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We derive relations among sfermion masses based on orbifold family unification models.
Sfermion mass relations are specific to each model and can be useful for the selection of a
realistic model.

§1. Introduction

Supersymmetric grand unified theories (SUSY GUTs) on an orbifold have de-
sirable features as realistic models beyond the minimal supersymmetric standard
model (MSSM). The triplet-doublet splitting of Higgs multiplets is elegantly real-
ized in the framework of SUSY SU(5) GUT in five dimensions.1),2) Four-dimensional
chiral fermions are generated through the dimensional reduction. These phenomena
originate from the fact that some of the zero modes are projected out by orbifolding,
i.e., by non-trivial boundary conditions (BCs) concerning the extra dimensions on
bulk fields. There is a possibility that a (complete) family unification can be realized
by eliminating all mirror particles from the low-energy spectrum. Mirror particles
are particles with opposite quantum numbers in the standard model (SM) gauge
group GSM .

Recently, family unification has been studied in SUSY SU(N) GUTs defined on
the five-dimensional space-time M4×(S1/Z2).3),∗∗∗) Here, M4 is the four-dimensional
Minkowski space-time, and S1/Z2 is the one-dimensional orbifold. A great variety
of models have been found in which zero modes from a single bulk field and a few
brane fields compose three families. We refer to them as “orbifold family unification
models”. At present, it is necessary to make strong predictions in order to distin-
guish among models with experimental data. Many works concerning mass relations
among scalar particles have been carried out with the motivation that relations spe-
cific to each model will provide information that is useful for understanding the
structure of the MSSM and beyond in four-dimensional SUSY models.7)–15),†) Sum
rules among sfermion masses have also been derived in two kinds of orbifold family
unification models, and it has been pointed out that they can be useful probes of
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∗∗∗) The possibility that one might realize the complete family unification utilizing an orbifold

is also suggested in Ref. 4) in a different context. In Ref. 5), three families are derived from a

combination of a bulk gauge multiplet and a few brane fields. In Ref. 6), they are realized as

composite fields.
†) Scalar mass relations have been examined in four-dimensional superstring models.16), 17)
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each model.18),∗)
In this paper, we study sfermion masses on the basis of orbifold family unification

models, employing certain assumptions regarding the breakdown of SUSY and gauge
symmetries, and then we derive relations among them.

This paper is organized as follows. In §2, we give an outline of orbifold family
unification models. In §3, we present a generic mass formula for sfermions and derive
specific relations among sfermion masses. Sfermion sum rules at the TeV scale are
also derived from several models on the basis of the assumption that the MSSM holds
below the compactification scale. Section 4 is devoted to conclusions and discussion.

§2. Orbifold family unification

First, we review the arguments given in Ref. 3). We study SU(N) gauge theory
on M4 × (S1/Z2), with the gauge symmetry breaking pattern SU(N) → SU(3) ×
SU(2) × SU(r) × SU(s) × U(1)n, which is realized with the Z2 parity assignment

P0 = diag(+1, +1, +1, +1, +1,−1, . . . ,−1,−1, . . . ,−1), (2.1)
P1 = diag(+1, +1, +1,−1,−1, +1, . . . , +1︸ ︷︷ ︸

r

,−1, . . . ,−1︸ ︷︷ ︸
s

), (2.2)

where s = N − 5 − r and N ≥ 6. The quantity n is an integer that depends on the
breaking pattern. The matrices P0 and P1 are the representation matrices (up to
sign factors) of the fundamental representation of the Z2 transformation (y → −y)
and the Z ′

2 transformation (y → 2πR − y), respectively. Here, y is the coordinate
of S1/Z2, and R is the radius of S1. After the breakdown of SU(N), the rank-k
completely antisymmetric tensor representation [N, k], whose dimension is NCk, is
decomposed into a sum of multiplets of the subgroup SU(3)×SU(2)×SU(r)×SU(s)
as

[N, k] =
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

(3Cl1 , 2Cl2 , rCl3 , sCl4) , (2.3)

where l1, l2 and l3 are integers, we have the relation l4 = k − l1 − l2 − l3, and our
notation is such that nCl = 0 for l > n and l < 0. Here and hereafter we use nCl

instead of [n, l] in many cases. We list the U(1) charges for representations of the
subgroups in Table I. The U(1) charges are those in the subgroups

SU(5) ⊃ SU(3) × SU(2) × U(1)1, (2.4)
SU(N − 5) ⊃ SU(r) × SU(N − 5 − r) × U(1)2, SU(N − 5 − 1) × U(1)2, (2.5)
SU(N) ⊃ SU(5) × SU(N − 5) × U(1)3, (2.6)

up to normalization. We assume that GSM = SU(3) × SU(2) × U(1)1, up to nor-
malization of the hypercharge. Particle species are identified with the SM fermions

∗) Sfermion masses have been studied from the viewpoint of flavor symmetry and its violation

in SU(5) SUSY orbifold GUT.19)
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Table I. The U(1) charges for various representations of fermions.

species representation U(1)1 U(1)2 U(1)3

(νR)c, ν̂R (3C0, 2C0, rCl3 , sCk−l3) 0 (N − 5)l3 − rk −5k

(d′
R)c, dR (3C1, 2C0, rCl3 , sCk−l3−1) −2 (N − 5)l3 − r(k − 1) N − 5k

l′L, (lL)c (3C0, 2C1, rCl3 , sCk−l3−1) 3 (N − 5)l3 − r(k − 1) N − 5k

(uR)c, u′
R (3C2, 2C0, rCl3 , sCk−l3−2) −4 (N − 5)l3 − r(k − 2) 2N − 5k

(eR)c, e′R (3C0, 2C2, rCl3 , sCk−l3−2) 6 (N − 5)l3 − r(k − 2) 2N − 5k

qL, (q′L)c (3C1, 2C1, rCl3 , sCk−l3−2) 1 (N − 5)l3 − r(k − 2) 2N − 5k

(e′R)c, eR (3C3, 2C0, rCl3 , sCk−l3−3) −6 (N − 5)l3 − r(k − 3) 3N − 5k

(u′
R)c, uR (3C1, 2C2, rCl3 , sCk−l3−3) 4 (N − 5)l3 − r(k − 3) 3N − 5k

q′L, (qL)c (3C2, 2C1, rCl3 , sCk−l3−3) −1 (N − 5)l3 − r(k − 3) 3N − 5k

lL, (l′L)c (3C3, 2C1, rCl3 , sCk−l3−4) −3 (N − 5)l3 − r(k − 4) 4N − 5k

(dR)c, d′
R (3C2, 2C2, rCl3 , sCk−l3−4) 2 (N − 5)l3 − r(k − 4) 4N − 5k

(ν̂R)c, νR (3C3, 2C2, rCl3 , sCk−l3−5) 0 (N − 5)l3 − r(k − 5) 5N − 5k

by the gauge quantum numbers. Here, we use (dR)c, lL, (uR)c, (eR)c and qL to rep-
resent down-type anti-quark singlets, lepton doublets, up-type anti-quark singlets,
positron-type lepton singlets and quark doublets. The particles with primes are re-
garded as mirror particles and believed to have no zero modes. Each fermion has a
definite chirality, e.g., (dR)c is left-handed and dR is right-handed. Here, the sub-
script L (R) represents left-handedness (right-handedness) for Weyl fermions. Here,
(dR)c represents the charge conjugate of dR and transforms as a left-handed Weyl
fermion under the four-dimensional Lorentz transformation.

A fermion with spin 1/2 in five dimensions is regarded as a Dirac fermion or a pair
of Weyl fermions with opposite chiralities in four dimensions. The left-handed Weyl
fermion and the corresponding right-handed one should have opposite Z2 parities as
implied by the requirement that the kinetic term is invariant under the Z2 parity
transformation. We define the Z2 parity of the representation (pCl1 , qCl2 , rCl3 , sCl4)L

as

P0 = (−1)l1+l2(−1)kηk, P1 = (−1)l1+l3(−1)kη′k, (2.7)

where ηk and η′k are the intrinsic Z2 parities. By definition, ηk and η′k each takes
the value +1 or −1. We list the Z2 parity assignment for species in Table II. Note
that mirror particles have the Z2 parity P0 = −(−1)kηk. Hence all zero modes of
mirror particles can be eliminated by the proper choice of the Z2 parity when we take
(−1)kηk = +1. Hereafter, we consider such a case.

We write the flavor numbers of (dR)c, lL, (uR)c, (eR)c, qL and the (heavy)
neutrino singlets as nd̄, nl, nū, nē, nq and nν̄ . Both left-handed and right-handed
Weyl fermions having even Z2 parities, P0 = P1 = +1, compose chiral fermions in
the SM. When we choose (−1)kη′k = +1, the flavor number of the chiral fermions
are given by

nd̄ =
∑
i=1,4

∑
l3=0,2,...

rCl3 · N−5−rCk−i−l3 , (2.8)

nl =
∑
i=1,4

∑
l3=1,3,...

rCl3 · N−5−rCk−i−l3 , (2.9)
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Table II. The Z2 parity assignment for various representations of fermions.

species representation P0 P1

(νR)c (3C0, 2C0, rCl3 , sCk−l3)L (−1)kηk (−1)l3(−1)kη′
k

ν̂R (3C0, 2C0, rCl3 , sCk−l3)R −(−1)kηk −(−1)l3(−1)kη′
k

(d′
R)c (3C1, 2C0, rCl3 , sCk−l3−1)L −(−1)kηk −(−1)l3(−1)kη′

k

l′L (3C0, 2C1, rCl3 , sCk−l3−1)L −(−1)kηk (−1)l3(−1)kη′
k

dR (3C1, 2C0, rCl3 , sCk−l3−1)R (−1)kηk (−1)l3(−1)kη′
k

(lL)c (3C0, 2C1, rCl3 , sCk−l3−1)R (−1)kηk −(−1)l3(−1)kη′
k

(uR)c (3C2, 2C0, rCl3 , sCk−l3−2)L (−1)kηk (−1)l3(−1)kη′
k

(eR)c (3C0, 2C2, rCl3 , sCk−l3−2)L (−1)kηk (−1)l3(−1)kη′
k

qL (3C1, 2C1, rCl3 , sCk−l3−2)L (−1)kηk −(−1)l3(−1)kη′
k

u′
R (3C2, 2C0, rCl3 , sCk−l3−2)R −(−1)kηk −(−1)l3(−1)kη′

k

e′R (3C0, 2C2, rCl3 , sCk−l3−2)R −(−1)kηk −(−1)l3(−1)kη′
k

(q′L)c (3C1, 2C1, rCl3 , sCk−l3−2)R −(−1)kηk (−1)l3(−1)kη′
k

(e′R)c (3C3, 2C0, rCl3 , sCk−l3−3)L −(−1)kηk −(−1)l3(−1)kη′
k

(u′
R)c (3C1, 2C2, rCl3 , sCk−l3−3)L −(−1)kηk −(−1)l3(−1)kη′

k

q′L (3C2, 2C1, rCl3 , sCk−l3−3)L −(−1)kηk (−1)l3(−1)kη′
k

eR (3C3, 2C0, rCl3 , sCk−l3−3)R (−1)kηk (−1)l3(−1)kη′
k

uR (3C1, 2C2, rCl3 , sCk−l3−3)R (−1)kηk (−1)l3(−1)kη′
k

(qL)c (3C2, 2C1, rCl3 , sCk−l3−3)R (−1)kηk −(−1)l3(−1)kη′
k

lL (3C3, 2C1, rCl3 , sCk−l3−4)L (−1)kηk −(−1)l3(−1)kη′
k

(dR)c (3C2, 2C2, rCl3 , sCk−l3−4)L (−1)kηk (−1)l3(−1)kη′
k

(l′L)c (3C3, 2C1, rCl3 , sCk−l3−4)R −(−1)kηk (−1)l3(−1)kη′
k

d′
R (3C2, 2C2, rCl3 , sCk−l3−4)R −(−1)kηk −(−1)l3(−1)kη′

k

(ν̂R)c (3C3, 2C2, rCl3 , sCk−l3−5)L −(−1)kηk −(−1)l3(−1)kη′
k

νR (3C3, 2C2, rCl3 , sCk−l3−5)R (−1)kηk (−1)l3(−1)kη′
k

nū = nē =
∑
i=2,3

∑
l3=0,2,...

rCl3 · N−5−rCk−i−l3 , (2.10)

nq =
∑
i=2,3

∑
l3=1,3,...

rCl3 · N−5−rCk−i−l3 , (2.11)

nν̄ =
∑
i=0,5

∑
l3=0,2,...

rCl3 · N−5−rCk−i−l3 , (2.12)

using the equivalence of the charge conjugation. When we choose (−1)kη′k = −1,
we obtain formulae in which nl is replaced by nd̄ and nq by nū (= nē) in Eqs.
(2.8) – (2.11). The total number of (heavy) neutrino singlets is given by n

(+−)
ν̄,k =∑

i=0,5

∑
l3=1,3,... rCl3 · N−5−rCk−i−l3 for (−1)kη′k = −1.

For arbitrary N (≥ 6) and r, the flavor numbers from [N, k] with ((−1)kηk,
(−1)kη′k) = (a, b) are equal to those from [N, N − k] with ((−1)N−kηN−k,
(−1)N−kη′N−k) = (a,−b) if r is odd, and the flavor numbers from [N, k] with
((−1)kηk, (−1)kη′k) = (a, b) are equal to those from [N, N − k] with ((−1)N−kηN−k,
(−1)N−kη′N−k) = (a, b) if r is even. We list the flavor number of each chiral fermion
derived from [N, k] (N = 5, · · · , 9 and k = 1, · · · , [N/2] where [∗] stands for Gauss’s
symbol, i.e., [N/2] = N/2 if N is even and [N/2] = (N − 1)/2 if N is odd) in Table
III. In the 8-th column, the numbers in the parentheses are the flavor numbers of
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Table III. The flavor number of each chiral fermion with (−1)kηk = (−1)kη′
k = +1.

representation (p, q, r, s) nd̄ nl nū nē nq nν̄ (nν̄ with (−1)kη′
k = −1)

[N, 1] (3, 2, r, s) 1 0 0 0 0 s (r)

[N, 2] (3, 2, r, s) s r 1 1 0 rC2 + sC2 (rs)

[6, 3] (3,2,1,0) 0 0 1 1 1 0 (0)

(3,2,0,1) 0 0 2 2 0 0 (0)

(3,2,2,0) 1 0 1 1 2 0 (0)

[7, 3] (3,2,1,1) 0 1 2 2 1 0 (0)

(3,2,0,2) 1 0 3 3 0 0 (0)

(3,2,3,0) 3 0 1 1 3 0 (1)

[8, 3] (3,2,2,1) 1 2 2 2 2 1 (0)

(3,2,1,2) 1 2 3 3 1 0 (1)

(3,2,0,3) 3 0 4 4 0 1 (0)

(3,2,3,0) 1 1 3 3 3 0 (0)

[8, 4] (3,2,2,1) 2 0 2 2 4 0 (0)

(3,2,1,2) 1 1 3 3 3 0 (0)

(3,2,0,3) 2 0 6 6 0 0 (0)

(3,2,4,0) 6 0 1 1 4 0 (4)

(3,2,3,1) 3 3 2 2 3 3 (1)

[9, 3] (3,2,2,2) 2 4 3 3 2 2 (2)

(3,2,1,3) 3 3 4 4 1 1 (3)

(3,2,0,4) 6 0 5 5 0 4 (0)

(3,2,4,0) 1 4 6 6 4 1 (0)

(3,2,3,1) 4 1 4 4 6 0 (1)

[9, 4] (3,2,2,2) 3 2 4 4 6 1 (0)

(3,2,1,3) 2 3 6 6 4 0 (1)

(3,2,0,4) 5 0 10 10 0 1 (0)

the neutrino singlets for (−1)kη′k = −1.
Our four-dimensional world is assumed to be a boundary at one of the fixed

points, on the basis of the ‘brane world scenario’. There exist two kinds of four-
dimensional fields in our low-energy theory. One is a brane field, which exists only
at the boundary, and the other is the zero mode, which stems from the bulk field.
The Kaluza-Klein (KK) modes do not appear in our low-energy world, because they
have heavy masses of O(1/R), which is the magnitude of the unification scale, MU .
There are many possibilities for deriving three families from the zero modes of (a few
of) the bulk field(s) and suitable brane fields from the viewpoint of chiral anomaly
cancellation. Chiral anomalies may arise at the boundaries with the appearance of
chiral fermions. Such anomalies must be cancelled in the four-dimensional effective
theory by the contribution of the brane chiral fermions and/or counterterms, such
as the Chern-Simons term.20)–22)

§3. Sfermion mass relations

Here we consider the SUSY version of SU(N) models. In SUSY models, the
hypermultiplet in the five-dimensional bulk is equivalent to a pair of chiral multiplets
with opposite gauge quantum numbers in four dimensions. The chiral multiplet with
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the representation [N, N − k], which is conjugate to [N, k], contains a left-handed
Weyl fermion with [N, N − k]L. This Weyl fermion can be made a right-handed
fermion with [N, k]R by applying charge conjugation. Hence, our analysis given in
the previous section is effective for SUSY models.

We employ the following assumptions in our analysis.
1. Three families in the MSSM come from zero modes of the bulk field with the
representation [N, k] and some brane fields. Higgs fields originate from other multi-
plets.
2. We do not specify the mechanism by which the N = 1 SUSY is broken in four
dimensions.∗) Soft SUSY breaking terms respect the gauge invariance.
3. Extra gauge symmetries are broken by the Higgs mechanism simultaneously with
the orbifold breaking at the scale MU = O(1/R). Then the D-term contributions to
the scalar masses can appear as a dominant source of scalar mass splitting.
4. The proper theory beyond the SM is the MSSM. The MSSM holds from the TeV
scale to MU .

3.1. Sfermion mass formula

We consider the case with the intrinsic Z2 parity assignment (−1)kηk = (−1)kη′k =
+1. In the case with (−1)kη′k = −1, similar relations can be derived with a suitable
exchange of sfermion species. We list the sfermion species as zero modes of five-
dimensional fields with even Z2 parities, P0 = P1 = +1, in Table IV. In Table IV,
f̃ represents the scalar partner of the fermion f , and the charge conjugation is per-
formed for the fields with l1 + l2 = odd. The asterisk indicates complex conjugation.
Note that signs of U(1) charges are changed by the charge conjugation. As sfermion
species are labeled by the numbers (l1, l2, l3), we use this label in place of f̃ .

Table IV. The assignment of sfermions and those U(1) charges.

species (l1, l2, l3) l1 + l2 U(1)2 U(1)3

d̃∗
R (1, 0, even) 1 −(N − 5)l3 + r(k − 1) −N + 5k

l̃L (0, 1, odd) 1 −(N − 5)l3 + r(k − 1) −N + 5k

ũ∗
R (2, 0, even) 2 (N − 5)l3 − r(k − 2) 2N − 5k

ẽ∗R (0, 2, even) 2 (N − 5)l3 − r(k − 2) 2N − 5k

q̃L (1, 1, odd) 2 (N − 5)l3 − r(k − 2) 2N − 5k

ẽ∗R (3, 0, even) 3 −(N − 5)l3 + r(k − 3) −3N + 5k

ũ∗
R (1, 2, even) 3 −(N − 5)l3 + r(k − 3) −3N + 5k

q̃L (2, 1, odd) 3 −(N − 5)l3 + r(k − 3) −3N + 5k

l̃L (3, 1, odd) 4 (N − 5)l3 − r(k − 4) 4N − 5k

d̃∗
R (2, 2, even) 4 (N − 5)l3 − r(k − 4) 4N − 5k

∗) The Scherk-Schwarz mechanism, in which SUSY is broken by the difference between the BCs

of bosons and fermions, is typical.23) This mechanism on S1/Z2 leads to a restricted type of soft

SUSY breaking parameters, such as Mi = β/R for bulk gauginos and m2
f̃

= (β/R)2 for bulk scalar

particles, where β is a real parameter and R is the radius of S1.
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Sfermion masses squared at MU are given by

m
(α,β)
(l1,l2,l3)

2
(MU ) = m2

[N,k] + (−1)l1+l2

r−1∑
A=1

QA
αDA

(r) + (−1)l1+l2

r−1∑
B=1

QB
β DB

(s)

+ (−1)l1+l2 [(N − 5)l3 − r(k − (l1 + l2))]D2

+ (−1)l1+l2 [(l1 + l2)N − 5k] D3, (3.1)

where m2
[N,k] is a common soft SUSY breaking mass parameter that respects the

SU(N) gauge symmetry, and the other terms on the right-hand side represent D-
term contributions. The D-term contributions, in general, originate from D-terms
related to broken gauge symmetries when the soft SUSY breaking parameters pos-
sess a non-universal structure and the rank of the gauge group decreases after the
breakdown of gauge symmetry.9),24) In most cases, the magnitude of the D-term
condensation is, at most, of order ∼TeV2 and hence the D-term contributions can
induce sizable effects on the sfermion spectrum. The indices α and β indicate the
members of the multiplets of SU(r) and SU(s), and run from 1 to rCl3 and from 1
to sCl4 , respectively. The quantities QA

α are the broken diagonal charges of [r, l3],
which form the Cartan sub-algebra of SU(r), and are given by

QA
α = QA

α ([r, l3]) =
al3∑

a=a1

QA
a , (3.2)

where QA
a are the diagonal charges (up to normalization) of fields with the funda-

mental representation [r, 1], defined by

QA
a ≡ (1 − a)δA

a−1 +
r−1−a∑

i=0

δA
a+i. (3.3)

The numbering for α is defined by

(a1, · · · , al3) = (1, · · · , l3) for α = 1
= (1, · · · , l3 − 1, l3 + 1) for α = 2
· · ·
= (1, · · · , l3 − 1, r) for α = l3 − r + 1
= (1, · · · , l3 − 2, l3, l3 + 1) for α = l3 − r + 2
· · ·
= (r + 1 − l3, · · · , r) for α = rCl3 . (3.4)

Using the formulae for diagonal charges given in (3.2) and (3.3) and the definition of
the numbering given in (3.4), the broken diagonal charges of [r, r − l3] (the complex
conjugate representation of [r, l3]) are given by

QA
α ([r, r − l3]) = −QA

rCl3
+1−α([r, l3]). (3.5)

The same holds for the charges QB
β . The quantities DA

(r), DB
(s), D2 and D3 are

parameters that include D-term condensations, and their magnitudes are model
dependent.



292 Y. Kawamura and T. Kinami

3.2. Sfermion mass relations

We now derive relations among the sfermion masses at MU by eliminating the
unknown parameters (m2

[N,k], DA
(r), DB

(s), D2, D3) in the mass formula (3.1).
First, we find the following relations from the mass formula (3.1) and Table IV:

m
(α,β)
(2,0,l3)

2
= m

(α,β)
(0,2,l3)

2
, m

(α,β)
(3,0,l3)

2
= m

(α,β)
(1,2,l3)

2
. (3.6)

(Here and hereafter we abbreviate m
(α,β)
(l1,l2,l3)

2
(MU ) as m

(α,β)
(l1,l2,l3)

2
.) This type of re-

lation generally appears if an up-type anti-squark singlet exists, and the number of
relations is nū (= nē). Hereafter, we consider only up-type anti-squark singlets (in
place of positron-type slepton singlets).

Before we derive other relations, we estimate the total number of independent
relations. The number of each sfermion derived from the bulk field [N, k] is equal
to that of each fermion given in Eqs. (2.8) – (2.12). The total number of sfermions,
excluding slepton singlets, is given by

Ntot =
4∑

i=1

∑
l3=0,1,...

rCl3 · N−5−rCk−i−l3 =
4∑

i=1

N−5Ck−i. (3.7)

The number of unknown parameters is N − 4, because the number of D-term con-
densations is equal to the difference between the ranks of SU(N) and GSM . Hence,
the number of independent relations excluding (3.6) is Ntot − N + 4. We find that

no relation is derived from [N, 1] and one relation, m
(α,β)
(2,0,0)

2
= m

(α,β)
(0,2,0)

2
[of the type

(3.6)] is derived from [N, 2].
By carrying out the summation over all members in each multiplet of SU(r) and

SU(s), the following formula is derived:

rCl3∑
α=1

sCl4∑
β=1

m
(α,β)
(l1,l2,l3)

2

= rCl3 · sCl4

(
m2

[N,k] + (−1)l1+l2 [(N − 5)l3 − r(k − (l1 + l2))]D2

+(−1)l1+l2 [(l1 + l2)N − 5k]D3

)
. (3.8)

Note that both DA
(r) and DB

(s) vanish, because of the traceless property of the diagonal
generators. If the number of multiplets (Nmul) is greater than three, Nmul − 3 kinds
of relations are derived by eliminating the unknown parameters (m2

[N,k], D2, D3).
The remaining relations are derived by carrying out a summation over multiplets

with suitable coefficients (not a universal one), and they are formally written∑
α

cαm
(α,β)
(l1,l2,l3)

2
=
∑
α′

c′α′m
(α′,β′)
(l′1,l′2,l′3)

2
,
∑
β

dβm
(α,β)
(l1,l2,l3)

2
=
∑
β′

d′β′m
(α′,β′)
(l′1,l′2,l′3)

2
, (3.9)

where cα, c′α, dβ and d′β are coefficients that satisfy the following relations:∑
α

cα =
∑
α′

c′α′ ,
∑
α

cαQA
α =

∑
α′

c′α′QA
α′ , (3.10)
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∑
β

dβ =
∑
β′

d′β′ ,
∑
β

dβQA
β =

∑
β′

d′β′QA
β′ . (3.11)

Sfermion mass relations [excluding the type (3.6)] derived from [6, 3] - [9, 4] are
listed in Table V. We have classified the mass relations into three types, but the
forms of the mass relations are not unique. For example, we derive the second-

Table V. The sfermion mass relations derived from [6, 3] – [9, 4].

rep. (p, q, r, s) sfermion mass relations

[6, 3] (3,2,1,0) m
(1,1)

(1,1,1)

2
= m

(1,1)

(1,2,0)

2

(3,2,0,1) m
(1,1)

(2,0,0)

2
= m

(1,1)

(1,2,0)

2

[7, 3] (3,2,2,0) 5m
(1,1)
(1,0,2)

2
+ 9m

(1,1)
(1,2,0)

2
= 7

2X
α=1

m
(α,1)
(1,1,1)

2

(3,2,1,1) 5m
(1,1)

(0,1,1)

2
+ 9m

(1,1)

(1,2,0)

2
= 7

“
m

(1,1)

(1,1,1)

2
+ m

(1,1)

(2,0,0)

2
”

(3,2,0,2) 5m
(1,1)

(1,0,0)

2
+ 9m

(1,1)

(1,2,0)

2
= 7

2X
β=1

m
(1,β)

(2,0,0)

2

(3,2,3,0) 5

3X
α=1

m
(α,1)

(1,0,2)

2
+ 9m

(1,1)

(1,2,0)

2
= 8

3X
α=1

m
(α,1)

(1,1,1)

2
,

m
(3,1)

(1,0,2)

2 − m
(1,1)

(1,1,1)

2
= m

(2,1)

(1,0,2)

2 − m
(2,1)

(1,1,1)

2
= m

(1,1)

(1,0,2)

2 − m
(3,1)

(1,1,1)

2

(3,2,2,1)

2X
α=1

m
(α,1)

(1,1,1)

2
+ 2m

(1,1)

(1,0,2)

2
=

2X
α=1

m
(α,1)

(0,1,1)

2
+ 2m

(1,1)

(2,0,0)

2
,

6m
(1,1)
(2,0,0)

2
+

2X
α=1

m
(α,1)
(1,1,1)

2
= 5m

(1,1)
(1,0,2)

2
+ 3m

(1,1)
(1,2,0)

2
,

[8, 3] m
(1,1)

(0,1,1)

2 − m
(2,1)

(0,1,1)

2
= m

(2,1)

(1,1,1)

2 − m
(1,1)

(1,1,1)

2

(3,2,1,2)
2X

β=1

m
(1,β)

(2,0,0)

2
+ 2m

(1,1)

(1,0,0)

2
=

2X
β=1

m
(1,β)

(0,1,1)

2
+ 2m

(1,1)

(1,1,1)

2
,

6m
(1,1)

(1,1,1)

2
+

2X
β=1

m
(1,β)

(2,0,0)

2
= 5m

(1,1)

(1,0,0)

2
+ 3m

(1,1)

(1,2,0)

2
,

m
(1,1)

(0,1,1) − m
(1,2)

(0,1,1) = m
(1,2)

(2,0,0) − m
(1,1)

(2,0,0)

(3,2,0,3) 5

3X
β=1

m
(1,β)

(1,0,0)

2
+ 9m

(1,1)

(1,2,0)

2
= 8

3X
β=1

m
(1,β)

(2,0,0)

2
,

m
(1,3)

(1,0,0)

2 − m
(1,1)

(2,0,0)

2
= m

(1,2)

(1,0,0)

2 − m
(1,2)

(2,0,0)

2
= m

(1,1)

(1,0,0)

2 − m
(1,3)

(2,0,0)

2

(3,2,3,0) m
(1,1)

(0,1,3)

2
= m

(1,1)

(2,2,0)

2
,

m
(1,1)

(2,0,2)

2
= m

(3,1)

(2,1,1)

2
, m

(2,1)

(2,0,2)

2
= m

(2,1)

(2,1,1)

2
, m

(3,1)

(2,0,2)

2
= m

(1,1)

(2,1,1)

2

(3,2,2,1) m
(1,1)

(1,0,2)

2
= m

(1,1)

(2,2,0)

2
, m

(1,1)

(2,0,2)

2
= m

(1,1)

(1,2,0)

2
,

[8, 4] m
(1,1)

(1,1,1)

2
= m

(2,1)

(2,1,1)

2
, m

(2,1)

(1,1,1)

2
= m

(1,1)

(2,1,1)

2

(3,2,1,2) m
(1,1)

(0,1,1)

2
= m

(1,1)

(2,2,0)

2
, m

(1,1)

(2,0,0)

2
= m

(1,1)

(2,1,1)

2
,

m
(1,1)

(1,1,1)

2
= m

(1,2)

(1,2,0)

2
, m

(1,2)

(1,1,1)

2
= m

(1,1)

(1,2,0)

2

(3,2,0,3) m
(1,1)

(1,0,0)

2
= m

(1,1)

(2,2,0)

2
,

m
(1,1)
(2,0,0)

2
= m

(1,3)
(1,2,0)

2
, m

(1,2)
(2,0,0)

2
= m

(1,2)
(1,2,0)

2
, m

(1,3)
(2,0,0)

2
= m

(1,1)
(1,2,0)

2

(continued)
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Table V.

rep. (p, q, r, s) sfermion mass relations

(3,2,4,0) 9

4X
α=1

m
(α,1)

(1,1,1)

2
= 5

6X
α=1

m
(α,1)

(1,0,2)

2
+ 6m

(1,1)

(1,2,0)

2
,

m
(1,1)
(1,1,1)

2 − m
(2,1)
(1,1,1)

2
= m

(4,1)
(1,0,2)

2 − m
(2,1)
(1,0,2)

2
= m

(5,1)
(1,0,2)

2 − m
(3,1)
(1,0,2)

2
,

m
(1,1)

(1,1,1)

2 − m
(3,1)

(1,1,1)

2
= m

(4,1)

(1,0,2)

2 − m
(1,1)

(1,0,2)

2
= m

(6,1)

(1,0,2)

2 − m
(3,1)

(1,0,2)

2
,

m
(1,1)

(1,1,1)

2 − m
(4,1)

(1,1,1)

2
= m

(5,1)

(1,0,2)

2 − m
(1,1)

(1,0,2)

2

(3,2,3,1)

3X
α=1

m
(α,1)

(1,0,2)

2
+

3X
α=1

m
(α,1)

(1,1,1)

2
=

3X
α=1

m
(α,1)

(0,1,1)

2
+ 3m

(1,1)

(2,0,0)

2
,

3X
α=1

m
(α,1)

(1,0,2)

2
+ 4

3X
α=1

m
(α,1)

(0,1,1)

2
+ 3m

(1,1)

(1,2,0)

2
= 6

3X
α=1

m
(α,1)

(1,1,1)

2
,

m
(1,1)

(1,1,1)

2 − m
(2,1)

(1,1,1)

2
= m

(3,1)

(1,0,2)

2 − m
(2,1)

(1,0,2)

2
= m

(2,1)

(0,1,1)

2 − m
(1,1)

(0,1,1)

2
,

m
(1,1)

(1,1,1)

2 − m
(3,1)

(1,1,1)

2
= m

(3,1)

(1,0,2)

2 − m
(1,1)

(1,0,2)

2
= m

(3,1)

(0,1,1)

2 − m
(1,1)

(0,1,1)

2

(3,2,2,2) m
(1,1)

(1,0,2)

2
+

2X
α=1

m
(α,1)

(1,1,1)

2
= m

(1,1)

(1,0,0)

2
+

2X
β=1

m
(1,β)

(2,0,0)

2
,

3

0
@ 2X

α=1

m
(α,1)

(1,1,1)

2
+

2X
β=1

m
(1,β)

(2,0,0)

2

1
A = 2m

(1,1)

(1,2,0)

2
+ 5

“
m

(1,1)

(1,0,0)

2
+ m

(1,1)

(1,0,2)

2
”
,

[9, 3] 2m
(1,1)
(1,0,0)

2
+ 2m

(1,1)
(1,0,2)

2
=

2X
α=1

2X
β=1

m
(α,β)
(0,1,1)

2
,

m
(1,1)

(1,1,1)

2 − m
(2,1)

(1,1,1)

2
= m

(2,1)

(0,1,1)

2 − m
(1,1)

(0,1,1)

2
= m

(2,2)

(0,1,1)

2 − m
(1,2)

(0,1,1)

2
,

m
(1,1)

(2,0,0)

2 − m
(1,2)

(2,0,0)

2
= m

(1,2)

(0,1,1)

2 − m
(1,1)

(0,1,1)

2

(3,2,1,3)

3X
β=1

m
(1,β)

(1,0,0)

2
+

3X
β=1

m
(1,β)

(2,0,0)

2
=

3X
β=1

m
(1,β)

(0,1,1)

2
+ 3m

(1,1)

(1,1,1)

2
,

3X
β=1

m
(1,β)

(1,0,0)

2
+ 4

3X
β=1

m
(1,β)

(0,1,1)

2
+ 3m

(1,1)

(1,2,0)

2
= 6

3X
β=1

m
(1,β)

(2,0,0)

2
,

m
(1,1)

(2,0,0)

2 − m
(1,2)

(2,0,0)

2
= m

(1,3)

(1,0,0)

2 − m
(1,2)

(1,0,0)

2
= m

(1,2)

(0,1,1)

2 − m
(1,1)

(0,1,1)

2
,

m
(1,1)

(2,0,0)

2 − m
(1,3)

(2,0,0)

2
= m

(1,3)

(1,0,0)

2 − m
(1,1)

(1,0,0)

2
= m

(1,3)

(0,1,1)

2 − m
(1,1)

(0,1,1)

2

(3,2,0,4) 9

4X
β=1

m
(1,β)

(2,0,0)

2
= 5

6X
β=1

m
(1,β)

(1,0,0)

2
+ 6m

(1,1)

(1,2,0)

2
,

m
(1,1)

(2,0,0)

2 − m
(1,2)

(2,0,0)

2
= m

(1,4)

(1,0,0)

2 − m
(1,2)

(1,0,0)

2
= m

(1,5)

(1,0,0)

2 − m
(1,3)

(1,0,0)

2
,

m
(1,1)

(2,0,0)

2 − m
(1,3)

(2,0,0)

2
= m

(1,4)

(1,0,0)

2 − m
(1,1)

(1,0,0)

2
= m

(1,6)

(1,0,0)

2 − m
(1,3)

(1,0,0)

2
,

m
(1,1)
(2,0,0)

2 − m
(1,4)
(2,0,0)

2
= m

(1,5)
(1,0,0)

2 − m
(1,1)
(1,0,0)

2

(continued)

type relation as
∑3

α=1 m
(α,1)
(2,0,2)

2
=
∑3

α=1 m
(α,1)
(2,1,1)

2
and two third-type relations as

m
(1,1)
(2,0,2)

2
= m

(3,1)
(2,1,1)

2
and m

(2,1)
(2,0,2)

2
= m

(2,1)
(2,1,1)

2
from [8, 4] for (3, 2, 3, 0). Using these,

three third-type relations are given in Table V. The mass relations derived from
[9, 4] for (p, q, r, s) = (3, 2, 1, 3) are obtained from those for (p, q, r, s) = (3, 2, 3, 1)
through the following replacements:

m
(α,1)
(1,0,2)

2 → m
(1,β)
(1,2,0)

2
, m

(1,1)
(0,1,3)

2 → m
(1,1)
(2,1,1)

2
, m

(α,1)
(2,0,2)

2 → m
(1,β)
(1,1,1)

2
,
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Table V.

rep. (p, q, r, s) sfermion mass relations

(3,2,4,0) 12

6X
α=1

m
(α,1)

(2,0,2)

2
= 5

4X
α=1

m
(α,1)

(0,1,3)

2
+ 13

4X
α=1

m
(α,1)

(2,1,1)

2
,

23
6X

α=1

m
(α,1)

(2,0,2)

2
= 27

4X
α=1

m
(α,1)

(2,1,1)

2
+ 30m

(1,1)

(2,2,0)

2
,

m
(2,1)

(0,1,3)

2 − m
(1,1)

(0,1,3)

2
= m

(4,1)

(2,1,1)

2 − m
(3,1)

(2,1,1)

2

= m
(2,1)

(2,0,2)

2 − m
(4,1)

(2,0,2)

2
= m

(3,1)

(2,0,2)

2 − m
(5,1)

(2,0,2)

2
,

m
(3,1)

(0,1,3)

2 − m
(1,1)

(0,1,3)

2
= m

(4,1)

(2,1,1)

2 − m
(2,1)

(2,1,1)

2

= m
(1,1)

(2,0,2)

2 − m
(4,1)

(2,0,2)

2
= m

(3,1)

(2,0,2)

2 − m
(6,1)

(2,0,2)

2
,

m
(4,1)

(0,1,3)

2 − m
(1,1)

(0,1,3)

2
= m

(4,1)

(2,1,1)

2 − m
(1,1)

(2,1,1)

2

= m
(1,1)
(2,0,2)

2 − m
(5,1)
(2,0,2)

2

(3,2,3,1)

3X
α=1

m
(α,1)
(1,0,2)

2 − 3m
(1,1)
(0,1,3)

2
=

3X
α=1

m
(α,1)
(2,0,2)

2 −
3X

α=1

m
(α,1)
(1,1,1)

2

= 3m
(1,1)

(1,2,0)

2 −
3X

α=1

m
(α,1)

(2,1,1)

2
,

27
“
m

(1,1)

(1,2,0)

2
+ m

(1,1)

(0,1,3)

2
”

= 12m
(1,1)

(2,2,0)

2
+ 7

 
3X

α=1

m
(α,1)

(2,0,2)

2
+

3X
α=1

m
(α,1)

(1,1,1)

2

!
,

[9, 4] 8
3X

α=1

m
(α,1)

(1,0,2)

2
+

3X
α=1

m
(α,1)

(2,1,1)

2
,

= m
(1,1)

(0,1,3)

2
+ 8m

(1,1)

(1,2,0)

2
+ 18m

(1,1)

(2,2,0)

2

m
(1,1)

(1,0,2)

2 − m
(2,1)

(1,0,2)

2
= m

(3,1)

(1,1,1)

2 − m
(2,1)

(1,1,1)

2

= m
(2,1)

(2,1,1)

2 − m
(3,1)

(2,1,1)

2
= m

(2,1)

(2,0,2)

2 − m
(1,1)

(2,0,2)

2
,

m
(1,1)

(1,0,2)

2 − m
(3,1)

(1,0,2)

2
= m

(1,1)

(1,1,1)

2 − m
(3,1)

(1,1,1)

2

= m
(3,1)

(2,1,1)

2 − m
(1,1)

(2,1,1)

2
= m

(3,1)

(2,0,2)

2 − m
(1,1)

(2,0,2)

2

(3,2,2,2)
2X

α=1

m
(α,1)

(2,1,1)

2 −
2X

β=1

m
(1,β)

(1,2,0) =
2X

β=1

m
(1,β)

(1,0,2)

2 −
2X

α=1

m
(α,1)

(0,1,1)

2

= m
(1,1)
(2,0,0)

2 − m
(1,1)
(2,0,2)

2
,

2X
α=1

m
(α,1)
(2,1,1)

2
+

2X
α=1

m
(α,1)
(0,1,1)

2
=

2X
β=1

m
(1,β)
(1,0,2)

2
+

2X
β=1

m
(1,β)
(1,2,0)

2
,

2X
α=1

2X
β=1

m
(α,β)

(1,1,1)

2
= 2m

(1,1)

(2,0,2)

2
+ 2m

(1,1)

(2,0,0)

2
,

m
(1,1)

(1,2,0)

2 − m
(1,2)

(1,2,0)

2
= m

(1,1)

(1,0,2)

2 − m
(1,2)

(1,0,2)

2

= m
(1,1)
(1,1,1)

2 − m
(1,2)
(1,1,1)

2
= m

(2,1)
(1,1,1)

2 − m
(2,2)
(1,1,1)

2
,

m
(1,1)

(2,1,1)

2 − m
(2,1)

(2,1,1)

2
= m

(1,1)

(0,1,1)

2 − m
(2,1)

(0,1,1)

2

= m
(1,1)

(1,1,1)

2 − m
(2,1)

(1,1,1)

2
= m

(1,2)

(1,1,1)

2 − m
(2,2)

(1,1,1)

2

m
(α,1)
(1,1,1)

2 → m
(1,β)
(2,0,0)

2
, m

(1,1)
(1,2,0)

2 → m
(1,1)
(1,0,0)

2
, m

(α,1)
(2,1,1)

2 → m
(1,β)
(0,1,1)

2
,

m
(1,1)
(2,2,0)

2 → m
(1,1)
(2,2,0)

2
. (3.12)

In the same way, the mass relations derived from [9, 4] for (p, q, r, s) = (3, 2, 0, 4) are
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obtained from those for (p, q, r, s) = (3, 2, 4, 0) through the following replacements:

m
(α,1)
(2,0,2)

2 → m
(1,β)
(2,0,0)

2
, m

(α,1)
(0,1,3)

2 → m
(1,β)
(1,0,0)

2
,

m
(α,1)
(2,1,1)

2 → m
(1,β)
(1,2,0)

2
, m

(1,1)
(2,2,0)

2 → m
(1,1)
(2,2,0)

2
. (3.13)

We have obtained mass relations among the sfermions which stem from the bulk
field with [N, k] (where N ≤ 9). These relations are specific to each [N, k] and the
gauge symmetry breaking pattern, and they may be useful probes to select models.

The brane fields at y = 0 are SU(5) × SU(N − 5) multiplets, and their soft
masses satisfy the SU(5) GUT relations,

mq̃L

2 = mũ∗
R

2 = mẽ∗R
2, ml̃L

2 = md̃∗R
2. (3.14)

To this point, we have assumed that all zero modes survive after the breakdown
of the extra gauge symmetries. In the case that particle mixing and/or decoupling
occurs, some relations should be modified. We need further model-dependent analy-
ses to derive specific relations in such a case.

3.3. Sfermion sum rules

We derive sum rules among the sfermion masses at the TeV scale in two kinds
of models as examples, under the assumption that the MSSM holds from the TeV
scale to MU and that the conventional renormalization group equations (RGEs) of
soft SUSY breaking parameters are valid.∗),∗∗) We find that the sum rules can be
powerful probes of orbifold family unification, because they depend on the Z2 parity
assignment and the particle identification.
(a) SU(8) → GSM × SU(3) × U(1)3

Here we study the sum rules among the sfermion masses that come from the
[8, 3] of SU(8) after the orbifold breaking SU(8) → GSM × SU(3) × U(1)3, with
(p, q, r, s) = (3, 2, 3, 0). After the breakdown of SU(8), the third antisymmetric
representation, [8, 3], with 8C3 components is decomposed into a sum of multiplets
of the subgroup SU(3)C × SU(2)L × SU(3),

[8, 3] =
3∑

l1=0

3−l1∑
l2=0

(3Cl1 , 2Cl2 , 3C3−l1−l2) , (3.15)

where l1 and l2 are integers. The Z2 parity of (3Cl1 , 2Cl2 , 3C3−l1−l2) is given by

P0 = −(−1)l1+l2η3, P1 = (−1)l2η′3, (3.16)

where η3 and η′3 are the intrinsic Z2 parities, each of which takes the value +1
or −1. We assume that the Z2 parity (3.16) is assigned for the left-handed Weyl

∗) For detailed descriptions of the methods and derivations, see Ref. 18).
∗∗) In Ref. 25), Dine et al. pointed out that hidden sector interactions can give rise to sizable

effects on the RG evolution of soft SUSY breaking parameters if hidden sector fields are treated

as dynamical. In Ref. 26), Cohen et al. derived mass relations among scalar fields by using RGEs

modified by the hidden dynamics from the GUT scale to an intermediate scale, where auxiliary

fields in the hidden sector freeze into their VEV.
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Table VI. Sfermions with even Z2 parity from [8, 3] with (p, q, r, s) = (3, 2, 3, 0).

Rep. Rep. for left-handed fermions Sfermion species

(3C3, 2C0, 3C0)R (1,1,1)−9 ẽ∗R
(3C1, 2C2, 3C0)R (3,1,1)−9 ũ∗

R

(3C1, 2C1, 3C1)L (3,2,3)1 q̃1L, q̃2L, q̃3L

(3C1, 2C0, 3C2)R (3,1,3)7 b̃∗R, s̃∗R, d̃∗
R

fermions. The corresponding right-handed ones have opposite Z2 parities. Let us
take η3 = −1 and η′3 = −1. In this case, particles with even Z2 parities are given in
Table VI. Each particle possesses a zero mode whose scalar component is identified
with one of the MSSM particles in four dimensions. In the first column, the subscript
L (R) represents the left-handedness (right-handedness) for Weyl fermions. In the
second column, the quantum numbers after the charge conjugation are listed for the
right-handed ones. The subscript indicates the U(1)3 charge. In the last column, our
particle identification is given for scalar partners. Note that the particle identification
is not unique but can be fixed by experiments.

After the breakdown of SU(3) × U(1)3 gauge symmetry, we have the following
mass formulae at MU :

m2
ẽ∗R

(MU ) = m2
ũ∗

R
(MU ) = m2

[8,3] − 9D′, (3.17)

m2
q̃1L

(MU ) = m2
[8,3] + D1 + D2 + D′, (3.18)

m2
q̃2L

(MU ) = m2
[8,3] − D1 + D2 + D′, (3.19)

m2
q̃3L

(MU ) = m2
[8,3] − 2D2 + D′, (3.20)

m2
b̃∗R

(MU ) = m2
[8,3] + D1 + D2 + 7D′, (3.21)

m2
s̃∗R

(MU ) = m2
[8,3] − D1 + D2 + 7D′, (3.22)

m2
d̃∗R

(MU ) = m2
[8,3] − 2D2 + 7D′, (3.23)

where m[8,3] is a soft SUSY breaking scalar mass parameter, D1 and D2 are para-
meters which represent D-term condensations related to the SU(3) generator and
D′ stands for the D-term contribution of U(1)3. By eliminating these four unknown
parameters, we obtain the relations

m2
ẽ∗R

(MU ) = m2
ũ∗

R
(MU ), (3.24)

m2
q̃1L

(MU ) − m2
b̃∗R

(MU ) = m2
q̃2L

(MU ) − m2
s̃∗R

(MU ) = m2
q̃3L

(MU ) − m2
d̃∗R

(MU ), (3.25)

9m2
ũ∗

R
(MU ) + 5

(
m2

b̃∗R
(MU ) + m2

s̃∗R
(MU ) + m2

d̃∗R
(MU )

)
= 8

(
m2

q̃1L
(MU ) + m2

q̃2L
(MU ) + m2

q̃3L
(MU )

)
. (3.26)

Then, using ordinary RGEs in the MSSM, we obtain the following sum rules among
sfermion masses:

M2
ũR

− M2
ẽR

= ζ3M
2
3 − 20ζ1M

2
1 +

(
−5

3
M2

W +
5
3
M2

Z

)
cos 2β − 10S, (3.27)
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M2
ũL

− M2
b̃R

− 2Fb = M2
c̃L

− M2
s̃R

= M2
t̃L

− M2
d̃R

+ Ft + Fb − m2
t , (3.28)

9M2
ũR

+ 5
(
M2

b̃R
+ M2

s̃R
+ M2

d̃R

)
− 8

(
M2

ũL
+ M2

c̃L
+ M2

t̃L

)
= −24ζ2M

2
2 + 180ζ1M

2
1 +

(−17M2
W + 5M2

Z

)
cos 2β

+ 8Ft − 2Fb − 8m2
t − 30S, (3.29)

where M2
f̃

represents the diagonal elements of the sfermion mass-squared matrices
at the TeV scale, Mi (i = 1, 2, 3) are the gaugino masses at the TeV scale, β is
defined in terms of the ratio of the VEVs of neutral components of the Higgs bosons
as tanβ ≡ v2/v1, and Ft and Fb stand for the effects of the top and bottom Yukawa
interactions, respectively. The parameters ζi and S are defined by

ζ3 ≡ −8
9

((
α3(MU )

α3

)2

− 1

)
, ζ2 ≡ 3

2

((
α2(MU )

α2

)2

− 1

)
,

ζ1 ≡ 1
198

((
α1(MU )

α1

)2

− 1

)
, (3.30)

S ≡ 1
10b1

(
1 − α1(MU )

α1

)∑
F̃

Y (F̃ )nF̃ m2
F̃
, (3.31)

where the quantities αi ≡ g2
i /(4π) are the structure constants defined by the gauge

couplings gi at the TeV scale, and nF̃ represents the degrees of freedom of the
sfermions and Higgs bosons F̃ .

In the case with η3 = −1 and η′3 = +1, the following sum rules are obtained

M2
ũR

− M2
ẽR

= M2
c̃R

− M2
µ̃R

= M2
t̃R

− M2
τ̃R

− m2
t + 2Ft − 2Fτ

= ζ3M
2
3 − 20ζ1M

2
1 +

(
−5

3
M2

W +
5
3
M2

Z

)
cos 2β − 10S, (3.32)

M2
ũR

− M2
τ̃L

− Fτ = M2
c̃R

− M2
µ̃L

= M2
t̃R

− M2
ẽL

+ 2Ft − m2
t , (3.33)

9M2
ũL

+ 5
(
M2

ẽL
+ M2

µ̃L
+ M2

τ̃L

)− 8
(
M2

ũR
+ M2

c̃R
+ M2

t̃R

)
= −15ζ3M

2
3 + 24ζ2M

2
2 − 240ζ1M

2
1 +

(
7M2

W − 10M2
Z

)
cos 2β

− 5Fτ + 16Ft − 8m2
t + 60S. (3.34)

Here we have used the particle identification such that (3C2, 2C1, 3C0)
c
R = q̃1L,

(3C2, 2C0, 3C1)L = ũ∗
R, c̃∗R, t̃∗R, (3C0, 2C2, 3C1)L = ẽ∗R, µ̃∗

R, τ̃∗
R and (3C0, 2C1, 3C2)

c
R

= l̃3L, l̃2L, l̃1L. Here, the superscript (c) represents the complex conjugate.

(b) SU(8) → GSM × SU(2) × U(1)2

Here we study the sum rules among the sfermion masses coming from the [8, 3] of
SU(8) after the orbifold breaking SU(8) → GSM × SU(2)×U(1)2 with (p, q, r, s) =
(3, 2, 1, 2). Let us take η3 = −1 and η′3 = −1. In this case, the particles with even
Z2 parities are given in Table VII. The subscript in the second column indicates
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Table VII. Sfermions with even Z2 parity from [8, 3] with (p, q, r, s) = (3, 2, 1, 2).

Rep. Rep. for left-handed fermions Sfermion species

(3C1, 2C0, 1C0, 2C2)R (3,1,1,1)(−2,7) d̃∗
R

(3C0, 2C1, 1C1, 2C1)L (1,2,1,2)(1,7) l̃1L, l̃2L

(3C2, 2C0, 1C0, 2C1)L (3,1,1,2)(1,1) ũ∗
R, c̃∗R

(3C0, 2C2, 1C0, 2C1)L (1,1,1,2)(1,1) ẽ∗R, µ̃∗
R

(3C1, 2C1, 1C1, 2C0)L (3,2,1,1)(−2,1) q̃1L

(3C1, 2C2, 1C0, 2C0)R (3,1,1,1)(0,−9) t̃∗R
(3C3, 2C0, 1C0, 2C0)R (1,1,1,1)(0,−9) τ̃∗

R

extra U(1) charges. In the last column, our particle identification is given for scalar
partners.

After the breakdown of the SU(2) × U(1)2 gauge symmetry, we obtain the fol-
lowing relations at MU :

m2
ẽ∗R

(MU ) = m2
ũ∗

R
(MU ), m2

µ̃∗
R
(MU ) = m2

c̃∗R
(MU ), m2

τ̃∗
R
(MU ) = m2

t̃∗R
(MU ), (3.35)

m2
l̃1L

(MU ) + m2
ũ∗

R
(MU ) = m2

l̃2L
(MU ) + m2

c̃∗R
(MU ), (3.36)

m2
ũ∗

R
(MU ) + m2

c̃∗R
(MU ) + 2m2

d̃∗R
(MU ) = m2

l̃1L
(MU ) + m2

l̃2L
(MU ) + 2m2

q̃1L
(MU ),(3.37)

6m2
q̃1L

(MU ) + m2
ũ∗

R
(MU ) + m2

c̃∗R
(MU ) = 5m2

d̃∗R
(MU ) + 3m2

t̃∗R
(MU ). (3.38)

Then, using ordinary RGEs of the MSSM, we obtain the following sum rules among
sfermion masses:

M2
ũR

− M2
ẽR

= M2
c̃R

− M2
µ̃R

= M2
t̃R

− M2
τ̃R

− m2
t + 2Ft − 2Fτ

= ζ3M
2
3 − 20ζ1M

2
1 +

(
−5

3
M2

W +
5
3
M2

Z

)
cos 2β − 10S, (3.39)

M2
ẽL

+ M2
ũR

= M2
µ̃L

+ M2
c̃R

, (3.40)

M2
ũR

+ M2
c̃R

+ 2M2
d̃R

− M2
ẽL

− M2
µ̃L

− 2M2
ũL

= 2ζ3M
2
3 − 4ζ2M

2
2 + 20ζ1M

2
1 , (3.41)

6M2
ũL

+ M2
ũR

+ M2
c̃R

− 5M2
d̃R

− 3M2
t̃R

= 6ζ2M
2
2 − 30ζ1M

2
1 + 3M2

W cos 2β + 6Ft − 3m2
t . (3.42)

In the case with η3 = −1 and η′3 = +1, the following sum rules are obtained:

M2
ũR

− M2
ẽR

= ζ3M
2
3 − 20ζ1M

2
1 +

(
−5

3
M2

W +
5
3
M2

Z

)
cos 2β − 10S, (3.43)

M2
d̃R

+ M2
ũL

= M2
s̃R

+ M2
c̃L

, (3.44)

M2
ũL

+ M2
c̃L

+ 2M2
ẽL

− M2
d̃R

− M2
s̃R

− 2M2
ũR

= −2ζ3M
2
3 + 4ζ2M

2
2 − 20ζ1M

2
1 , (3.45)

6M2
ũR

+ M2
ũL

+ M2
c̃L

− 5M2
ẽL

− 3M2
t̃L

= 5ζ3M
2
3 − 6ζ2M

2
2 + 50ζ1M

2
1 +

(
1
3
M2

W +
5
3
M2

Z

)
cos 2β

+ 3Ft + 3Fb − 3m2
t − 10S. (3.46)
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Here, we have used the particle identification such that (3C1, 2C0, 1C1, 2C1)
c
R =

s̃∗R, d̃∗R, (3C0, 2C1, 1C1, 2C2)c
R = l̃1L, (3C2, 2C0, 1C1, 2C0)L = ũ∗

R, (3C0, 2C2, 1C1, 2C0)L

= ẽ∗R and (3C1, 2C1, 1C0, 2C1)L = q̃1L, q̃2L.

§4. Conclusions and discussion

We have studied sfermion masses on the basis of orbifold family unification
models, under some assumptions regarding the breakdown of SUSY and gauge sym-
metries, and derived relations among them. The sfermion sum rules at the TeV scale
have also been derived from several models under the assumption that the MSSM
holds below the compactification scale. The sfermion mass relations and sum rules
are specific to each model and can be useful for the selection of a realistic model.

We have assumed that the Higgs fields originate from other multiplets. Two
kinds of weak Higgs doublets in the MSSM can be derived as zero modes of the hyper-
multiplets, whose representations are [N, 1] with (η1, η

′
1) = (+1,−1) and (−1, +1),

respectively. Then, the triplet-doublet splitting is elegantly realized in the same way
as the orbifold SUSY SU(5) GUT.

In our model, a non-abelian subgroup such as SU(r)×SU(s) of SU(N) plays the
role of the family symmetry, and its D-term contributions lift the mass degeneracy.
The mass degeneracy for each squark and slepton species in the first two families
is favorable for suppressing flavor-changing neutral current (FCNC) processes. It is
known that the dangerous FCNC processes can be avoided if the sfermion masses
in the first two families are rather large or the fermion and its superpartner mass
matrices are aligned. We have derived sfermion relations and sum rules under the
assumption that FCNC processes are suppressed by a mechanism other than the mass
degeneracy, without loss of generality. Conversely, the requirement of degenerate
masses would yield a constraint on the D-term condensations and/or SUSY breaking
mechanism. For example, if we consider the Scherk-Schwarz mechanism for N = 1
SUSY breaking, the D-term condensations vanish for the gauge symmetries broken
at the orbifold breaking scale MU , because of a universal structure of the soft SUSY
breaking parameters. In this case, the sum rules would not be useful probes.

We have assumed that extra gauge symmetries are broken at the same scale as
MU . If, however, they are broken at different scales, soft SUSY breaking parameters
are subject to extra renormalization effects and consequently possess a non-universal
structure. As a result, D-term contributions can appear. In this case, our analy-
sis should be modified by considering the renormalization group to be running for
sfermion masses. In the case that effects such as F -term contributions and/or higher-
dimensional operators are sizable, we should consider them.

The sum rules of sparticle masses at the TeV scale can be derived if the nature
of the physics between the breaking scale MU and the weak scale is specified. In
our analysis, we have assumed gravity-mediated SUSY breaking in the case that the
dynamics in the hidden sector do not have sizable effects on the renormalization
group evolution of soft SUSY breaking parameters.18) It is also important to study
the case with strong dynamics in the hidden sector.26)
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