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Abstract

In this paper, Clifford’s well-known theorem on irreducible characters of finite
groups is generalized to finite commutative association schemes. Our theorem re-
lates irreducible characters of finite commutative schemes to those of their strongly
normal closed subsets.

1 Introduction

Clifford’s theorem is one of the most important theorems in the theory of characters of
finite groups. In this paper, we consider Clifford’s theorem for finite schemes. We shall
adopt notation and terminology from Zieschang’s book [6].

It is natural to consider Clifford’s theorem for normal closed subsets. However, we
have the following example.

Example 1.1. Let G be the association scheme defined by the following relation matrix.

012233445566
10225566 3 3 44
220146 3546 35
221064536453
36 4503254261
36 54305 2241°F6
4536 26045132
4 56 3624013523
6 345426103235
6 3542416305 2
5436513 22¢60 4
546 315236240

Then H = {go, g1, g2} is a normal closed subset of G. The character tables of G and H



are as follows.

go 91 92 93 G4 G5 Ge | MYy
vwl1l 1 2 2 2 2 2|1 do 91 92T
Yol 1 1 2 -1 -1 -1 —1| 2 prp Lo b2l
sl 1 =1 0 -1 -1 1 1| 3 P2 11 =20
Yal 2 0 -2 1 1 -1 —1]| 3 ps| 1 =1 0] 2

Now we can see that (y3)g = w3 and (x4)g = w2 + 3. If Clifford-type theorem holds
for this example, then we expect that the sets of irreducible constituents of (y3)y and
(x4)m coincide since they have a common constituent ¢3. So this example shows that
Clifford-type theorem does not hold for this example.

The previous example shows that Clifford’s theorem does not hold for normal closed
subsets of finite schemes. However, for finite thin schemes (finite groups), the notion
of a normal closed subset is equivalent to the one of a strongly normal closed subset.
Therefore, we restrict ourselves to strongly normal closed subsets. So far, we do not
know of a non-commutative scheme for which Clifford’s theorem fails. Thus, there is
hope that Clifford’s theorem holds for arbitrary finite schemes, not only for commutative
finite schemes. In order to prove our main result, we shall now first look at Clifford
Theory for group-graded algebras.

2 Group-graded algebras and crossed products

In this section, we introduce the theory of group-graded algebras in Dade [2] or Curtis,
Reiner [1, §11]. To simplify our argument, we always suppose that the coefficient field
F'is an algebraically closed field and F-algebras and F-modules are finite dimensional
over F'. Modules will be right modules.

Let S be a finite group, and let A be an F-algebra. Suppose A is a direct sum of
F-subspaces Ay, s € S. The algebra A is called S-graded (group-graded) if

(1) AjA; C Ay for s,t € S.

For an S-graded algebra A, A; is a subalgebra of A. Furthermore, if
(2) AsA; = Ay for s,t €S,

we say that A is strongly S-graded. 1f an S-graded algebra A satisfies
(3) for every s € S, As contains a unit as in A,

then the condition (2) holds, and in this case, A is a crossed product of S over Ay [2,
Theorem 5.10]. For crossed products, it is known that Clifford’s theorem holds.

Assume that the algebra A satisfies the condition (3). Then A is a free right and left
Aj-module with a free basis {as | s € S}. For an A-module M, the restriction of M to
A; is denoted by My,. For an A;-module L, the induced module of L to A is

LY =Las A=PLoa..

ses



Now L ® a, is an A;-submodule of LA. Let L be a simple (irreducible) A;-module. Put
T:={seS|L®as, =L},

then T is a subgroup of S. We write Irr(A | L) for the set of simple A-modules M such
that M4, contains L as a simple submodule. Here we identify isomorphic modules. Now
we can state Clifford’s theorem for crossed products.

Theorem 2.1 ([1, Proposition 11.16]). Let S be a finite group, A a finite dimensional
S-graded algebra with the property (3) above, and let L be a simple Ai-module. Put
T:={seS|L®as= L}. Then we have the followings.

(1) If M € Irr(A | L), then My, is semisimple and My, = e <@t€T\SL®at> for
some positive integer e.

(2) Put B=Y,.p As. Then the map Irr(B | L) — Irr(A | L) defined by N — N is
a bijection.

3 The case that the adjacency algebra is a crossed
product

Let (X, G) be an association scheme. In this section, we do not assume the commuta-
tivity of (X, G). Suppose that H is a strongly normal closed subset of GG, namely, the
factor G//H is essentially a finite group. Consider the double coset decomposition of
G7
G= |J HyH
gHeG//H

(Of course, HgH = gH = H g holds since H is normal in G.) Now we have a direct sum
decomposition of the adjacency algebra:

CG= (P cC(HgH)

g"eG//H

where C(HgH) = ),y Con- By the definition, it is clear that CG is a G//H-graded
algebra. If CG satisfies the condition (3) in Section 2, then the Clifford’s theorem
(Theorem 2.1) holds.

Example 3.1 (Semidirect products). Let (X, G)O be a semidirect product defined in
[6, Section 2]. Then G = G x 1 is a strongly normal closed subset, and the condition
(3) in Section 2 holds. So the Clifford’s theorem holds for semidirect products. In this
case, the adjacency algebra is a skew group ring of © over CG.



Example 3.2. Let GG be the association scheme defined by the following relation matrix.

0111111222333 3
1 0111113322233
1101111233322 3
1110111233233 2
1111011323323 2
1111101332332 2
1111110323232 3
2322333 0111T1T171
23 3323210111171
22333231 101111
32323321110111
3223233 1111011
33233221 1111°01
333 22231111110

Now H = {go,91} is a strongly normal closed subset of G. This is not a semidirect
product, but the condition (3) in Section 2 holds. The character table of G is as follows.

do 1 g2 g3
x2| 1 6 -3 —4
xs| 1 =1 V2 —V2
xa| 1 =1 =2 V2

oo = =3

In Section 4, we will show that the condition (3) holds if G is commutative and |H| =
|HgH| for any g € G. So we can construct similar examples from arbitrary symmetric
designs. Actually, this example is constructed by PG(2,2).

4 Clifford’s theorem for commutative schemes

In this section, we consider Clifford’s theorem for commutative schemes and their
strongly normal closed subsets. Let (X,G) be a commutative scheme, and let H be
a strongly normal closed subset of G. We consider the decomposition of adjacency
algebras
CH= @ eCH CG= @ e,CG.
p€elrr(H) p€elrr(H)

Obviously, Irr(e,CH) = {¢} and Irr(e,CG) = Irr(G | ¢), so we consider Clifford’s
theorem between e,CH and e,CG. Here we denote Irr(G | ¢) for the set of irreducible

characters x of GG such that the restriction of x to H contains ¢ as an irreducible
constituent.



As in Section 3, we decompose e¢,CG as

e,CG = @ e,C(HgH).

geG//H

Then e,CG is G//H-graded since e, is in CH. We note that e,C(HgH) can be zero.
So we put
Z//H = {g" € G//H | e,C(HgH) # 0}.

Then we have the crucial lemma in this paper.
Lemma 4.1. Ife,C(HgH) # 0, then e,C(HgH) contains a unit in e,CG.

To prove this lemma, we need the next proposition. Let H be a normal closed subset
of G. For a character 7 of the factor scheme G//H and g € G, we define
- n
T(og) = —L7(0yn).

ngH

Then 7 is a character of G [3, Theorem 3.5]. We identify 7 and 7, and regard 7 as a
character of G.

Proposition 4.2 ([4, Theorem 3.3 and 3.4)). Let (X,G) be a (not necessary commuta-
tive) association scheme, and H a strongly normal closed subset of G. If x is a character
of G and T is a character of G//H, then the product xT is a character of G, where

1
x7(0g) = x(og)T(ogn) = —x(0g)7(0).
9
Moreover, if x € Irr(G) and 7(1) = 1, then x7 € Irr(G) and the multiplicity m,. of xT
equals to my,.

Proof of Lemma 4.1. Suppose e,C(HgH) # 0. Then there exists f € HgH such that
e,0r # 0. Since HgH = H fH, we may assume that e, 0, # 0. We will show that e o,
is a unit in e,CG. By the commutativity of CG, there exists x € Irr(G | ) such that
x(og) # 0. If we show that n(o,) # 0 for any n € Irr(G | ¢), then e,o, is a unit in
e,CG, since any eigenvalue of e, o, acting on e,CG is of the form n(o,), n € Irr(G | ¢).

For any 7 € Irr(G//H), we have x7 € Irr(G | ¢) by Proposition 4.2. By the
commutativity, G//H has a structure of an abelian group, and Irr(G//H) is also an
abelian group. Now Irr(G//H) acts on Irr(G | ). Let U be the Irr(G//H)-orbit of



Irr(G | ¢) containing y, and let Stab, be the stabilizer of x. Put ey := ZneU en. Then

| e 1 ———
S Zen:W Z My Zn—fXT<0f)Uf

n
nev X remGym) ¢ feG

1 m _
— 2 e S, T

X! relm(G//H) " fea

S i e o o)
- ng|StabX|anX(Uf) Z T(Uf ) Uf

Telrr(G//H)
my|G//H]
= — € CH.
ne|Stab, | Z X 1)os
Since e, is primitive in CH, we have Irr(G | ) = U = {x7 | 7 € Irr(G//H)}. Now
xT(04) = Xx(04)T(0,m) # 0, because 7 is a linear character of an abelian group G//H.
This shows that the assertion holds. O

Lemma 4.3. Z//H is a subgroup of G//H, and e,CG is a crossed product of Z//H
over e,CH.

Proof. This is clear by Lemma 4.1. O]
Now we can show the main result in this paper.

Theorem 4.4 (Clifford’s theorem for Commutative Schemes). Let (X, G) be a com-
mutative scheme, H a strongly normal closed subset of G, and ¢ € ITrr(H). Put
Z/JH ={g" € G//H | e,C(HgH) # 0}. Then Z//H s a subgroup of G//H, and we
have the followings.

(1) Take any & € Irr(Z | ) and fiz it. Then Irr(Z | o) ={&7 | 7€ Irr(Z//H)}.

(2) The map Irr(Z | o) — Irr(G | @) defined by n+— n% is a bijection. Here n®(o,) =
n(o,) for g € Z, and 0 otherwise.

(3) For x € Irr(G | @), my = 79my,.

Proof. (1) and (2) are clear by Proposition 4.2 and Lemma 4.3.

The rank of e, € CG (as a matrix) is |G//H|m,. The multiplicities are constant on
Irr(G | ¢) by Proposition 4.2, and [Irr(G | )| = |Z//H|. So we have m, = 7<m,, for
x € Irr(G | ). (3) holds. O

Let L be a CH-module affording ¢ € Irr(H). Then easily we have
Z//H ={¢" € G//H | L®cy C(HgH) = L as CH-modules}.

So Theorem 4.4 is a natural generalization of Clifford’s theorem for finite group charac-
ters.
The end of this paper, we show an easy corollary of our result.

6



Corollary 4.5. Let (X,G) be a commutative association scheme, and H a strongly
normal closed subset of G. Then

|H|+|G//H| -1 < |G| < |H|-|G//H]|.

Moreover, |G| = |H|+|G//H|—1 if and only if (X, G) is the wreath product of (X, G).n
by G//H forx € X, and |G| = |H|-|G//H| if and only if CG is a crossed product of
G//H over CH. (For the definition of wreath products of association schemes, see [5].)

Proof. By the definition of a factor scheme, the former inequality holds clearly, and by
Theorem 4.4, the later inequality holds.
It is easy to show the rest of the assertions. O]

By this result, if (X, G) is commutative, H strongly normal in G, and |HgH| = |H|
for any g € G, then the adjacency algebra CG is a crossed product of G//H over CH.
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