides
with φ(S) = {M ∈ mod R | SuppM ⊆ S }. Let M be a Serre subcategory of modR. Let N ∈
M and p ∈ SuppN . Choose a prime ideal q ∈ MinN which is contained in p. Then q is an
associated prime of N , so there is an injective homomorphism R/q → N . Since M is closed
under submodules, the module R/q is in M. Noting that there is a surjective homomorphism
R/q → R/p and that M is closed under quotient modules, R/p is also in M. Hence we get p ∈
Ass R/p ⊆

⋃
M∈M Ass M . Therefore the set ψ(M) =

⋃
M∈M SuppM is contained in Ψ(M) =⋃

M∈M Ass M , and we see that Ψ(M) = ψ(M). It follows that φ and ψ are induced from Φ
and Ψ, respectively.



780 RYO TAKAHASHI

Here, let us check that an analogous result to Corollary 2.14 holds. This actually follows
from Lemma 4.3.

Corollary 4.4. Let R be a noetherian ring. Let M and N be finitely generated R-modules
with Ass M ⊆ Ass N . Then M is in the full subcategory of mod R closed under submodules
and extensions which is generated by N .

Proof. Let E be the full subcategory of modR closed under submodules and extensions,
which is generated by N . According to Lemma 4.3, we have only to show that the R-module
R/p is in E for every p ∈ Ass M . Let p be a prime ideal in AssM . The assumption says that p
is in Ass N . Hence there exists an injective homomorphism R/p → N of R-modules. Since N
is in E and E is closed under submodules, R/p is also in E , as required.

In the following example, we will give several correspondences between subcategories of
mod R which are closed under submodules and extensions and subsets of SpecR, which are
made by the isomorphisms Φ and Ψ. Before that, we need to prepare some notation. Let I be
an ideal of R, and let M,N be R-modules. We denote by ΓI(M) the I-torsion submodule of
M , namely, the set of elements of M that are annihilated by some power of I. Recall that an
R-module M is called I-torsion if ΓI(M) = M , and that M is called I-torsion-free if ΓI(M) = 0.
It is well known and easy to see that M is I-torsion if and only if AssM ⊆ V (I), and that M is
I-torsion-free if and only if AssM ∩ V (I) = ∅. We set grade(N,M) = inf{ i |Exti

R(N,M) 
= 0 },
grade(I,M) = grade(R/I,M), grade I = grade(I,R) and gradeM = grade(AnnM,R).

Example 4.5. The isomorphisms Φ and Ψ make the following correspondences. Let n be
a nonnegative integer, let I be an ideal of R and let X be a finitely generated R-module.

(1)
{
M ∈ mod R

∣∣ M is I-torsion
}

←→ V (I).

(2)
{
M ∈ mod R

∣∣ grade(X,M) > 0
}

←→ Spec R \ SuppX.

(3)
{
M ∈ mod R

∣∣ M is I-torsion-free
}

=
{
M ∈ mod R

∣∣ grade(I,M) > 0
}

←→ D(I).

(4)
{
M ∈ mod R

∣∣ grade(M,X) � n
}

←→
{
p ∈ Spec R

∣∣ grade(p,X) � n
}
.

(5)
{
M ∈ mod R

∣∣ rankM = 0
}

=
{
M ∈ mod R

∣∣ grade M > 0
}

←→
{
p ∈ Spec R

∣∣ grade p > 0
}
.

(6)
{
M ∈ mod R

∣∣ every X-regular element is M -regular
}

←→
{
p ∈ Spec R

∣∣ grade(p,X) = 0
}
.

(7)
{
M ∈ mod R

∣∣ M is torsion-free
}

←→
{
p ∈ Spec R

∣∣ grade p = 0
}
.

(8)
{
M ∈ mod R

∣∣ ht AnnM � n
}

←→
{
p ∈ Spec R

∣∣ ht p � n
}
.

(9)
{
M ∈ mod R

∣∣ dim M � n
}

←→
{
p ∈ Spec R

∣∣ dim R/p � n
}
.

(10)
{
M ∈ mod R

∣∣ �(M) < ∞
}

←→ Max R.

Proof. In each correspondence, we denote by M the left-hand subcategory of modR, and
by S the right-hand subset of SpecR. Note that it is enough to check either that Ψ(M) = S
or that Φ(S) = M since Φ is an isomorphism with the inverse homomorphism Ψ.

(1) The subcategory M consists of all finitely generated R-modules M with Ass M ⊆ V (I),
which coincides with Φ(V (I)). Hence Φ(S) = M.
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(2) Let M be a finitely generated R-module. Note that Ass M ⊆ Spec R \ SuppX if and only
if Ass M ∩ SuppX = ∅, if and only if Ass Hom(X,M) = ∅ (cf. [1, Exercise 1.2.27]), if and only
if Hom(X,M) = 0. Thus we have Φ(S) = M.

(3) The equality is well known. Putting X = R/I in (2), we obtain the correspondence.
(4) Let M be a finitely generated R-module with grade(M,X) � n, and let p ∈ Ass M .

Then there is an X-regular sequence a = a1, . . . , an in AnnM , and p ∈ SuppM . Hence a is
an X-regular sequence in p, and we have grade(p,X) � n. Therefore Ψ(M) is contained in S.
Conversely, if p is a prime ideal with grade(p,X) � n, then R/p ∈ M and p ∈ Ass R/p. Hence
p is in Ψ(M). Therefore S is contained in Ψ(M), and thus we get Ψ(M) = S.

(5) Let M be an R-module. We have that rankM = 0 if and only if Mp = 0 for every
p ∈ Ass R, if and only if SuppM ∩ Ass R = ∅, if and only if Ass Hom(M,R) = ∅, if and only
if Hom(M,R) = 0, namely gradeM > 0. Thus the equality holds. For the correspondence, put
X = R and n = 1 in (4).

(6) Let p be a prime ideal in Ψ(M). Then there exists an R-module M ∈ M of which p is
an associated prime. Assume that grade(p,X) > 0. Then there is an X-regular element a ∈ p,
and this is also M -regular. This is a contradiction since p ∈ Ass M . Thus grade(p,X) = 0, that
is, p belongs to S. On the contrary, let p be a prime ideal with grade(p,X) = 0. Then there
exists an associated prime q of X which contains p. Let a be an X-regular element. Then a is
not in q, and so not in p. Hence a is an R/p-regular element, and R/p belongs to M. Since
p ∈ Ass R/p, the prime ideal p is in Ψ(M), and it holds that Ψ(M) = S.

(7) Let X = R in (6), and we get this correspondence.
(8) If M is a finitely generated R-module with ht AnnM � n, then ht p � n for all p ∈

SuppM , and hence for all p ∈ Ass M . Therefore Ψ(M) is contained in S. If p is a prime ideal
of height at least n, then the ideal AnnR/p of R also has height at least n and p ∈ Ass R/p.
Hence Ψ(M) contains S, and thus Ψ(M) = S.

(9) Let M be a finitely generated R-module. Then Ass M is contained in S if and only if
dim R/p � n for every p ∈ Ass M , if and only if dimM � n. Therefore Φ(S) = M.

(10) Assigning n = 0 in (9) yields this correspondence.

Note that in the correspondences (1), (4), (5), (8), (9) and (10) in the above example, the
left-hand subcategories of modR are Serre subcategories and the right-hand subsets of SpecR
are closed under specializations, and hence those correspondences are in fact obtained by the
isomorphisms φ and ψ.
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