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Abstract
We give a definition of nilpotent association schemes as a generalization of

nilpotent groups and investigate their basic properties. Moreover, for a group-like
scheme, we characterize the nilpotency by its character products.

1 Introduction

The notion of a finite association scheme generalizes the one of a finite group. So it is
natural to ask which properties of finite groups hold for association schemes.

In [6], Takegahara defined nilpotent schemes as a generalization of finite groups, and
he consider some of their basic properties. However, Takegahara restricted himself to
commutative schemes. In this article, we suggest a definition of nilpotency for finite
schemes without assuming them to be commutative. For each finite schemes, we define
the upper central series and call a finite scheme nilpotent if the upper central series
ends at the scheme itself. Referring to this definition we will be able to show that
subschemes and factor schemes of nilpotent finite schemes are nilpotent (Proposition
2.7 and Proposition 2.8). But we do not know whether we can define the lower central
series (Question 2.11).

In [6], Takegahara also gave a characterization of commutative nilpotent schemes
by their Krein parameters. In general, non-commutative schemes do not have Krein
parameters. So we consider group-like schemes [2]. A scheme is said to be a group-like
scheme if any product of characters is a linear combination of irreducible characters. For
a group-like scheme, we can define the lower central series and show that it characterizes
nilpotency of the scheme (Theorem 4.12).

Also we will give some remarks on p-schemes.

2 Definitions and basic facts

We say that (X,S) is an association scheme or a scheme in the sense of a finite scheme in
[7] or [8]. For s, t, u ∈ S, let pu

st denote the intersection number or the structure constant,
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ns the valency, and σs the adjacency matrix. The diagonal relation will be denoted by
1. For T ⊂ S, we also use the notations nT =

∑
t∈T nt and σT =

∑
t∈T σt. We call

nS = |X| the order of (X,S). An element s ∈ S is said to be thin if ns = 1. A closed
subset T is said to be thin if every element of T is thin. Let Irr(S) denote the complete
set of complex irreducible characters of S. For the other notation and terminology, see
[7] or [8], and [1].

Let (X,S) be an association scheme. We say that s ∈ S is central in S if σsσt = σtσs

for all t ∈ S. A closed subset T of S is said to be central in S if every element of T is
central in S. Note that the set of all central elements of S does not need to be a closed
subset of S. Let Z(S) denote the maximal central thin closed subset. Namely

Z(S) = {s ∈ S | ns = 1 and σsσt = σtσs for all t ∈ S}.

Define
Z0(S) = {1}

and define Zi+1(S) inductively by

Zi+1(S)//Zi(S) = Z(S//Zi(S))

for i ∈ {0, 1, 2, · · · }. Then we have a sequence of closed subsets :

{1} = Z0(S) ⊂ Z1(S) ⊂ · · · .

We call this sequence the upper central series of S. Note that Zi(S) is a normal closed
subset of S.

Definition 2.1. We say that (X,S) is a nilpotent scheme if Zℓ(S) = S for some non-
negative integer ℓ. We also say that S is nilpotent. In this case, we call the smallest
integer ℓ such that Zℓ(S) = S the nilpotency class of S.

A closed subset T of S is said to be nilpotent if a corresponding subscheme is nilpo-
tent. This definition is independent of the choice of a subscheme though a subscheme
is not uniquely determined.

Remark 2.2. If (X,S) is thin, then the upper central series is just the upper central
series of the corresponding finite group.

We investigate basic properties of nilpotent schemes and upper central series. The
next lemma is easy but very important in this section.

Lemma 2.3. Let s be a central thin element of S, T a closed subset of S. Then sT is
a central thin element of S//T .

Proof. We have (TsT )(Ts∗T ) = Tss∗T ⊂ T . This means that sT is thin.
Take any t ∈ S. Then σsσt = σtσs = σu for some u ∈ S since s is thin. Then

asT tT uT ̸= 0 and atT sT uT ̸= 0. Since sT is also thin, we have σsT σtT = σuT = σtT σsT .
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Definition 2.4. We call a sequence

S = S0 ⊃ S1 ⊃ · · · ⊃ Sr = {1}

of closed subsets of S a central series of S if Si−1//Si ⊂ Z(S//Si) for every i ∈ {1, 2, · · · , r}.

If Zℓ(S) = S for some non-negative integer ℓ, then S = Zℓ(S) ⊃ · · · ⊃ Z0(S) = {1}
is a central series of S.

Theorem 2.5. Suppose S has a central series S = S0 ⊃ S1 ⊃ · · · ⊃ Sr = {1}. Then
Zi(S) ⊃ Sr−i for every i ∈ {0, 1, 2, · · · , r}. Moreover, S is nilpotent and the nilpotency
class of S is at most that of S.

Proof. If i = 0, then the statement is clear by Z0(S) = {1} = Sr.
We suppose Zi(S) ⊃ Sr−i and show that Zi+1(S) ⊃ Sr−i−1. Since Sr−i−1//Sr−i is

central thin in S//Sr−i, so is Zi(S)Sr−i−1//Zi(S) in S//Zi(S) by Lemma 2.3. This means
that

Zi(S)Sr−i−1//Zi(S) ⊂ Z(S//Zi(S)) = Zi+1(S)//Zi(S)

and Sr−i−1 ⊂ Zi+1(S).

By this theorem, the next theorem holds.

Theorem 2.6. (1) A scheme (X,S) is nilpotent if and only if it has a central series.

(2) Let T be a closed subset contained in Z(S). Then S is nilpotent if and only if S//T
is nilpotent.

Proposition 2.7. Let T be a closed subset of a nilpotent scheme (X,S). Then T is
nilpotent and the nilpotency class of T is at most that of S.

Proof. Let T be a closed subset of a nilpotent scheme S. Take a central series

S = S0 ⊃ S1 ⊃ · · · ⊃ Sr = {1}

of S. Put Ti = T ∩ Si. We show that

T = T0 ⊃ T1 ⊃ · · · ⊃ Tr = {1}

is a central series of T . We have

T//Ti+1 = T//(T ∩ Si+1) ∼= Si+1T//Si+1 ⊂ S//Si+1.

This induces Ti//Ti+1
∼= Si+1Ti//Si+1 ⊂ Si//Si+1. This means that Ti//Ti+1 is a central

thin closed subset of T//Ti+1.

Proposition 2.8. Suppose S is nilpotent and T is a closed subset of S. Then S//T is
nilpotent and the nilpotency class of S//T is at most that of S.
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Proof. Take a central series

S = S0 ⊃ S1 ⊃ · · · ⊃ Sr = {1}

of S. We show that

S//T = S0T//T ⊃ S1T//T ⊃ · · · ⊃ SrT//T = {1}

is a central series of S//T .
Since Z(S//Si+1) ⊃ Si//Si+1, we have Z(S//Si+1T ) ⊃ SiT//Si+1T by Lemma 2.3.

This shows that Z((S//T )//(Si+1T//T )) ⊃ (SiT//T )//(Si+1T//T ).

We note that T does not need to be normal in Proposition 2.8.
Let T and U be closed subsets of S such that T ⊂ U . Following [8], we define

KU(T ) = {u ∈ U | u∗Tu ⊂ T}.

Then T is strongly normal in KU(T ).

Proposition 2.9. Suppose S is nilpotent and T is a proper closed subset of S. Then
Z(S//T ) is non-trivial. Especially KS(T ) ) T .

Proof. There exists a positive integer i such that Zi−1(S) ⊂ T and Zi(S) ̸⊂ T . Then
Zi(S)T is closed in S since Zi(S) is normal in S. Now Zi(S)T ) T ⊃ Zi−1(S) and the
natural surjection S//Zi−1(S) → S//T induces a surjection Zi(S)//Zi−1(S) → Zi(S)T//T .
By Lemma 2.3, Zi(S)T//T is central thin in S//T . Especially Zi(S)T ⊂ KS(T ) and
KS(T ) ) T .

Proposition 2.10. Let (X,S) be the direct product of schemes (X1, S1) and (X2, S2).
Then (X,S) is nilpotent if and only if both (X1, S1) and (X2, S2) are nilpotent.

Proof. This is clear by the definition and the arguments above.

Question 2.11. We want to define the lower central series for an association scheme.
Usually, in group theory, the lower central series is defined by higher commutators. But,
in scheme theory, they cannot be used. For any subset T of S, the commutator [S, T ]
contains the thin residue Oϑ(S) of S by [8, Theorem 3.2.1 (ii)].

Put L0(S) = S. Then it seems to be natural to define Li+1(S) by the following. For
a fixed i, let Z be the set of normal closed subsets T of S contained in Li(S) such that
Li(S)//T ⊂ Z(S//T ). Define Li+1(S) =

⋂
T∈Z T . If Li+1(S) ∈ Z, then the definition

seems to be very nice. But we do not know whether Li+1(S) ∈ Z.

3 Character values and upper central series

In this section, we will determine the upper central series by character values. So we
can determine whether a scheme is nilpotent by its characters.

First, we recall the following facts.
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Proposition 3.1 ([2, Lemma 2.2 and Lemma 2.3]). Let (X,S) be an association scheme,
s ∈ S, and φ ∈ Irr(S). We fix a representation Φ which affords φ. Then the following
statments hold.

(1) If ξ is an eigenvalue of Φ(σs), then |ξ| ≤ ns.

(2) We have |φ(σs)| ≤ nsφ(1).

(3) The equlity φ(σs) = nsφ(1) holds if and only if Φ(σs) = nsE, where E is the
identity matrix.

We consider the case |φ(σs)| = nsφ(1) in the above proposition.

Proposition 3.2. Let (X,S) be an association scheme, s ∈ S, and φ ∈ Irr(S). We fix
a representation Φ which affords φ. If |φ(σs)| = nsφ(1) holds, then Φ(σs) = nsεE for
some root of unity ε.

Proof. Suppose |φ(σs)| = nsφ(1). By Proposition 3.1 (1), all eigenvalues of Φ(σs) are
nsε for some complex number ε such that |ε| = 1.

By [8, Lemma 3.1.1 (ii)], there exists a positive integer ℓ such that 1 ∈ sℓ. Put
σs

ℓ =
∑

t∈S αtσt. Note that αt is non-negative integer for any t ∈ S and α1 ̸= 0.
We have ns

ℓ =
∑

t∈S αtnt. Then φ(σs
ℓ) = ns

ℓεℓφ(1). On the other hand, φ(σs
ℓ) =

α1φ(1) +
∑

t̸=1 αtφ(σt). Now

ns
ℓφ(1) = |φ(σs

ℓ)| ≤ α1φ(1) +
∑
t̸=1

αt|φ(σt)| ≤ α1φ(1) +
∑
t̸=1

αtntφ(1) = ns
ℓφ(1).

This shows that φ(σt) = ntφ(1) if αt ̸= 0. So Φ(σt) = ntE if αt ̸= 0. Hence Φ(σs
ℓ) =

Φ(σs)
ℓ = ns

ℓE. If Φ(σs) is not diagonalizable, then its power cannot be a diagonal
matrix, since its eigenvalues are non-zero. So we have Φ(σs) = nsεE. Also we can see
that ε is a ℓ-th root of unity.

For χ ∈ Irr(S), we define

K(χ) = {s ∈ S | χ(σs) = nsχ(1)}.

Then K(χ) is a closed subset of S [2, Theorem 3.2]. Also we define

Z(χ) = {s ∈ S | |χ(σs)| = nsχ(1)}.

Then we have the following.

Proposition 3.3. For χ ∈ Irr(S), Z(χ) is a closed subset of S.

Proof. Let Φ be a representation which affords χ. Suppose s, t ∈ Z(χ). Then Φ(σs) and
Φ(σt) are scalar matrices and we have χ(σsσt) = χ(σs)χ(σt)/χ(1). Now

nsntχ(1) = |χ(σsσt)| ≤
∑
u∈S

pu
st|χ(σu)| ≤

∑
u∈S

pu
stnuχ(1) = nsntχ(1).

This shows that |χ(σu)| = nuχ(1) if u ∈ st and this means that Z(χ) is closed.
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Remark 3.4. We note that Z(χ) does not need to be normal in S.

We consider a normal closed subset T of S. For χ ∈ Irr(S//T ), we can define a
character χ′ of S by

χ′(σs) =
ns

nsT

χ(σsT ).

Then χ′ ∈ Irr(S). We identify χ′ with χ and regard Irr(S//T ) as a subset of Irr(S) (see
[3]).

Theorem 3.5. Let T be a normal closed subset of a scheme (X,S). Then

Z(S//T ) =

 ⋂
χ∈Irr(S//T )

Z(χ)

 //T.

Especially, Z(S) =
⋂

χ∈Irr(S) Z(χ).

Proof. Suppose sT ∈ Z(S//T ). Since sT is thin and central, easily we can see that
|χ(σsT )| = nsT χ(1) for χ ∈ Irr(S//T ). We know that χ(σsT ) = nsT χ(σs)/ns. This means
that s ∈ Z(χ) and s ∈

⋂
χ∈Irr(S//T ) Z(χ).

Suppose s ∈
⋂

χ∈Irr(S//T ) Z(χ). Then we have s∗ ∈
⋂

χ∈Irr(S//T ) Z(χ) by Proposition

3.3. Let φ ∈ Irr(S//T ) and Φ a representation affording φ. Since Φ(σs) = nsεE and
Φ(σs∗) = nsε

−1E, we have Φ(σsσ
∗
s) = ns

2E. This means that ss∗ ⊂ K(φ). Since⋂
φ∈Irr(S//T ) K(φ) = T , we have ss∗ ⊂ T . By the normality of T , sT is thin. Also sT

is central in S//T since Φ(σs) is scalar matrix for every irreducible representation Φ of
S//T .

By Theorem 3.5, we can determine Z1(S), Z2(S), and so on, by character values. So
the upper central series is determined.

4 Group-like schemes

In [6], Takegahara gave an interesting characterization of nilpotent schemes for commu-
tative schemes. He used Krein parameters to characterize nilpotent schemes, but Krein
parameters are not defined for non-commutative schemes, in general. We will try to
characterize nilpotent schemes by a similar way for group-like schemes.

Let (X,S) be an association scheme. We will define a binary relation ∼ on S as
follows. For s, t ∈ S, we write s ∼ t if

1

ns

χ(σs) =
1

nt

χ(σt)

for every χ ∈ Irr(S). Then ∼ is an equivalence relation. For s ∈ S, put s̃ =
⋃

t∼s t and

S̃ = {s̃ | s ∈ S}. Then S̃ is a partition of X ×X. Put V =
⊕

es∈eS Cσ
es. Then the center

of the adjacency algebra Z(CS) is contained in V .
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For two characters χ and φ of S, it seems to be natural to define the product χφ by

(χφ)(σs) =
1

ns

χ(σs)φ(σs)

(see [4]). Note that the product does not need to be a character. Moreover, it does not
need to be a linear combination of irreducible characters.

Theorem 4.1. For an association scheme (X,S), the following statements are equiva-
lent.

(1) V = Z(CS).

(2) dimC Z(CS) = |S̃|.

(3) There exists a partition S =
⋃

λ∈Λ Tλ such that {σTλ
| λ ∈ Λ} is a basis of Z(CS).

(4) Z(CS) is closed under the Hadamard product.

(5) For any χ, φ ∈ Irr(S), χφ is a linear combination of Irr(S).

Proof. The equivalences of (1), (2), (3), and (4) are shown in [2, Theorem 4.1]. The
equivalence of (4) and (5) are by a direct calculation.

We call a scheme (X,S) with the property in the above theorem a group-like scheme

[2]. If (X,S) is group-like, then (X, S̃) becomes a commutative scheme. For a group-like

scheme (X,S), we can define a bijection Irr(S) → Irr(S̃) (χ 7→ χ̃) by

χ̃(σ
es) =

χ(σ
es)

χ(1)
.

Note that we write 1 for the identity element of the adjacency algebra CS here. Of
course, σ1 = 1 holds. Recall that the primitive central idempotent of CS corresponding
to χ ∈ Irr(S) is given by

eχ =
mχ

nS

∑
s∈S

1

ns

χ(σs∗)σs.

It is easy to see that eχ = e
eχ.

Since (X, S̃) is commutative for a group-like scheme (X,S), we can define Krein

parameters q
eξ
eχeφ by

e
eχ ◦ e

eφ =
1

nS

∑
eξ∈Irr(eS)

q
eξ
eχeφe

eξ

for χ̃, φ̃, ξ̃ ∈ Irr(S̃). Since eχ = e
eχ, we also write qξ

χφ instead of q
eξ
eχeφ. It is known that the

Krein parameters are non-negative real numbers (Krein condition [1, II, Theorem 3.8]).
Suppose (X,S) is group-like. Then, for any χ, φ ∈ Irr(S), χφ is a linear combination

of Irr(S) :

χφ =
∑

ξ∈Irr(S)

rξ
χφξ
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and
rξ
χφ =

mξ

mχmφ

qξ
χφ

by direct calculations (or see [4]). Note that rξ
χφ is also a non-negative real number for

a group-like scheme.
Let T be a normal closed subset of S. For χ ∈ Irr(S), χ ∈ Irr(S//T ) if and only if

eχeT ̸= 0, where eT = nT
−1σT . Since T is normal, eT is a central idempotent of CS and

we have
eT =

∑
χ∈Irr(S//T )

eχ

and

χ(eT ) =

{
χ(1) if χ ∈ Irr(S//T ),

0 otherwise.

Proposition 4.2. Let (X,S) be a group-like scheme, and T a normal closed subset of
S. Then the factor scheme (X/T, S//T ) is group-like.

Proof. Let χ, φ ∈ Irr(S//T ). Since (X,S) is group-like, we have χφ =
∑

ξ∈Irr(S) rξ
χφξ. So

we have∑
ξ∈Irr(S)

rξ
χφξ(eT ) = (χφ)(eT ) =

1

nT

∑
t∈T

(χφ)(σt) =
1

nT

∑
t∈T

1

nt

χ(σt)φ(σt)

=
1

nT

∑
t∈T

1

nt

ntχ(1)ntφ(1) =
1

nT

χ(1)φ(1)
∑
t∈T

nt = χ(1)φ(1)

= (χφ)(1) =
∑

ξ∈Irr(S)

rξ
χφξ(1).

Since rξ
χφ is a non-negative real number, this shows that rξ

χφ ̸= 0 implies ξ(eT ) ̸= 0 and so
ξ ∈ Irr(S//T ). Now χφ is a linear combination of Irr(S//T ), and S//T is group-like.

Let T be a closed subset of (X,S). For s, u ∈ S, sT = uT if and only if

1

ns

σT σsσT =
1

nu

σT σuσT

by [8, Lemma2.3.2]. In the above condition, we can also replace σT by eT .

Remark 4.3. Let (X,S) be a group-like scheme, and T a closed subset of S. The factor
scheme (X/T, S//T ) does not need to be group-like if T is not normal.

Proposition 4.4. Let (X,S) be a group-like scheme, and T a normal closed subset of

S. Put T̃ = {t̃ | t ∈ T}. Then T̃ is a (normal) closed subset of S̃ and S̃//T ∼= S̃//T̃ .
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Proof. Since T is normal in S, σT is in the center of the adjacency algebra CS. So, if
t ∈ T , then t̃ ⊂

⋃
u∈T u. Hence σT = σ

eT and this means that T̃ is closed.

We show that S̃//T is a fusion of S̃//T̃ (for a fusion, see [7, §1.7]). Suppose s̃
eT = ũ

eT

for s, u ∈ S. For any χ ∈ Irr(S//T ), we have

1

nsT

χ(σsT ) =
1

ns

χ(σs) =
1

n
es

χ(σ
es) =

1

n
es

χ(eT σ
eseT )

=
1

n
eu

χ(eT σ
eueT ) =

1

n
eu

χ(σ
eu) =

1

nu

χ(σu) =
1

nuT

χ(σuT ).

So we have s̃T = ũT . This means that S̃//T is a fusion of S̃//T̃ .

Since S//T and S̃//T̃ are group-like, we have |Irr(S//T )| = |S̃//T | and |Irr(S̃//T̃ )| =

|S̃//T̃ |. For χ ∈ Irr(S), χ ∈ Irr(S//T ) if and only if χ̃ ∈ Irr(S̃//T̃ ). So |Irr(S//T )| =

|Irr(S̃//T̃ )|. Now we have that |S̃//T | = |S̃//T̃ | and S̃//T ∼= S̃//T̃ .

Theorem 4.5. Let (X,S) be a group-like scheme. Then (X,S) is nilpotent if and only

if (X, S̃) is nilpotent. Moreover, S = S0 ⊃ S1 ⊃ · · · ⊃ Sr = {1} is a central series of S

if and only if S̃ = S̃0 ⊃ S̃1 ⊃ · · · ⊃ S̃r = {1} is a central series of S̃.

Proof. It is enough to show the second part of the theorem.
Suppose S = S0 ⊃ S1 ⊃ · · · ⊃ Sr = {1} is a central series of S. Then

⋃
es∈ gSr−1

s̃ =⋃
s∈Sr−1

s and S//Sr−1 = S0//Sr−1 ⊃ S1//Sr−1 ⊃ · · · ⊃ Sr−1//Sr−1 = {1} is a central

series of S//Sr−1. By the induction on the length r, we have that S̃//Sr−1 = ˜S0//Sr−1 ⊃
˜S1//Sr−1 ⊃ · · · ⊃ ˜Sr−1//Sr−1 = {1} is a central series of S//Sr−1. By Proposition 4.4,
˜Si//Sr−1

∼= S̃i//S̃r−1 for every i ∈ {0, 1, · · · , r − 1}. Now S̃ = S̃0 ⊃ S̃1 ⊃ · · · ⊃ S̃r = {1}
is a central series of S̃.

The converse is proved similarly.

Corollary 4.6. Let (X,S) be a group-like scheme. Suppose that (X,T ) is a fusion of

(X,S) and (X, S̃) is a fusion of (X,T ). Then (X,S) is nilpotent if and only if so is
(X,T ).

Proof. In this case, (X,T ) is group-like and (X, T̃ ) ∼= (X, S̃). So the statement is clear
by Theorem 4.5.

Example 4.7. Suppose (X,S) is a thin scheme defined by a finite group G. Then (X,S)
is nilpotent if and only if the group G is nilpotent by the definition (Remark 2.2). The

relation ∼ is just the conjugation of G. So (X,S) is always group-like and (X, S̃) is
the group association scheme of G [1, II, Examples 2.1 (2)]. So the group association
scheme is nilpotent if and only if the corresponding finite group is nilpotent.

In [6], Takegahara characterized commutative nilpotent schemes by their Krein pa-
rameters. Now we can apply his method to group-like schemes. But his argument did
not mention the structure of schemes. Here we will consider his argument precisely.
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Let (X,S) be a group-like scheme. For χ, φ ∈ Irr(S), we define

Supp(χφ) = {ξ ∈ Irr(S) | rξ
χφ ̸= 0}.

Of course, rξ
χφ can be replaced by the Krein parameter qξ

χφ. Let 1S be the trivial
character of S, namely 1S(σs) = ns, and put I0(S) = {1S}. Define I i+1(S) inductively
by I i+1(S) = {χ ∈ Irr(S) | Supp(χχ) ⊂ I i(S)}, where χ is the complex conjugate of
χ. Note that χ(σs∗) = χ(σs) for any s ∈ S. One of the main results in [6] shows that
(X,S) is nilpotent if and only if Iℓ(S) = Irr(S) for some non-negative integer ℓ when
(X,S) is commutative. Now we do not assume the commutativity of (X,S) and give a
central series. Put Li(S) = {s ∈ S | χ(σs) = nsχ(1) for any χ ∈ I i(S)}. Then Li(S) is
a normal closed subset of S by [2, Theorem 4.3].

Lemma 4.8. Let (X,S) be a group-like scheme. We use the above notations. Then
Li(S)//Li+1(S) ⊂ Z(S//Li+1(S)).

Proof. First, we suppose that (X,S) is commutative. Let s ∈ Li(S) and let χ ∈ I i+1(S).
Then, since χ is linear, we have

χ(σsσs∗) = χ(σs)χ(σs∗) = χ(σs)χ(σs) = ns(χχ)(σs) = ns

∑
ξ∈Ii

rξ
χχξ(σs)

= ns

∑
ξ∈Ii

rξ
χχξ(1)ns = ns

2(χχ)(1) = ns
2.

Now χ(σsσs∗) =
∑

t∈S pt
ss∗χ(σt), ns

2 =
∑

t∈S pt
ss∗nt, and |χ(σt)| ≤ nt. So pt

ss∗ ̸= 0
implies that χ(σt) = nt. Since this holds for every χ ∈ I i+1(S), we have ss∗ ⊂ Li+1(S).
This means that sLi+1(S) is thin. Since (X,S) is assumed to be commutative, we have
Li(S)//Li+1(S) ⊂ Z(S//Li+1(S)).

Next we suppose that (X,S) is group-like. We have the commutative scheme (X, S̃).

Then it is easy to see that Li(S̃) = L̃i(S) for any i. So we have L̃i(S)//L̃i+1(S) ⊂
Z(S̃//L̃i+1(S)). The isomorphism S̃//L̃i+1(S) ∼= ˜S//Li+1(S) in Proposition 4.4 shows

that ˜Li(S)//Li+1(S) ⊂ Z( ˜S//Li+1(S)). Now we can conclude that Li(S)//Li+1(S) ⊂
Z(S//Li+1(S)).

This lemma shows the following.

Proposition 4.9. If (X,S) is group-like and Lℓ(S) = {1} for some non-negative integer
ℓ. Then S = L0(S) ⊃ L1(S) ⊃ · · · ⊃ Lℓ(S) = {1} is a central series of S and (X,S) is
nilpotent.

Proposition 4.10. Let (X,S) be a group-like scheme. Suppose a sequence of closed
subset S = S0 ⊃ S1 ⊃ · · · satisfies Si//Si+1 ⊂ Z(S//Si+1) for any i ∈ {0, 1, · · · }. Then,
for χ ∈ Irr(S//Si+1), Supp(χχ) ⊂ Irr(S//Si) holds. Especially, I i(S) ⊃ Irr(S//Si) and
Li(S) ⊂ Si for any i ∈ {0, 1, · · · , r}.
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Proof. Let χ ∈ Irr(S//Si+1) and s ∈ Si. Since Si//Si+1 ⊂ Z(S//Si+1), we have χ(σs) =
εnsχ(1) for some ε ∈ C such that |ε| = 1. Now

χχ(σs) =
1

ns

χ(σs)χ(σs) = nsχ(1)2 = ns(χχ)(1).

Now χχ(σs) =
∑

ξ∈Irr(S) rξ
χχξ(σs), ns(χχ)(1) =

∑
ξ∈Irr(S) rξ

χχnsξ(1), and |ξ(σs)| ≤ nsξ(1).

So, if rξ
χχ ̸= 0, then ξ(σs) = nsξ(1). Since this holds for any s ∈ Si, we have Supp(χχ) ⊂

Irr(S//Si).
We prove the last part by an induction on i. Clearly I0(S) = {1S} = Irr(S//S0). For

χ ∈ Irr(S//Si+1), Supp(χχ) ⊂ Irr(S//Si) ⊂ I i(S). So χ ∈ I i+1(S) and Irr(S//Si+1) ⊂
I i+1(S). Then clearly Li+1(S) ⊂ Si+1.

Corollary 4.11. Let (X,S) be a group-like scheme. Then I i(S) = Irr(S//Li) for any
i ∈ {0, 1, · · · }.

Proof. By the definition, it is clear that I i(S) ⊂ Irr(S//Li). The converse is by Lemma
4.8 and Proposition 4.10.

By Proposition 4.10, we can see that Li(S) satisfies the property in Question 2.11.
So we call the sequence

S = L0(S) ⊃ L1(S) ⊃ · · ·
the lower central series of a group-like scheme (X,S).

The following result is the main theorem in this section.

Theorem 4.12. A group-like scheme (X,S) is nilpotent if and only if Lℓ(S) = {1} for
some non-negative integer ℓ.

Proof. Clear by Proposition 4.9 and Proposition 4.10.

Remark 4.13. We expected that every nilpotent scheme is group-like, but there are
counter examples, for example, the schemes of order 16, No. 159, No. 177, No. 186, and
so on, in [5].

5 p-Schemes

Let p be a prime number. Following the definition in [8], we call an association scheme
(X,S) a p-scheme if nS and ns for all s ∈ S are p-power numbers. We show that a
nilpotent scheme is a p-scheme if the order of the scheme is p-power. To show this fact,
we show the following proposition.

Proposition 5.1. Let (X,S) be a nilpotent scheme. Then ns | nS for every s ∈ S.

Proof. We prove the proposition by the induction on nS. By the definition of nilpotent
schemes, there exists a central thin closed subset T . For s ∈ S, ns | nsT nT by [8, Lemma
4.3.1]. Now nsT is a divisor of nS//T by the inductive hyposesis and nS = nT nS//T . So ns

is a divisor of nS.
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Proposition 5.2. Let (X,S) be a nilpotent scheme of p-power order. Then (X,S) is a
p-scheme.

Proof. This is clear by Proposition 5.1

Remark 5.3. (1) We note that the converse of this proposition is not true. There
are p-schemes which have no nontrivial central thin element, for example, schemes
of order 32, No. 10851, No. 17336, and No. 17337 in the list [5] for p = 2.

(2) The association schemes of order 32, No. 17336 and No. 17337 in [5] are 2-schemes
and group-like, but not nilpotent.

(3) Let (X,S) be a nilpotent scheme, and let {p1, p2, · · · , pr} be the set of prime
divisors of nS. In this case, (X,S) does not need to be a direct product of its pi-
subschemes. For example, for distinct prime numbers p and q, the wreath product
of the thin scheme of order p by the thin scheme of q is nilpotent but it is not a
direct product of a p-scheme and a q-scheme.

Question 5.4. When is a p-scheme nilpotent ?
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