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Abstract. Let X and Y be simplicial sets and K a field. In [13], Fresse
has constructed an algebra model over an E∞K-operad E for the mapping
space F(X, Y ), whose source X is finite, provided the homotopy groups of the
target Y are finite. In this paper, we show that if the underlying field K is
the closure Fp of the finite field Fp and the given mapping space is connected,
then the finiteness assumption of the homotopy group of Y can be dropped
in constructing the E-algebra model. Moreover, we give a spectral sequence
converging to the cohomology of F(X, Y ) with coefficients in Fp, whose E2-
term is expressed via Lannes’ division functor in the category of unstable
Fp-algebra over the Steenrod algebra.

1. introduction

Let X and Y be spaces (or simplicial sets) and F(X,Y ) denote the mapping
space. In [17], Haefliger has given a rational model for a mapping space F(X,Y )
for which Y is a nilpotent space. Subsequently, Bousfield, Peterson and Smith [9]
have constructed another rational model for a mapping space with a functorial way,
more precisely, their model is expressed via a division functor in the category of
commutative differential Z graded algebras over the rational field. In the same pa-
per, we are also aware of an interesting spectral sequence (henceforth BPS spectral
sequence) converging to H∗(F(X,Y ); Q), which is constructed with the algebraic
model. Brown and Szczarba [10] have derived an accessible rational model for
F(X,Y ) by computing the division functor explicitly. The construction renders
the model more computable.

As for a p-adic model for a space, Mandell [22] has proved that the homotopy
category of nilpotent, p-complete spaces of finite p-type is equivalent to a full sub-
category of the homotopy category of algebras over an Fp-operad E . Here Fp denotes
the closure of the finite field Fp. This motivates us to construct an E-algebra model
for a mapping space F(X,Y ). Recently, Fresse [13] has given such a model by
means of a division functor in the category of algebras over an Fp-operad under
some finiteness condition on the homotopy group of X . One of the purposes of
this article is to improve Fresse’s model for a mapping space. Another one is to
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construct a spectral sequence converging to H∗(F(X,Y ); Fp), which is regarded as
a p-adic version of the BPS spectral sequence.

It is worth to mention that Chataur and Thomas [12] have constructed a C∞-
algebra model for a mapping space which is the normalization of a simplicial C∞-
algebra, where C∞ is a cofibrant replacement of the commutative operad. When
the source space is the circle, the model for the mapping space, namely for the
loop space, is related with the Hochschild chain complex. We also mention that
our spectral sequence is a generalization of that due to Bökstedt and Ottosen [6],
which converges to the cohomology of a free loop space.

We recall briefly the algebraic model for a mapping space over an operad due
to Fresse. Let E denote the Barratt-Eccles operad over a field K, which is an
E∞-operad. Then we can regard the normalized cochain functor C∗(−; K) as a
functor from the category of simplicial sets to E-Alg the category of E-algebras ([4,
1.5],[26]). Let A be an E-algebra and K an E-coalgebra. The diagonal map on E
makes the dg-module HomK(K,−) of homogeneous morphisms into an E-algebra
(see [13, 1.5] for details). We denote by E( , ) the hom set in E-Alg.

Proposition 1.1. [13, 1.6.Proposition] Let K be an E-coalgebra. Then the functor
HomK(K,−) has a left adjoint. More explicitly, for A an E-algebra, there is an
E-algebra A�K such that E(A�K,−) ∼= E(A,HomK(K,−)).

Let K∗ be an E-algebra of finite type and K∗ the E-coalgebra which is the dual
to K∗. Then, by definition, A �K∗ is regarded as Lannes’ functor (A : K∗)E-Alg

in the category of E-algebras (see [30, 3.2 and 3.8] for the existence of the division
functor, such as Lannes’ T -functor). Moreover, if A is an almost free algebra E(V ),
then A�K is also an almost free algebra of the form E(V ⊗K). Since HomK(K,−)
preserves fibrations and acyclic fibrations, the total left derived functor − �L K
of − � K can be defined; that is, we have a natural bijection h̄E(A �L K,−) ∼=
h̄E(A,HomK(K,−)) for any E-algebra A. Here h̄E( , ) denotes the hom set in the
homotopy category of E-algebras. The functor −�LK provides an E-algebra model
for a mapping space.

Theorem 1.2. [13, 1.10.Theorem] Let X and Y be simplicial sets. We assume
that X is finite and that πn(Y ) is a finite p-group for n ≥ 0. We have a quasi-
isomorphism between C∗(F(X,Y ); K) and C∗(Y ; K)�LC∗(X ; K), which is functo-
rial with respect to X and Y .

Henceforth, we work in the category of algebras over the Barratt-Eccles operad E
defined in the field Fp, unless otherwise specify mentioned. The chain and cochain

complexes C∗(X ; Fp) and C∗(X ; Fp) are written as C∗(X) and C∗(X), respectively.
In this paper, we first show that C∗(F(X,Y )) can be connected with C∗(Y ) �L

C∗(X) by quasi-isomorphisms without assuming that πn(Y ) is a finite p-group,
subject to the connectedness of the mapping space F(X,Y ). More precisely, we
establish the following theorem.

Theorem 1.3. Let X be a finite simplicial set and Y a connected nilpotent simpli-
cial set of finite type. Assume that the connectivity of Y is greater than or equal to
the dimension of X. Then there exists an isomorphism between C∗(F(X,Y )) and
C∗(Y ) �L C∗(X), which is functorial with respect to X and Y , in the homotopy
category of E-algebras.
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As mentioned above, the functor −�K∗ is regarded as Lannes’ division functor
(− : K∗)E-Alg. This fact enables us to construct a spectral sequence converging to
the cohomology H∗(F(X,Y )). In order to describe the spectral sequence, we recall
that the generalized Steenrod algebra B is the free associative Fp-algebra generated
by the P s and (if p > 2 ) the βBs for s ∈ Z over the two sided ideal generated by
the Adem relations (see [22, Section 11]). The result [22, Theorem 1.4] states that
the quotient algebra B/(Id−P 0) is the usual Steenrod algebra A. Let K-Fp be the

category of unstable Fp-algebras over the generalized Steenrod algebra B. We have
a spectral sequence.

Theorem 1.4. (Compare with [9, Corollary 3.5]) Let X be a finite simplicial set
and Y a connected nilpotent simplicial set of finite type. Assume that the connectiv-
ity of Y is greater than or equal to the dimension of X. Then there exists a left-half
plane spectral sequence {Er, dr} with

Es,∗2
∼= Ls(H

∗(Y ) : H∗(X))K-Fp

converging strongly to H∗(F(X,Y )). Here Ls(− : H∗(X))K-Fp
denotes the sth

left derived functor of the division functor (− : H∗(X))K-Fp
in the category K-Fp.

Moreover the spectral sequence is natural with respect to X and Y .

In what follows, we shall refer to the spectral sequence in Theorem 1.4 as the
mod p BPS spectral sequence. For a B-algebra B and a B-algebra A of finite
type, one can define the derived functor Ls(B : A)K-Fp

using a simplicial resolution

of B in the category K-Fp. Since the resolution is a complex in the category of
unstable B-modules, the functor Ls(B : A)K-Fp

for any s inherits the B-module

structure from that of the complex. The same derived functor can be defined in the
category S-Fp of unstable Fp-algebras over the usual Steenrod algebra A. Observe

that an object in S-Fp is regarded as one in K-Fp with the natural projection
B → B/(Id−P 0) = A. The following theorem allows us to work in the more familiar
category S-Fp than K-Fp when computing the mod p BPS spectral sequence.

Theorem 1.5. Let A and B be A-algebras of finite type. Then Ls(B : A)K-Fp
is

isomorphic to Ls(B : A)S-Fp
as a B-module for any s.

This theorem implies that the mod p BPS spectral sequence is reducible in the
second quadrant. Moreover we have

Assertion 1.6. The mod p BPS spectral sequence possesses an unstable module
structure on B and hence on A.

For the more precise statement concerning the Steenrod operations on the spec-
tral sequence, see Theorem 7.7.

The rest of the paper is organized as follows. We recall Mandell’s work for p-adic
homotopy theory in Section 2 since our proof of Theorem 1.3 relies on the work.
In section 3, we prove Theorem 1.3 and give a result (Theorem 3.6) concerning the
homotopy type of mapping space. Section 4 is devoted to proving Theorem 1.4.
The edge homomorphism of the mod p BPS spectral sequence in Theorem 1.4 is
also considered. In Section 5, we prove that, for any unstable A-algebra A of finite
type, Ls(H

∗(K(Z/p, n) : A)K-Fp
= 0 when s < 0. This fact is a key to proving

Theorem 1.5. In Section 6, we first clarify the algebra structure of the division
functor (B : A)K-Fp

over B for given unstable B-algebras B and A. Moreover, we
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give a few examples in which the division functor (H∗(Y ) : H∗(X))K-Fp
for some

spaces X and Y is compared with the cohomology of the function space F(X,Y )
with coefficients in Fp via the edge homomorphism. In particular, an interesting

calculation of the Steenrod operation in H∗(F(Σg , BSU(2)); F3) is made in terms
of the Lannes’ division functor, where Σg is a Riemann surface of genus g and
BSU(2) denotes the classifying space of the Lie group SU(2). We mention that the
calculation is based on a more general result (Theorem 6.6). Section 7, Appendix,
is devoted to defining well-behaved Steenrod operations in the spectral sequence
which is constructed out of a simplicial E-algebra. As a consequence, we will see
that the mod p BPS spectral sequence possesses an unstable module structure on
A.

It is convenient to fix terminology for this article. An operad E = {E(r)}r≥0

over a field K is called an E∞-operad if each complex E(r) is acyclic and consists of
free modules over the group ring K[Σr], where Σr is the symmetric group of order
r. We refer to an E∞-operad as an E∞K-operad when emphasizing the underlying
field K. An almost free algebra is an E-algebra of the form (E(V ), d0 + d1), for
which (E(V ), d0) is the free E-algebra generated by a differential graded module V
and d1 is a derivation associated with a morphism h : V → E(V ) of degree +1.
More precisely, we can write d1(ρ⊗ v1 ⊗· · ·⊗ vr) =

∑r
i=1 ±ρ(v1, ..., h(vi), ..., vr) for

any ρ⊗ v1 ⊗ · · · ⊗ vr ∈ E(V ) = ⊕r≥0E(r) ⊗K[Σr ] V
⊗r (see [13, Section 2.3]).

2. Overview of Mandell’s work for p-adic homotopy theory

As mentioned in the introduction, our proof of Theorem 1.3 relies on Mandell’s
work for p-adic homotopy theory [22]. We recall it briefly in this short section.

Let C∗(X) denote the normalized chain complex of a simplicial set X with coef-
ficients in the field Fp and let C∗(X) be the dual to C∗(X), namely the normalized
cochain complex.

Let E be an E∞Fp-operad and E( , ) the hom set in the category of E-algebras
E-Alg. The hom set of the category of the simplicial sets ∆opSet is denoted by
Simpl( , ). Let ∆ be a category consisting of ordered sets [n] = {0, 1, ..., n} and
non-decreasing maps [n] → [m]. Observe that the standard simplicial set ∆[n] =
hom∆( , [n]) defines a cosimplicial simplicial set ∆[•] and gives the simplicial E-
algebra C∗(∆[•]).

In [22], Mandell has defined the contravariant functor U from the category of
E-algebras E-Alg to the category ∆opSet by UA = E(A,C∗(∆[•])) for any E-algebra
A. An important property of the functor U is stated as follows.

Proposition 2.1. [22, Proposition 4.2] The functors U and C∗ are contravariant
right adjoints between the category of simplicial sets and the category of E-algebras:

Simpl(X,UA) ∼= E(A,C∗(X)).

Let H0 be the homotopy category obtained from the category of simplicial sets
by formally inverting the weak equivalences and h̄E denote the homotopy category
of E-algebras.

Proposition 2.2. [22, Proposition 4.3] The derived functor U of U exists and gives
an adjunction H0(X,UA) ∼= h̄E(A,C∗(X)).
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3. Proof of Theorem 1.3

Before proving Theorem 1.3, we first recall a result due to Fresse, which is a
key to constructing the E-algebra model C∗(Y ) �L C∗(X) for the mapping space
F(X,Y ). Observe that, by definition, F(X,Y )q = Simpl(X × ∆[q], Y ).

For any simplicial set K, let FC∗(K) → C∗(K) denote the universal cofibrant
resolution of the E-algebra C∗(K). Observe that the resolution is constructed with
the bar and cobar construction [14, Theorem 2.19].

Theorem 3.1. [13, 5.1.Theorem] Let X and Y be a simplicial sets. We have a
morphism of E-algebras q : FC∗(X×Y ;K) → C∗(X ; K)⊗̂C∗(Y ; K), functorial in X
and Y , which makes the diagram

FC∗(X×Y ;K)

p '
��

q

**V

V

V

V

V

V

V

V

V

V

V

V

C∗(X × Y ; K)
EZ

' // C∗(X ; K)⊗̂C∗(Y ; K)

commutative in cohomology, where EZ is the classical shuffle morphism.

We can assume that Y is a connected nilpotent p-complete simplicial set. In
fact it is immediate that a p-completion φ : Y −→ Y ∧p induces a quasi-isomorphism
C∗(F(∗, Y ∧p )) −→ C∗(F(∗, Y )). Inductive application of the Eilenberg-Moore spec-
tral sequence mentioned in [21, Theorem 2.1] enables us to conclude that the p-
completion φ gives rise to a quasi-isomorphism C∗(F(X,Y ∧p )) −→ C∗(F(X,Y )).
Observe that X is a finite simplicial set.

Let ι : A
'
−→ C∗(Y ) be a cofibrant resolution. Since Y is resolvable, the unit

Y −→ UA, which is the adjoint to ι, is a weak equivalence. In order to prove The-
orem 1.3, we first consider the following sequence (3.1) of morphisms of simplicial
sets:

F(X,Y )
'

// F(X,UA) = Simpl(X × ∆[•], UA)

E(A,C∗(X × ∆[•]))

∼=

OO

E(A,FC∗(X×∆[•]))

p∗

OO

q∗
��

E(A,C∗(X) ⊗ C∗(∆[•]))

∼=��
U(A� C∗(X)) = E(A� C∗(X), C∗(∆[•])).

We define functors C∗X , FX and T ∗X from the category ∆opSet to E-Alg by
C∗X(−) = C∗(X × −), FX (−) = FC∗(X×−) and T ∗X(−) = C∗(X) ⊗ C∗(−), re-
spectively. Define an E-algebra map ψ1 : C∗(X × K) → Simpl(K,C∗X(∆[•])) by
ψ1(α)(σ) = (1X × σ)∗(α), where 1X × σ : X × ∆[n] → X × K for σ ∈ Kn

∼=
Simpl(∆[n],K) (see [22, Section 4]). In similar fashion, E-algebra maps ψ2 :
FC∗(X×K) → Simpl(K,FX(∆[•])) and ψ3 : C∗(X)⊗C∗(K) → Simpl(K,T ∗X(∆[•]))
are defined.
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Lemma 3.2. The maps ψ1, ψ2 and ψ3 are isomorphisms which make the following
diagram commutative:

C∗(X ×K)

ψ1 ∼=��

FC∗(X×K)

ψ2∼= ��

'

poo q

'
// C∗(X) ⊗ C∗(K)

ψ3∼= ��
Simpl(K,C∗X (∆[•])) Simpl(K,FX (∆[•]))

p∗
oo

q∗
// Simpl(K,T ∗X(∆[•])).

Proof. The inverse η1 : Simpl(K,C∗X(∆[•])) → C∗(X × K) of ψ1 is given by
η(γ)(σ) = γ(σ2)(σ1 × cn) for γ ∈ K, where σ = σ1 × σ2 ∈ Xn × Kn and
cn = id[n] ∈ ∆[n]n. Similarly, we can define the inverses of ψ2 and ψ3. The
commutativity follows from the functorality of p and of q. �

Theorem 3.3. In the sequence (3.1) of morphisms of simplicial sets, the maps
p∗ : E(A,FC∗(X×∆[•])) → E(A,C∗(X × ∆[•])) and q∗ : E(A,FC∗(X×∆[•])) →
E(A,C∗(X) ⊗ C∗(∆[•])) are weak equivalences for any cofibrant object A.

Thus the sequence (3.1) allows us to obtain an operadic model for F(X,Y ).

Corollary 3.4. In the homotopy category H0, the simplicial set U(A� C∗(X)) is
isomorphic to F(X,Y ).

Proof of Theorem 3.3. We write UC∗
X
A = E(A,C∗(X×∆[•])), UFX

A = E(A,FC∗(X×∆[•]))
and UT∗

X
A = E(A,C∗(X)⊗C∗(∆[•])). By using Lemma 3.2 and the same argument

as in the proof of Proposition 2.1 due to Mandell, we have a commutative diagram

Simpl(K,UC∗
X
A)

∼= // E(A,C∗(X ×K))

Simpl(K,UFX
A)

(p∗)∗

OO

(q∗)∗ ��

∼= // E(A,FC∗(X×K))

E(A,p)

OO

E(A,q)
��

Simpl(K,UT∗
X
A)

∼=
// E(A,C∗(X) ⊗ C∗(K))

in which horizontal arrows are bijective. Here E(A, p) and E(A, q) are maps induced
by p and q, respectively. If A is a cofibrant object, the diagram obtained by replacing
E and Simpl with h̄E and H0 is also commutative. In the diagram, E(A, p) and
E(A, q) are bijective because p and q are quasi-isomorphisms. Thus we see that p∗
and q∗ are weak equivalences. �

We here recall the definition of the B∗-complex introduced by Mandell. Let Bm,n
(1 ≤ m <∞, n > 1) be an E-algebra model for K(Z/pm, n), that is, there exists a
quasi-isomorphism Bm,n → C∗(K(Z/pm, n)). Let B∞,n be an E-algebra model for
K(Z∧p , n). A B-cell (CBm,n, Bm,n) is an augmented E-algebra CBm,n together with
Bm,n → CBm,n a cofibration of augmented E-algebras such that the augmentation

CBm,n → Fp is a quasi-isomorphism. We can assume Bm,n and CBm,n are almost

free algebras. A B∗-complex is an E-algebra A = Colim Aj such that A0 = Fp and
for each j > 0, Aj fits in a push out diagram

Bmj ,nj+1 // //

f
��

CBmj ,nj+1

��
Aj // Aj+1,
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where {nj} is a non-decreasing sequence in which positive numbers repeat at most
finitely many times.

By assumption, the simplicial set Y has a Postnikov tower whose fibres are all
K(Z/pm, n)’s and K(Z∧p , n)’s with only finitely many for each n. From the tower,

we have a B∗-complex A = Colim Aj
'
→ C∗(Y ). Applying the functor −� C∗(X)

to each stage of the B∗-complex, we get a push out diagram (4.2):

B � C∗(X) // //

f�1
��

CB � C∗(X)

��
Aj � C∗(X) // Aj+1 � C∗(X),

and a pull back diagram (4.3):

U(B � C∗(X)) U(CB � C∗(X))oo

U(Aj � C∗(X))

U(f�1)

OO

U(Aj+1 � C∗(X)).oo

OO

Here (CB,B) is aB-cell with B = Bmj ,nj+1 (1 ≤ mj ≤ ∞). From Corollary 3.4 and
the assumption on the dimension of X and the connectivity of Y , it follows that the
simplicial set U(Bmj ,nj+1 � C∗(X)) is simply connected. Thus the diagram (4.3)
enables us to obtain the Eilenberg-Moore spectral sequence {Er, dr} converging
strongly to H(C∗(U(Aj+1 � C∗(X)))) with

E2
∼= TorH(C∗(U(B�C∗(X))))(H(C∗(U(Ai � C∗(X)))), H(C∗(U(CB � C∗(X))))).

From [22, Corollary 3.6] and the diagram (4.2), we have a left half-plane cohomo-

logical spectral sequence {Êr, d̂r} with

Ê2
∼= TorH∗(B�C∗(X))(H

∗(Ai � C∗(X)), H∗(CB � C∗(X)))

converging strongly to H∗(Aj+1 �C∗(X)). Comparing {Êr, d̂r} and {Er, dr} with
the morphism of spectral sequences induced by the adjoint maps Ai � C∗(X) →
C∗(U(Ai � C∗(X))), B � C∗(X) → C∗(U(B � C∗(X))) and CB � C∗(X) →
C∗(U(CB � C∗(X))), we have the following theorem.

Theorem 3.5. Let A be the B∗-complex mentioned above. Then the adjoint A �
C∗(X) → C∗U(A� C∗(X)) is a quasi-isomorphism.

Proof. In order to obtain the result, it suffices to prove that the adjoint map ad :
Bmj ,nj+1 � C∗(X) → C∗(U(Bmj ,nj+1 � C∗(X))) is a quasi-isomorphism for any
1 ≤ mj ≤ ∞ and nj .

Since H0(X,UCB) ∼= h̄E(CB,C∗(X)) = ∗ for any simplicial set X , it follows
that UCB is contractible and hence so is U(CB � C∗(X)) ' F(X,UCB). We see
that h̄E(CB�C∗(X),−) ∼= h̄E(CB,C∗(X)⊗−) ∼= h̄E(Fp, C

∗(X)⊗−) = ∗. Thus the
E-algebra CB�C∗(X) is acyclic. Hence ad : CB�C∗(X) → C∗(U(CB�C∗(X)))
is a quasi-isomorphism.

The result [13, 4.1.Lemma] asserts that the E-algebra B1,n � C∗(X) is quasi-
isomorphic to C∗(F(X,K(Z/p, n))). Therefore, it follows from [22, Theorem 7.3]
that B1,n�C∗(X) is quasi-isomorphic to a B∗-complex. The argument of the proof
of the implication (ii) ⇒ (i) in [22, Theorem 7.3 (ii)] allows us to deduce that the
adjoint ad : B1,n � C∗(X) → C∗(U(B1,n � C∗(X))) is a quasi-isomorphism.
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Consider the push out diagram

B1,nj
// //

��

CB1,nj+1

��
Bm−1,nj+1 // Bm,nj+1,

associated with the fibre square

K(Z/p, nj) ∗oo

K(Z/pm−1, nj + 1)

OO

K(Z/pm, nj + 1).oo

OO

By using inductively the comparison of the spectral sequences mentioned above
with the adjoint maps, we see that for 2 ≤ m < ∞, ad : Bm,nj+1 � C∗(X) →
C∗(U(Bm,nj+1 � C∗(X))) is also a quasi-isomorphism. We can regard B∞,nj+1 as
the colimit of the cofibre sequence B1,nj+1 → B2,nj+1 → · · · → Bm,nj+1 → · · · .
This implies that ad : B∞,nj+1 � C∗(X) → C∗(U(B∞,nj+1 � C∗(X))) is a quasi-
isomorphism. �

Proof of Theorem 1.3. Combining Corollary 3.4 with Theorem 3.5, we have the
result. �

Thanks to Corollary 3.4, the following significant result on the homotopy type
of mapping spaces is also deduced.

Theorem 3.6. Let X and X ′ be connected finite simplicial sets and Y a connected
p-complete nilpotent simplicial set of finite type. Suppose that dimX and dimX ′

are less than or equal to the connectivity of Y and C∗(X) is quasi-isomorphic to
C∗(X ′) as an E-algebra. Then F(X,Y ) and F(X ′, Y ) are weak equivalent.

Proof. LetA → C∗(Y ) be a cofibrant resolution. It follows that h̄E(A�C∗(X),−) ∼=
h̄E(A,C∗(X) ⊗−) ∼= h̄E(A,C∗(X ′) ⊗−) ∼= h̄E(A � C∗(X

′),−). Thus we can con-
clude that A � C∗(X) ∼= A � C∗(X

′) as an E-algebra and hence U(A � C∗(X)) '
U(A� C∗(X

′)). The result follows from Corollary 3.4. �

4. Proof of Theorem 1.4

Before proving Theorem 1.4, we here consider the homology of a free E-algebra
E(V ) = ⊕r≥0E(r) ⊗

Fp[Σr] V
⊗r. The vector space V is decomposed as V = H(V )⊕

dV S⊕S. Then it follows from [27, Lemma 1.1 (iii)] that the inclusion i : H(V ) → V
induces a quasi-isomorphism ϕ = ⊕r(1⊗ i

⊗r) : E(H(V )) → E(V ) in the category of
differential graded modules. The E-algebra structure of a free E-algebra comes from
the operad structure of E . This implies that ϕ is a morphism of E-algebras. Let M
be an unstable B-Fp-module and UenM denote the enveloping algebra, which is an

unstable B-Fp-algebra. From [22, Proposition 12.4], we see that the canonical map
H(V ) → H(E(H(V ))) is extendable to an isomorphism on KH(V ) := UenBH(V ),
where BH(V ) denotes the free B-Fp-module generated by H(V ). We regard K as a

functor from the category of Fp-vector spaces to the category K-Fp. Consequently
we have the following lemma.

Lemma 4.1. The composition map

uE(V ) : KH(V ) = UenBH(V ) → H(E(H(V )))
H(ϕ)
→ H(E(V ))
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is an isomorphism of unstable B-Fp-algebras.

In the remainder of this section, we construct the spectral sequence in Theorem
1.4.

Let E(W ) → C∗(Y ) be an almost free resolution in which E(W ) is a B∗-complex.
From Theorem 1.3, it follows that E(W )�C∗(X) ∼= C∗(F(X,Y )) in the homotopy
category h̄E . Consider a simplicial E-resolution R of E(W ):

· · · → E(V−s)
∂−s
→ · · · → E(V−1)

∂−1
→ E(V0)

ε
→ E(W )

equipped with contractions h : E(V−s+1) → E(V−s) in the category of differential
graded modules over Fp. (As an example of such a resolution, we can give the
standard simplicial resolution described in [3] and [30, 3.8].)

Lemma 4.2. The map

ε� 1 : Total(E(V•) � C∗(X)) → E(W ) � C∗(X)

is a quasi-isomorphism.

Proof. Put A = Total(E(V•) � C∗(X)). We define a decreasing filtration F̃ =

{F̃ iA} of A with internal degrees: F̃ iAn = ⊕−s+k=n,k≥i(E(V−s) � C∗(X))k. It is

easy to check that the filtration F̃ is exhaustive and weakly convergent; that is,
A = ∪s≥0F

−sA and F pA ∩ Ker d = ∩r(F
pA ∩ d−1(F p+rA)). Let us consider the

spectral sequence {Ẽr, d̃r} associated with the filtration F̃ . Then the E1-term has
the form

C : · · · → O(E(V−s) � C∗(X))
O(∂−s�1)

→ · · · → O(E(V0) � C∗(X)) → 0.

Here ∂•� 1 =
∑

(−1)idi� 1 and O denotes the forgetful functor from the category
of differential graded modules to the category of graded vector spaces. We view
O(E(V−s)) as an OE-algebra. Observe that (O(E(V−s) � C∗(X)),O(∂−s � 1)) =
(O(E(V−s) � OC∗(X),O(∂−s) � 1). We see that the free resolution R of E(W )
gives rise to a free resolution L : O(E(V•)) → O(E(W )) → 0 of O(E(W )). The
complex L � 1 : O(E(V•)) � OC∗(X) is nothing but the complex C mentioned
above. Since O(E(W )) is a free OE-algebra, we can take a constant simplicial

resolution V : · · · → O(E(W ))
=
→ O(E(W ))

=
→ O(E(W )) → 0 as a free simplicial

resolution of O(E(W )). Since Ẽ−i,∗2
∼= H−i(C) = H−i(L � 1) ∼= H−i(V � 1), it

follows that Ẽ−i,∗2 = 0 for i > 0 and that Ẽ0,∗
1 = O(E(W )) � OC∗(X). Moreover

we see that Ẽ0,∗
2

∼= Ẽ0,∗
∞

∼= H(Total(E(V•) � C∗(X))).
We next define the filtration ‘F of the E-algebra E(W ) � C∗(X) with internal

degrees. This filtration gives a spectral sequence {‘Er, ‘dr} converging toH(E(W )�
C∗(X)) with

‘Ei,∗1 =

{
O(E(W )) �OC∗(X) if i = 0
0 if i 6= 0

It is immediate that ‘E0,∗
2

∼= ‘E0,∗
∞

∼= H(E(W )�C∗(X)). The map ε�1, which pre-

serves the filtrations, induces {fr} : {Ẽr, d̃r} → {‘Er, ‘dr} a morphism of spectral
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sequences. This allows us to obtain a commutative diagram

Ẽ0,∗
2

f2 //

∼=
��

‘E0,∗
2

∼=
��

H(Total(E(V•) � C∗(X)))
H(ε�1)

// H(E(W ) � C∗(X)).

Since f1 is an isomorphism, we have the result. �

We define a decreasing filtration F • = {F−sA} of the total complex A of the
double complex E(V•) � C∗(X) = (E(V•) : C∗(X))E-Alg by F−sA = ⊕−s≤iE(Vi) �
C∗(X). Let {Er, dr} be the spectral sequence associated with the filtration F •.

Theorem 4.3. The spectral sequence {Er, dr} converges strongly to H∗(F(X,Y )).

Proof. It is readily seen that the filtration F • is exhaustive and weakly convergent.
Since the filtration is bounded below, it follows that the natural map u : HA →
lim←HA/F pHA is an isomorphism; that is, the filtration is strongly convergent.
The complex E(W ) � C∗(X) is quasi-isomorphic to C∗(F(X,Y )). Therefore the
result follows from Lemma 4.2. �

We will describe the E2-term of the mod p BPS spectral sequence in terms of
the derived functor of the division functor in the category K-Fp.

Since the E1-term of the spectral sequence is induced by the internal differential,
namely the differentials of the complexes E(V−s+1), it follows that the E1-term has
the form

· · · → H(E(V−s)�C∗(X))
H(∂�1)
→ · · · → H(E(V−1)�C∗(X)) → H(E(V0)�C∗(X)) → 0.

Since the free E-resolution R of E(W ) has contractions, by taking the internal
differential, we have a simplicial resolution

· · · // H(E(V−1))
H(∂−1) // H(E(V0))

H(ε) // H∗(Y ) // 0

KH(V−1)

∼=

OO

KH(V0)

∼=

OO

in the category K-Fp. The following proposition completes the proof of the Theorem
1.4. Observe that the naturality of the spectral sequence also follows from the same
proposition.

Proposition 4.4. Let E(V ) and E(V ′) be free E-algebras and let ∂ : E(V ) → E(V ′)
be a morphism of E-algebras.
(i) Then the diagram

(H(E(V )) : H∗(X))K-Fp

(H(∂):1)// (H(E(V ′)) : H∗(X))K-Fp

(KH(V ) : H∗(X))K-Fp

∼=(uE(V ):1)

OO

(KH(V ′) : H∗(X))K-Fp

∼= (uE(V ′):1)
OO

K(H(V ) ⊗H∗(X))

uE(V ⊗C∗(X)) ∼=��

K(H(V ′) ⊗H∗(X))

uE(V ′⊗C∗(X))∼= ��
HE(V ⊗ C∗(X))

H(∂�1)
// HE(V ′ ⊗ C∗(X))
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is commutative in K-Fp.
(ii) Let f : X → X ′ be a map. Then the following diagram is commutative:

(H(E(V )) : H∗(X))K-Fp

(1:H∗(f))// (H(E(V )) : H∗(X ′))K-Fp

(KH(V ) : H∗(X))K-Fp

∼=(uE(V ):1)

OO

(KH(V ) : H∗(X))K-Fp

∼= (uE(V ′):1)
OO

K(H(V ) ⊗H∗(X))

uE(V ⊗C∗(X)) ∼=��

K(H(V ) ⊗H∗(X
′))

uE(V ′⊗C∗(X))∼= ��
HE(V ⊗ C∗(X))

H(1�C∗(f))
// HE(V ⊗ C∗(X

′)).

In order to prove Proposition 4.4, we prepare a lemma. Let K( , ) denote the
hom set in the category K-Fp.

Lemma 4.5. For any E-algebra N , the diagram

E(E(V ) � C∗(X), N)

H ��

∼=

adE(V ) // E(E(V ), N ⊗ C∗(X))

H��
K(H(E(V ) � C∗(X)), HN)

u∗
E(V ⊗C∗(X))

∼=��

K(H(E(V ), HN ⊗ C∗(X)))

u∗
E(V )

∼=
��

K((KH(V ) : H∗(X))K-Fp
, HN)

∼=

adKH(V )

// K((KH(V )), HN ⊗H∗(X)))

is commutative. Here adE(V ) and adHE(V ) are adjoint isomorphisms and H is the
map which sends a morphism f of chain complexes to the induced homomorphism
H(f) on homology.

Observe that, by definition, E(V ) � C∗(X) = E(V ⊗ C∗(X)) and (KH(V ) :
H∗(X)K-Fp

= K(H(V ) ⊗H∗(X)).

Proof of Lemma 4.5. The given diagram is decomposed as follows:

E(E(V ⊗ C∗(X)), N)

u∗
E(V ⊗C∗(X))◦H ��

∼=
// Homdgm(V ⊗ C∗(X), N)

H ��

∼=
//

K(K(H(V ) ⊗H∗(X)), HN) ∼=
// Homdgm(H(V ) ⊗H∗(X), HN)

∼=
//

Homdgm(V,N ⊗ C∗(X))

H ��

∼=
// E(E(V ), N ⊗ C∗(X))

u∗
E(V )◦H��

Homdgm(H(V ), HN ⊗H∗(X))
∼=

// K(K(H(V )), HN ⊗H∗(X)),

where Homdgm( , ) denotes the hom set of the category of differential graded
modules and the compositions of horizontal isomorphisms are the adjoints. By a
fairly straightforward manner, we can check the commutativity of each square. The
details are left to the reader. �
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Proof of Proposition 4.4. (i) Put aU = (u∗
E(V ))

−1 ◦adKH(V ) ◦u
∗
E(V⊗c∗(X)) for U = V

and V ′. From Lemma 4.5, we have a diagram (4.1):

E(E(V ⊗ C∗), N)
adE(V ) //

H
**U

U

U

U

U

U

U

(∂�1)∗

��

E(E(V ), N ⊗ C∗)
H

++W

W

W

W

W

W

W

W

W

(∂)∗

��

K(HE(V ⊗ C∗), HN)
aV //

H(∂�1)∗

��

K(HE(V ), HN ⊗H∗(X))

H(∂)∗

��

E(E(V ′ ⊗ C∗), N)
adE(V ′) //

H
**U

U

U

U

U

U

U

E(E(V ′), N ⊗ C∗)
H

++W

W

W

W

W

W

W

W

W

K(HE(V ′ ⊗ C∗), HN)
aV ′ // K(HE(V ′), HN ⊗H∗(X))

whose squares are commutative except for the front one, where C∗ = C∗(X) and
C∗ = C∗(X). We also have a diagram

K(HE(V ⊗ C∗), HN)
aV //

H(∂�1)∗
��

K(HE(V ), HN ⊗H∗(X))

H(∂)∗
��

K((HE(V ) : H∗(X), HN)
adHE(V )

∼=
oo

(H(∂):1)∗

��
K(HE(V ′ ⊗ C∗), HN)

aV ′

// K(HE(V ′), HN ⊗H∗(X)) K((HE(V ) : H∗(X), HN)
adHE(V ′)

∼=
oo

in which the right square is commutative. The commutativity of diagram (4.1)
implies that H(∂)∗aV (idHE(V⊗C∗)) = aV ′H(∂ � 1)∗(idHE(V⊗C∗)) and hence

(H(∂) : 1)∗(adHE(V ))
−1aV (idHE(V⊗C∗)) = (adHE(V ′))

−1aV ′H(∂ � 1)(idHE(V⊗C∗)).

Put ΨU = uE(U⊗C∗(X)) ◦ (uE(U) : 1)∗−1 for U = V and V ′. Then the commutative
diagram

K(HE(U ⊗ C∗), HN)
u∗
E(U⊗C∗(X))//

Ψ∗
U

++W

W

W

W

W

W

W

W

W

W

W

W

W

K((KH(U) : H∗(X)), HN)
∼=

adKH(U)// K(KH(U), HN ⊗H∗(X))

K((HE(U) : H∗(X)), HN)

∼=(uE(U):1)
∗

OO

adHE(U)

∼=
// K((HE(U), HN ⊗H∗(X))

∼=u∗
E(U)

OO

enables us to deduce that (adHE(U))
−1◦aU = Ψ∗U . Thus by choosing E(V ⊗C∗) asN ,

we can conclude that (H(∂) : 1)∗Ψ∗V (idH(E(V⊗C∗))) = Ψ∗V ′H(∂�1)∗(idH(E(V⊗C∗))).
This completes the proof.
(ii) The map 1�C∗(f) : E(V ⊗C∗(X)) → E(V ⊗C∗(X

′)) is defined by the extension
of the linear map 1 ⊗ C∗(f) : V ⊗ C∗(X) → V ⊗ C∗(X

′). Therefore it is easy to
check the commutativity. �

We end this section with consideration on the edge homomorphism of the spectral
sequence {Er, dr}.

Let ι : ∗ → X be the inclusion map. Observe that the map ι induces the
evaluation map ev0 = F(ι, id) : F(X,Y ) → F(∗, Y ) = Y . Define a map

θ : H∗(Y ) → (H∗(Y ) : H∗(X))K-Fp
= L0(H

∗(Y ) : H∗(X))K-Fp

by composing the natural isomorphism H∗(Y )
∼=
→ (H∗(Y ) : Fp)K-Fp

with the in-

duced map (1 : ι∗) : (H∗(Y ) : Fp)K-Fp
→ (H∗(Y ) : H∗(X))K-Fp

.

Proposition 4.6. The induced map ev∗0 : H∗(Y ) → H∗(F(X,Y ))) is decomposed
via the edge homomorphism of the spectral sequence {Er, dr}, that is, the following
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diagram is commutative:

H∗(Y )
ev∗0 //

θ ��

H∗(F(X,Y ))

E0,∗
2 = L0(H

∗(Y ) : H∗(X))K-Fp

// // E0,∗
3

// // · · · // // E0,∗
∞ .
?�

OO

Proof. Consider the spectral sequence {Êr, d̂r} with Ês,∗2
∼= Ls(H

∗(Y ) : H∗(∗))K-Fp

converging to the cohomology H∗(F(∗, Y )) = H∗(Y ). We regard that this spectral
sequence is constructed from the complex R � Fp, where R denotes a simplicial

resolution of a cofibrant model for Y . Since R�Fp is isomorphic to R as a complex,

it follows that Ês,∗2 = 0 if s 6= 0 and that Ê0,∗
2 = L0(H

∗(Y ) : Fp)K-Fp
= H∗(Y ).

This implies that the spectral sequence {Êr, d̂r} collapses at the E2-term. Moreover

the edge homomorphism Ê0,∗
2 → · · · → Ê0,∗

∞ is viewed as the identity map. The
inclusion map ι : ∗ → X induces a morphism {fr} of spectral sequences from

{Êr, d̂r} to {Er, dr} on account of the naturality of the spectral sequence. We then
see that the morphism f2 is nothing but the map θ. This completes the proof. �

Remark 4.7. From the construction of the spectral sequence, we see that the edge
homomorphism coincides with the composition

(H∗(Y ) : H∗(X))K-Fp

Coker{H(∂ � 1) : H(E(V−1 ⊗ C∗(X))) → H(E(V0 ⊗ C∗(X)))}

H(ε�1)
��

H(E(W ) � C∗(X))
∼= // H∗(F(X,Y )).

This implies that the edge homomorphism is a morphism of unstable B-algebras.

Remark 4.8. We here give a model for the based mapping space F∗(X,Y ).

Let ι : ∗ → X be the inclusion and E(W )
'
→ C∗(Y ) a cofibrant model. Recall

that the maps in the sequence (3.1) and the adjoint in Theorem 3.5 are functorial
with respect to X . Therefore we have a commutative diagram

C∗(Y ) = C∗(F(∗, Y ))
F(ι,Y )// C∗(F(X,Y ))

E(W ) = E(W ) � Fp

'

OO

id�in
// E(W ) � C∗(X)

'

OO

= E(W ⊗ C∗(X))

for which in : Fp → C∗(X) is the inclusion and the vertical arrows are quasi-
isomorphisms. The map id�in is regarded as the inclusion E(W ) → E(W ⊗C∗(X))
and hence as a cofibation.

Consider the evaluation fibration

F∗(X,Y ) → F(X,Y )
ev0→ Y.

The map ev0 is nothing but the induced map F(ι, Y ) so that the map id� in is
a model for the evaluation map ev0. By virtue of [11, Théorème 4.2], we have a

model E(W ⊗ C∗(X)+)
'
→ C∗(F∗(X,Y )), where C∗(X)+ = C∗(X)/Fp.
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So far we adhere to working with cochain complexes in order to get topological
results. However, one can reconsider the construction of the mod p BPS spectral
sequence by replacing the cochain complexes C∗(Y ) and C∗(X) with E-algebras
B and A, respectively. Then a more algebraic spectral sequence appears. More
precisely, we can establish the following theorem.

Theorem 4.9. Let A and B be E-algebras over a field F. Suppose that A is of
finite type. Then there exists a left-half plane spectral sequence {Er, dr} converging
strongly to H(B�LA∗) with Es,∗2

∼= Ls(H(B) : H(A))K-F, the left derived functors
of the division functor ( : H(A))K−F in the category K-F of unstable B-algebras
over F.

Remark 4.10. Let F•pY be the cosimplicial resolution of Y . It seems that the Bous-
field spectral sequence [7] for the cosimplicial space F(X,F•pY ) gives rise to the
spectral sequence converging to H(F(X,Y )) with the same E2-term as that of our
spectral sequence (see [5, Sections 3 and 7] for details of the case where X = S1).

5. Derived functors of division functors

Let A be an unstable A-algebra of finite type over Fp. To simplify, the derived
functor Ls( : A)K-Fp

may be denoted by Ls( : A). Our goal in this short section is

to prove Theorem 1.5. We will first prove the following theorem.

Theorem 5.1. For any s < 0, Ls(H
∗(K(Z/p, n)) : A) = 0 and L0(H

∗(K(Z/p, n)) :
A) is isomorphic to UenA(en ⊗A∗) as a graded vector space.

Before proving Theorem 5.1, we prepare a proposition and a spectral sequence.

Proposition 5.2. L0(Fp : A) = Fp and Ls(Fp : A) = 0 for s < 0.

Proof. Let · · ·−→K(V−1)−→K(Fp)
ε

−→Fp−→0 be the standard simplicial resolution

of Fp. Here K denotes the functor UenB from the category of graded Fp-vector

spaces to K-Fp (see Section 4). We then define a morphism r : Fp → K(Fp) in K-Fp
by r(1) = 1K. It is immediate that the composite ε ◦ r is the identity. From [30,
Lemma 7.1.3], we see that the complex · · · −→(K(V−1) : A)

d0−d1−−−→(K(Fp) : A)−→0,

which computes the derived functor Ls(Fp : A), is acyclic. The result for s = 0
follows from Theorem 6.1 in the next section. �

It is known that the cohomology H∗(K(Z/p, n)) is isomorphic to UenA(en) as
an unstable A-algebra (see also [30, Proposition 1.6.2], [8]). Moreover, by virtue of
[22, Proposition 12.5], we obtain a pushout diagram

UenBen
α //

��

UenBen

��

=: α∗UenBen

Fp
// UenAen ∼= H∗(K(Z/p, n))

in the category K-Fp, where α = Uen(1 − P 0).
By using a spectral sequence [28, II §6 Theorem 6 (b)] due to Quillen, Bökstedt

and Ottosen have construct a spectral sequence converging to a derived functor
applied to a pushout in an appropriate category (see [6, Proposition 6.3]). The
way of their construction of the spectral sequence does work well in the category
K-Fp. The division functor (− : A) preserves colimits, and hence pushouts, in K-Fp
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since the functor is the left adjoint of the tensor product functor A ⊗−. Thus [6,
Proposition 6.3] enables one to deduce the following proposition.

Proposition 5.3. Let B′ Boo // B′′ be a diagram in the category K-Fp such

that TorBi (B′, B′′) = 0 for any i > 0 and let B′ ⊗B B
′′ denote the pushout. Then

there exists a third quadrant spectral sequence {Er, dr} converging to L∗(B
′⊗BB

′′ :

A) with Es,t2
∼= TorL∗(B:A)

s (L∗(B
′ : A), L∗(B

′′ : A))t.

Proof of Theorem 5.1. We observe that Ls(K(en) : A) = 0 if s < 0 and that
L0(K(en) : A) = K(en ⊗ A∗). Moreover we see that α∗K(en) is a free K(en)-
module. This follows from [22, Proposition 12.5]. Proposition 5.3 enables us to
obtain a spectral sequence {Er, dr} such that

Es,t2
∼= TorL∗(K(en):A)

s (L∗(α∗K(en) : A), L∗(Fp : A))t, Es,tr ⇒ Ls+t(UenA(en) : A).

By virtue of [13, 4.2.7 Lemma], we see that L0(α∗K(en) : A) = (α∗K(en) : A) ∼=
K(en ⊗ A∗) ⊗ UenA(en ⊗ A∗) as a K(en ⊗ A∗)-module. Therefore it follows from
Proposition 5.2 that

TorL∗(K(en):A)
∗ (L∗(α∗K(en) : A), L∗(Fp : A))∗

∼= Tor
L∗(K(en):A)
0 (L∗(α∗K(en) : A),Fp)0

∼= UenA(en ⊗A∗).

This completes the proof. �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We take the standard simplicial resolution U•
ε
→ B → 0 of

B in the category S-Fp (see [3] and [30, 3.8]). Let B•
η
→ B → 0 and Vi•

η
→ Ui → 0

be the standard simplicial resolutions of B and Ui, respectively, in K-Fp. Observe
that Ui = (UenA)i+1(B), Bk = Kk+1(B) and Vik = Kk+1(Ui). Since the standard
simplicial resolution is functorial, we have a double complex :

0 0 0 0

· · · // Ui

P

(−1)idi //

OO

Ui+1
//

OO

· · · // U0
ε //

OO

B //

OO

0

· · · // Vi0

P

(−1)iK(di)//

η

OO

V(i+1)0 //

η

OO

· · · // V00

K(ε)
//

η

OO

B0
//

η

OO

0

· · · // Vi1

P

(−1)iK2(di)//

d0−d1

OO

V(i+1)1 //

OO

· · · // V01

K2(ε)
//

OO

B1
//

OO

0

...

OO

...

OO

· · · ...

OO

...

OO

The resolution U•
ε
→ B → 0 has a contraction hi : Ui → Ui−1 for any i in the

category of graded Fp-vector spaces. Thus, for any k, the horizontal sequence

V•k
Kk+1(ε)
→ Bk → 0 is interpreted as a simplicial resolution of Bk = Kk+1(B).

Therefore the spectral sequence arising from the horizontal filtration of the double
complex D•• := Total((V•• : A)K-Fp

) gives an isomorphism of B-modules from

H∗(D••) to L∗(B : A)K-Fp
. The vertical filtration of the double complexD•• defines
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another spectral sequence converging to H∗(D••) with Es,t1
∼= Lt(Us : A)K-Fp

. By

virtue of Theorem 5.1, we see that Es,01
∼= L0(Us : A)K-Fp

and Es,t1 = 0 for t < 0.

Moreover we have an epimorphism

(η : 1) : L0(Us : A)K-Fp
= (Vs0 : A)/Im{(∂0 : 1) − (∂1 : 1)} −−−−→ (Us : A)S-Fp

,

which is induced by η, in the category of B-modules. Theorem 5.1 implies that
L0(Us : A)K-Fp

= (Us : A)K-Fp
is isomorphic to (Us : A)S-Fp

as a vector space

and hence (η : 1) is an isomorphism. Thus it follows that Es,02
∼= Ls(B : A)S-Fp

and Es,t2 = 0 for t < 0. We have an isomorphism of B-modules from H∗(D••) to
Ls(B : A)S-Fp

. This completes the proof. �

Remark 5.4. Theorem 5.1 is refined. In fact, Theorem 1.5 yields that the division
functor (H∗(K(Z/p, n)) : A)K-Fp

is isomorphic to UenA(en ⊗A∗) as a B-module.

6. Computation of the division functor (H∗(Y ) : H∗(X))K-Fp

Let A and B be unstable B-algebras. The fact described in Remark 4.7 motivates
us to compute the division functor (B : A)K-Fp

as an unstable B-algebra.

In order to describe the structure of the functor explicitly, we first define a
bracket 〈 , 〉 : {K(B ⊗A∗) ⊗A}⊗r ⊗A⊗r∗ → K(B ⊗A∗) by

〈α1 ⊗ x1 ⊗ · · · ⊗ αr ⊗ xr, a1∗ ⊗ · · · ⊗ ar∗〉 = ±α1〈x1, a1∗〉 · · ·αr〈xr, ar∗〉.

Here A∗ is the dual space to A and 〈 , 〉 : A⊗A∗ → Fp denotes the usual pairing.
Let 1K and 1B are units of K(B) and B respectively. The counit of A∗ is

denoted by 1A∗
. We use the usual notation P I for βε1P s1 · · ·βεkP sk , where I =

(ε1, s1, ..., εk, sk).

Theorem 6.1. Suppose that A is of finite type. Let A is the ideal of the unstable
B-algebra K(B ⊗A∗) generated by the elements 1K − 1B ⊗ 1A∗

and

〈δ(P I1)(y1⊗xi1)⊗x
i1 ⊗· · ·⊗δ(P Ir )(yr⊗xir )⊗xir ,∆(r−1)x〉−(P I1y1 · · ·P

Iryr)⊗x,

where ∆(r−1) is the r-fold iterated coproduct on the dual algebra A∗, {x
i} and {xi}

denote a basis of A and its dual basis, respectively. Then Lannes’ division functor
(B : A)K-Fp

is isomorphic to K(B ⊗A∗)/A as an unstable B-algebra.

Proof. Let us consider the standard simplicial resolution of B:

· · · // K(K(B))
d0−d1// K(B)

ε // B // 0.

By a straightforward calculation, we can get explicit forms of (d0 : 1) and (d1 : 1)
as follows:

(d0 : 1)(1K ⊗ 1) = 1K, (d1 : 1)(1K ⊗ 1A∗
) = 1B ⊗ 1A∗

(d0 : 1)(1K ⊗ x∗) = 0, (d1 : 1)(1K ⊗ x∗) = 1B ⊗ x∗ for x∗ 6= 1

(d0 : 1)((P I1y1 ·K · · ·K P
Iryr) ⊗ x)

= 〈δ(P I1)(y1 ⊗ xi1 ) ⊗ xi1 ⊗ · · · ⊗ δ(P Ir )(yr ⊗ xir ) ⊗ xir ,∆(r−1)x〉,

(d1 : 1)((P I1y1 ·K · · ·K P
Iryr) ⊗ x) = (P I1y1 · · ·P

Iryr) ⊗ x,

where ·K denotes the product on K(B). The division functor (B : A)K-Fp
is realized

as the quotient algebra K(B ⊗A∗)/Im{(d0 : 1)− (d1 : 1)}. In fact, the existence of
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degeneracy operator s0 : K(B) → KK(B) tells us that A′ = Im{(d0 : 1) − (d1 : 1)}
is an ideal. We see that the algebra K((K(B) ⊗ A∗) is generated by elements
q1 · · · qr ⊗ x∗ for qi ∈ K(B) and 1K ⊗ x∗. Moreover it is readily seen that the
elements 1B ⊗ x∗ for x∗ 6= 1 belong to A. Thus we have A′ = A. �

The following proposition states one of important properties of the division func-
tor ( : )K-Fp

.

Proposition 6.2. Let A and B be unstable algebras over the usual Steenrod algebra
A. Then the division functor (B : A)K-Fp

is generated, as an algebra, by the

elements of the form y⊗ x∗ such that y is indecomposable and x∗ ∈ A∗. Moreover,
the division functor is an unstable A-algebra.

Proof. We use the same notation as in Theorem 6.1. The second assertion follows
from Theorem 1.5.

Let {xi(N)} and {xi(N)} be a basis of AN and its dual basis of A∗N , where x1(0)

denotes the unit 1A of A. We write {xi} = ∪N{xi(N)} and {xi} = ∪N{xi(N)}. Let
QB be the vector space of indecomposable elements and S(QB ⊗ A∗) denote the
symmetric algebra generated by the vector space QB ⊗ A∗. Consider the natural
map η : S(QB ⊗ A∗) → (B : A)K-Fp

. In order to complete the proof, it suffices to

show that the map η is surjective. Recall from Theorem 6.1 the formula (6.1):

〈δ(P I1)(y1⊗xi1)⊗x
i1 ⊗· · ·⊗δ(P Ir )(yr⊗xir )⊗xir ,∆(r−1)x〉−(P I1y1 · · ·P

Iryr)⊗x.

This enables us to conclude that an element y ⊗ xi for y ∈ B is in the image of
η. We have to prove that βεP s(y ⊗ xj) with ε + s > 0 is in Im η. Assume that
βεP t(y ⊗ xj) ∈ Im η for t and ε such that ε + t < M . Consider the element
βεP s(y ⊗ xj) with ε+ s = M . Then by applying (6.1) again, we see that

(βεP sy) ⊗ xj

= 〈δ(βεP s)(y ⊗ xi) ⊗ xi, xj〉

= 〈
∑

ε0+ε1=ε,s0+s1=s

ε1+s1>0

±βε0P s0(y ⊗ xi) ⊗ βε1P s1xi, xj〉 + 〈βεP s(y ⊗ xi) ⊗ xi, xj〉.

It turns out that the element 〈βεP s(y⊗xi)⊗x
i, xj〉 = βεP s(y⊗xj) is in the image

of η. We have the result. �

Theorem 6.3. Let X be an n− 1-dimensional finite simplicial set. Then the edge
homomorphism

(H∗(K(Z/p, n)) : H∗(X))K-Fp
→ H∗(F(X,K(Z/p, n)))

is an isomorphism.

Proof. Consider the spectral sequence {Er, dr} in Theorem 1.4 converging to the
cohomology H∗(F(X,K(Z/p, n))). Theorem 5.1 yields that Es,∗r = 0 for s < 0. It

is readily seen that E0,∗
∞

∼= E0,∗
2

∼= (H∗(K(Z/p, n)) : H∗(X))K-Fp
and Es,∗∞ = 0 if

s < 0. We have the result. �
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Assume that X = S1 and H∗(Y ; Fp) is a polynomial algebra. Let F be the the
homotopy fibre square

F(S1, Y ) //

ev∗

��

Y

∆

��
Y

∆
// Y × Y,

where ∆ is the diagonal map. Then the mod p cohomology algebra of the free loop
space LY = F(S1, Y ) can be determined explicitly by using the Eilenberg-Moore
spectral sequence (EMSS) {Er(Y ), dr(Y )} associated with F (see [18, Remarks 3.4,
3.5], [20, Theorem 1.6]). To be exact, if H∗(Y ; Fp) = Fp[y1, .., yl], as an H∗(Y ; Fp)-
algebra, then

H∗(LY ; Fp) ∼= Fp[y1, .., yl] ⊗ Λ(ȳ1, ȳ2, .., ȳl) if p 6= 2,

where deg ȳi = deg yi − 1. In the case p = 2, we see that

H∗(LY ; F2) ∼= F2[y1, .., yl] ⊗ F2[ȳ1, ȳ2, .., ȳl]
/
(ȳ2
i + DSqdeg yi−1yi; i = 1, 2, .., l)

as an H∗(Y ; F2)-algebra, for which D is the derivation defined by D(yi) = ȳi (see
also [5] for the algebra structure of H∗(LY ; F2) ).

Since the derivation D is compatible with the Steenrod operations ([18, Remark
3.5]), we can determine explicitly the A-algebra structure of H∗(LY ; Fp) from that
of the polynomial algebra H∗(Y ; Fp) (see, for example, [18, Example 3.6]). The fol-

lowing theorem asserts that the A-algebra structure of H∗(LY ; Fp) is also expressed
via the Lannes’ division functor.

Theorem 6.4. Let Y be a simply-connected space whose mod p cohomology is a
polynomial algebra. Then the edge homomorphism

edge(Y :S1) : (H∗(Y ) : H∗(S1))K-Fp
→ H∗(LY )

is an isomorphism.

Before proving Theorem 6.4, we consider some important relation which appears
in the division functor (H∗(Y ) : H∗(S1))K-Fp

.

Lemma 6.5. Let t∗ be the base of H∗(S
1) which is defined from a base of H∗(S

1; Fp)
via the inclusion H∗(S

1; Fp) → H∗(S
1).

(i) The algebra (H∗(Y ) : H∗(S1))K-Fp
is generated by the element yi ⊗ t∗ and

yi ⊗ 1.

(ii) For the case p = 2, we have (y ⊗ t∗)
2 = D̃Sqdeg y−1(y ⊗ 1), where D̃ is the

derivation defined by D̃(y ⊗ 1) = y ⊗ t∗ for any y.

Proof. Part (i) follows from Proposition 6.2.
In the case p = 2, it follows from the formula (6.1) that (y⊗ t∗)

2 = Sqdeg y−1(y⊗
t∗) = (Sqdeg y−1y)⊗ t∗. Since t∗ is primitive, we see that, for any elements y1, .., yr
in H∗(Y ),

(y1 · · · yr)⊗t∗ = (y1⊗t∗)(y2⊗1) · · · (yr⊗1)+· · ·+(y1⊗1)(y2⊗1) · · · (yr−1⊗1)(yr⊗t∗).

in (H∗(Y ) : H∗(S1))K-Fp
. This completes the proof of (ii). �
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Proof of Theorem 6.4. We fix an generator yi of H∗(Y : Fp). Put ni = deg yi. Let
f : Y → Kni

= K(Z/p, ni) be a representative of the element yi. Then we see that
there exists an element s−1ιni

such that F(1, f)∗(s−1ιni
) = ȳi. This follows from

the naturality of the EMSS {Er(Y ), dr(Y )}. Let t∗ be the same base ofH∗(S
1) as in

Lemma 6.5. Theorem 6.3 allows us to deduce that edge(Kni
:S1)(eni

⊗t∗) = αis
−1ιni

for some non-zero element αi ∈ Fp. By naturality of the edge homomorphism, we
have a commutative diagram

(H∗(Kni
) : H∗(S1))K-Fp

edge(Kni
:S1)

//

(f∗:1)
��

H∗(LKni
)

F(1,f)∗

��
(H∗(Y ) : H∗(S1))K-Fp edge(Y :S1)

// H∗(LY ).

It is readily seen that edge(Y :S1)(yi ⊗ t∗) = αiȳi. Proposition 4.6 enables us to

deduce that edge(Y :S1)(yi ⊗ 1) = yi. We define an algebra map ϕ from H∗(LY ) to

(H∗(Y ) : H∗(S1)) by ϕ(yi) = yi⊗1 and ϕ(ȳi) = (αi)
−1yi⊗t∗. The well-definedness

for p = 2 follows from that of the map edge(Y :S1) and Lemma 6.5(ii). By virtue

of Lemma 6.5(i), we can conclude that ϕ is the inverse of the edge homomorphism
edge(Y :S1). �

Next we look at the edge homomorphism in the case where X is a Riemann
surface Σg of genus g and the target Y is the classifying space BG of a simply-
connected Lie group G. Using generators α1, β1, ..., αg, βg of π1(Σg), we can write

Σg = ∨2g
l=1S

1 ∪α D
2, where α = [α1, β1] · · · [α1, βg]. Let {Er, dr} be the EMSS

obtained from the cofibre square

Σg D2
joo

∨2g
l=1S

1

i

OO

S1
α

oo

ι

OO

converging to H∗(F(Σg , BG)) (see [21, Theorem 2.1]). Assume that the cohomol-
ogy H∗(BG; Fp) is isomorphic to a polynomial algebra Fp[ci] generated by the ele-
ments with even degree, equivalently the integral cohomology of G is p-torsion free.
Then the calculation of the integral cohomology of F(Σg , BG) due to Atiyah and
Bott in [2, Proposition 2.10] allows us to deduce that the EMSS {Er, dr} collapses
at the E2-term. Hence we have

E∞ ∼= Fp[ci] ⊗

2g⊗

l=1

Λ(xil) ⊗ Γ[s−1xi]

as a bigraded algebra, where bideg ci = (0, deg ci), bideg xil = (0, deg ci − 1)
and bideg γt(s

−1xi) = (−t, t(deg ci − 1)) (for more details, see [21, Remark 3.6]).
Moreover it follows that, as an H∗(F(∨2gS1, BG))-module,

H∗(F(Σg , BG)) ∼= H∗(F(∨2gS1, BG)) ⊗ Γ[s−1xi].

Here the H∗(F(∨2gS1, BG); Fp)-module structure is defined using the map F(i, 1)∗.

We observe that H∗(F(∨2gS1, BG)) ∼= Fp[ci] ⊗
⊗2g

l=1 Λ(xil) (see [21, Proposition
3.1]).
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Let F ∗H∗ = {F iH∗}i≤0 be the filtration of H∗(F(Σg , BG)) which is brought
from the EMSS {Er, dr}. Let SA be the subalgebra generated byH∗(F(∨2gS1, BG))
and elements s−1xi. It follows from the bigraded algebra structure of E∞ that SA
is a submodule of F pH∗. Moreover the A-algebra structure of the EMSS tells us
that SA is a sub A-algebra of H∗(F(Σg , BG)).

As is presumed from the integral cohomology calculation of F(Σg , BSU(2)) due
to Masbaum [24], it seems very difficult to determine the whole algebra structure
of H∗(F(Σg , BG)). Fortunately, we can determine the A-algebra structure of SA
explicitly using the edge homomorphism edge(BG:Σg) subject to exact knowledge of

A-action on H∗(BG; Fp).

Theorem 6.6. Assume that the integral cohomology of G is p-torsion free. Then
the edge homomorphism

edge(BG:Σg) : (H∗(BG) : H∗(Σg))K-Fp
→ H∗(F(Σg , BG))

factors through the sub A-algebra SA of H∗(F(Σg , BG)). Moreover the map into
SA is an isomorphism.

Proof. Let fj : BG → Kj = K(Z/p, deg cj) be a representative of the element cj .
We consider the following commutative diagram

(H∗(Kj) : H∗(Σg))K-Fp

edge(Kj :Σg)

∼=
//

(f∗
j :1)

��

H∗(F(Σg ,Kj))

F(1,fj)
∗

��
(H∗(BG) : H∗(Σg))K-Fp edge(BG:Σg)

// H∗(F(Σg , BG))

(H∗(BG) : H∗(∨2gS1))K-Fp edge(BG:∨2g S1)

∼= //

(1:i∗)

OO

H∗(F(∨2gS1, BG)).

F(i,1)∗
OO

Let {tk}1≤j≤2g and {s2} be bases of H1(Σg) and H2(Σg), respectively. The proof of
Theorem 6.4 does work well to verify that the edge homomorphism edge(BG:∨2gS1)

is an isomorphism such that edge(BG:∨2gS1)(ci ⊗ tk) = αikxik for some non-zero

element αik ∈ Fp. Hence we have edge(BG:Σg)(ci ⊗ tk) = αikxik . Theorem 6.3

implies that the map edge(BG:Σg) sends ci⊗ s2 to αis
−1xi with a non-zero element

αi ∈ Fp. By virtue of Proposition 6.2, we see that the algebra (H∗(Y ) : H∗(Σg))K-Fp

is generated by the elements ci⊗ tk, ci⊗ s2 and ci⊗ 1. It follows from the bigraded
algebra structure of the E∞-term that, as an H∗(F(∨2gS1, BG))-module,

SA ∼= H∗(F(∨2gS1, BG)) ⊗ Fp[s
−1xi]/

(
(s−1xi)

p
)
.

We define an H∗(F(∨2gS1, BG))-module map q : SA→ (H∗(Y ) : H∗(Σg))K-Fp
by

q(xik) = α−1
ik ci ⊗ tk and q((s−1xj)

n) = (α−1
j cj ⊗ s2)

n for n < p. It is immediate

that q is the inverse of the edge homomorphism as an H∗(F(∨2gS1, BG))-module
map. In fact, the edge homomorphism is a morphism of algebras over A. Thus we
have the result. �

We conclude the paper with an example concerning calculations of the Steenrod
operations on the cohomology H∗(F(Σg , BG); Fp).
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Example 6.7. We choose a base {1, t
(l)∗
i , t

(m)∗
i , s∗2}1≤i≤g for the integral cohomol-

ogy H∗(Σg ; Z) so that t
(l)∗
i t

(m)∗
j = δijs

∗
2 and t

(l)∗
i

2
= t

(m)∗
i

2
= 0. Then, in the

cohomology H∗(F(Σg , BSU(2)); F3),

(c2 ⊗ s2)
3 = P 1(c2 ⊗ s2) =

∑

i

(c2 ⊗ t
(l)
i ) · (c2 ⊗ t

(m)
i ) + 2(c2 ⊗ s2)(c2 ⊗ 1).

Here {1, t
(l)
i , t

(m)
i , s2} denotes the dual basis for H∗(Σg) and c2 ∈ H4(BSU(2)) is

the mod 3 reduction of the 2nd Chern class. In fact, by using (6.1), we see that

0 = 〈δ(P 1)(c2 ⊗ xi) ⊗ xi, s2〉 − (P 1c2) ⊗ s2 = P 1(c2 ⊗ s2) − c22 ⊗ s2

in (H∗(BSU(2)) : H∗(Σg))K-F3
, where {xi} = {1, t

(l)
i , t

(m)
i , s2}. Moreover it follows

that

c22 ⊗ s2 = 〈c2 ⊗ xi1 ⊗ xi1 ⊗ c2 ⊗ xi2 ⊗ xi2 ,∆s2〉

= 〈c2 ⊗ xi1 ⊗ xi1 ⊗ c2 ⊗ xi2 ⊗ xi2 ,

s2 ⊗ 1 + 1 ⊗ s2 −
∑

i

t
(l)
i ⊗ t

(m)
i +

∑

i

t
(m)
i ⊗ t

(l)
i 〉

= (c2 ⊗ s2) · (c2 ⊗ 1) + (c2 ⊗ 1) · (c2 ⊗ s2)

−
∑

i

(c2 ⊗ t
(l)
i ) · (c2 ⊗ t

(m)
i ) +

∑

i

(c2 ⊗ t
(m)
i ) · (c2 ⊗ t

(l)
i ).

Thus we have the above formula.

Remark 6.8. We refer the reader to [1] for remarkable properties which are reliable
in explicitly computing Lannes’ T -functor.

Acknowledgement. The authors would like to thank the referee for comments which
helped them to revise a previous version of this paper.

7. Appendix

As mentioned in Introduction, this section is devoted to considering the Steenrod
operations in the spectral sequence arising from a simplicial E-algebra. We assume
that the underlying field is Fp or Fp throughout this section.

Let A• = {(A∗i , ∂A)} be a simplicial E-algebra. We put A−i = Ai and define
the total complex Total(A•) by Total(A•)n = ⊕s+t=nA

s,t. Let {Er, dr} be the
left-half plane spectral sequence associated with the filtration F defined by F i,n =
⊕s+t=n,s≥iA

s,t. Put F sH = Im{H(ι) : H(F sTotal(A•)) → H(Total(A•))}, where
ι : F sTotal(A•) → Total(A•) is the natural inclusion. Then {F ∗H} is a strongly
convergent decreasing filtration ofH(Total(A•)) (see [25, Chapter 3]). Observe that
Es,t∞

∼= F sHs+t/F s+1Hs+t as a module. Thus, by definition, the spectral sequence
converges strongly to H∗(Total(A•)). Recall that

Es,tr = Zs,tr /(Zs+1,t−1
r−1 +Bs,tr−1),

where Zs,tr = F s,s+t ∩ d−1(F s+r,s+t+1) and Bs,tr−1 = F s,s+t ∩ dF s−r+1,s+t−1. As

is known, there exists an isomorphism ρ : Es,t2
∼= Hs

(
Ht(A, ∂),

∑
(−1)iH(di)

)
=:

HIIHI(A) which sends the element [zs⊕zs+1⊕· · ·⊕z0] of E2 to [[zs]∂ ], where [zs]∂
denotes the class in H t(As, ∂) represented by zs. Since H∗(A, ∂) is an unstable B-
algebra and

∑
(−1)iH(di) is a B-module map, we can define the Steenrod operation

βεP iE2
on HIIHI(A) by βεP iE2

[[zs]∂ ] = (−1)εs[βεP i[zs]∂ ].
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Our main theorem in this section is stated as follows.

Theorem 7.1. In the spectral sequence {Er, dr} constructed above, each stage
(Er, dr) possesses a differential bigraded algebra structure and an unstable mod-
ule structure over the big Steenrod algebra B for each r such that:
(1) βεP idr = (−1)εdrβ

εP i,

(2) for any operator βεP i ∈ B, βεP i : Es,tr → E
s,t+2i(p−1)+ε
r ,

(3) the Cartan formula holds and

(4) for r = 2, the operation βεP i : Es,t2 → E
s,t+2i(p−1)+ε
2 coincides with βεP iE2

up

to the isomorphism ρ : E∗,∗2
∼= HIIHI(A).

Suppose further that there exists an E-algebra map η from A∗0 to an E-algebra

(B, ∂) such that the composition Total(A•)
π
→ A0

η
→ B∗ is a morphism of differen-

tial graded module and a quasi-isomorphism, where π denotes the natural projection.
Then F sH(B, ∂) := H(η ◦ π)

(
F sH) is an unstable B-submodule of H(B, ∂) and,

as a bigraded algebra and an unstable B-module, E∗,∗∞
∼= F ∗H(B, ∂)/F ∗+1H(B, ∂).

In consequence, the spectral sequence {Er, dr} converges strongly to H(B, ∂) as an
algebra and an unstable B-module.

Suppose that a given spectral sequence {Er, dr} admits the differential bigraded
algebra structure and an unstable module structure over the big Steenrod algebra
B (resp. the usual Steenrod algebra A) for which the conditions (1), (2), (3) and
(4) in Theorem 7.1 are satisfied. Then we call such the structure on {Er, dr} a well
compatible DGA-B-module (resp. DGA-A-module ) structure.

The rest of this section is devoted to proving Theorem 7.1.
Let NA• be the normalized complex of A•; that is, NA• = ∩i6=0Ker di with

the differential d0. Since di is a morphism of E-algebras for any i, it follows that

NAn is a sub E-algebra of An for any n. We define the spectral sequence {Ẽr, d̃r}
converging toH∗(Total(NA)) by the same way as in the construction of the spectral
sequence {Er, dr}. It is immediate that the inclusion i : NA→ A gives rise to the

morphism {ir} : {Ẽr, d̃r} → {Er, dr} of the spectral sequences.

Lemma 7.2. The morphism ir : Ẽr → Er is an isomorphism of differential graded
modules for any r ≥ 2.

Proof. We first observe that the degeneracy and face operators onA• are compatible

with the differential ∂A. The inclusion i : NA→ A defines the morphism i1 : Ẽ1 =

H(NA, ∂) → H(A, ∂) = Ẽ1. Since the inclusion i : NA → A is a chain homotopy
equivalence for which the chain homotopy is constructed from degeneracy and face
maps, it follows that i1 induces an isomorphism

i2 = H(i1) : Ẽ2 = H
(
H(NA, ∂), H(d0)

) ∼=
→ H

(
H(A, ∂),

∑
(−1)iH(di)

)
= E2

and hence ir is an isomorphism for any r ≥ 2. �

Remark 7.3. By construction, the homomorphisms i1 and i2 are a B-algebra map
and a B-module map, respectively.

In order to prove Theorem 7.1, we define a B-module structure on the spectral

sequence {Ẽr, d̃r}. Moreover we give an algebra structure on {Er, dr} and will
prove that the Cartan formula holds with respect to the Steenrod operations on

{Er, dr} which comes from a B-module structure on {Ẽr, d̃r} via the isomorphism
{ir} of the spectral sequences.
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Let βεP i be the chain level operation onNA• (see [27, Section 3]). We here define
operation βεP iSS : Total(NA)n → Total(NA)n+2i(p−1)+ε for any i and ε = 0, 1 by
βεP iSS = ⊕s(−1)εsβεP i.

Proposition 7.4. The operation βεP iSS gives a well-defined operation βεP i :

Ẽs,tr → Ẽ
s,t+2i(p−1)+ε
r such that βεP id̃r = (−1)εd̃rβ

εP i.

The chain level operation is not homomorphism so that we have to verify the
well-definedness of the operators very carefully.

We prepare a lemma to prove Proposition 7.4. Let ∂1 and ∂2 be the vertical
differential and the horizontal differential d0 on Total(NA), respectively.

Lemma 7.5. For any element ui−1 ∈ NA(i−1),n−(i−1) and ui ∈ NAi,n−i, if
∂2ui−1 + ∂1ui = 0, then ∂2β

εP iui−1 + (−1)ε∂1β
εP iui = 0.

Proof. We observe that ∂1 is the differential (−1)i∂NAi
of NAi and ∂2 is the mor-

phism of E-algebras. Since ∂1ui is a ∂1-cycle, it follows from the formula (10) in
the proof of [27, Theorem 3.1] that βεP i(−∂1ui) = −βεP i∂1ui. This enables us to
deduce that βεP i∂2ui+1 = −βεP i∂1ui from ∂2ui+1 + ∂1ui = 0. By virtue of [27,
Theorem 3.1 (i)], we have ∂2β

εP iui+1 = −(−1)ε∂1β
εP iui. �

Proof of Proposition 7.4. Lemma 7.5 implies that βεP iSS(Zs,tr ) is contained in

Z
s,2i(p−1)+ε
r for any r. Therefore, in order to verify the well-definedness for the

operator on E∗,∗r , it suffices to show that βεP iSS(Bs,∗r−1) ⊂ Zs+1,∗
r−1 +Bs,∗r−1.

Put P I = βεP i. Let ũ be the element (∂1 +∂2)(us−r+1⊕· · ·⊕us−1⊕us⊕· · ·u0)

of Bs,tr−1. By definition, we see that ∂1us−r+1 = 0 and ∂2ui−1 + ∂1ui = 0 for
s− r + 2 ≤ i ≤ s− 1. Thus it follows that

ũ = (∂2us−1 + ∂1us) ⊕ (∂2us + ∂1us+1) ⊕ · · · ⊕ (∂2u−1 + ∂1u0)

and hence

P I ũ = (−1)εsP I(∂2us−1+∂1us)⊕(−1)ε(s+1)P I(∂2us+∂1us+1)⊕· · ·⊕P I(∂2u−1+∂1u0).

We write u = us−r+1 ⊕ · · · ⊕ us−1 ⊕ us ⊕ · · · ⊕ u0. Lemma 7.5 yields that

(∂1 + ∂2)P
Iu = 0 ⊕ · · · 0 ⊕ ((−1)ε(s−1)∂2P

Ius−1 + (−1)εs∂1P
Ius)

⊕((−1)εs∂2P
Ius + (−1)ε(s+1)∂1P

Ius+1) ⊕ · · · .

Then we have

P I ũ− (−1)ε(∂1 + ∂2)(P
Iu)

= (−1)εs{P I(∂2us−1 + ∂1us) − (P I∂2us−1 + P I∂1us)}⊕
(−1)ε(s−1){P I(∂2us + ∂1us+1) − (P I∂2us + P I∂1us+1)} ⊕ · · · .

By direct computation, it is readily seen that that, for j ≥ s,

(∂1 + ∂2){P
I(∂2uj + ∂1uj+1) − (P I∂2uj + P I∂1uj+1)}
= ∂1P

I∂2uj + P I∂2∂1uj+1 − ∂1P
I∂2uj − P I∂2∂1uj+1 = 0.

Thus it follows that (−1)ε(s−1){P I(∂2us + ∂1us+1) − (P I∂2us + P I∂1us+1)} ⊕ · · ·

is in Zs+1,∗
r−1 . The elements ∂2us−1 + ∂1us and ∂2us−1 are ∂1-cycles. In fact

∂1∂2us−1 = −∂2∂1us−1 = ∂2∂2us−2 = 0. Since the operator P I is a homomor-
phism on H−s(NA, ∂1), we see that [P I(∂2us−1 + ∂1us)] = P I [∂2us−1 + ∂1us] =
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P I [∂2us−1]+P I [∂1us] = [P I(∂2us−1)+P I(∂2us)] in H−s(NA, ∂1) and hence there
exists an element b ∈ NA−s such that

(∂1 + ∂2)(b) − ∂2b = P I(∂2us−1 + ∂1us) − (P I(∂2us−1) + P I(∂2us)).

Moreover we have

−(∂1 + ∂2)(∂2b) = (∂1 + ∂2)(∂1b)

= (∂1 + ∂2)(P
I (∂2us−1 + ∂1us) − P I(∂2us−1) − P I(∂2us))

= ∂1P
I∂2us−1 + ∂2P

I∂1us − ∂1P
I∂2us−1 − ∂2P

I∂1us = 0.

This enables us to conclude that ∂2b is in Zs+1,∗
r−1 . Therefore it follows that the

element P I ũ − (−1)ε(∂1 + ∂2)(P
Iu) belongs to Bs,∗r−1 + Zs+1,∗

r−1 and hence P I ũ ∈

Bs,∗r−1 + Zs+1,∗
r−1 .

The same computation as above is applicable to verify the formula βεP id̃r =

(−1)εd̃rβ
εP i. �

Proof of Theorem 7.1. By virtue of Proposition 7.4, we see that the isomorphism

ir : Ẽr → Er gives rise to the Steenrod operations which satisfy the conditions (1)

and (2). The isomorphism ρ ◦ i2 : Ẽs,∗2

∼=
→ Es,∗2

∼=
→ Hs

IIHI(A) sends an element of
the form [zs ⊕ · · · ⊕ z0] to [zs]. Therefore the condition (4) is also satisfied.

The E-algebra structure of As and the shuffle product define an E-algebra struc-
ture of Total(A•) (see [12, 2.2 Lemma]). In particular, the product m of Total(A•)
is given by

m(zs⊗ zs′) =
∑

(ν,µ)

(−s,−s′)-shuffles

θ(e2 ⊗ sµzs⊗ sνzs′) =
∑

(ν,µ)

(−s,−s′)-shuffles

ms+s′ (sµzs⊗ sνzs′),

where θ is the E-algebra structure on As+s
′

and e2 is an element of E(2)0 which

induces the product ms+s′ on As+s
′

. It is immediate that m(F sTotal(A•) ⊗

F s
′

Total(A•)) is a submodule of F s+s
′

Total(A•). Therefore the spectral sequence
{Er, dr} possesses the differential algebra structure induced by the product on
Total(A•) and converges to H(Total(A•)) as an algebra.

In order to obtain the Cartan formula, it suffices to prove that the formula holds
in the E2-term because the Er-term inherits the algebra structure and the Steenrod
operations from those of the Er−1-term. On the E2-term, we have

βεP lm(zs ⊗ zs′) =
∑

(ν,µ)

(−s,−s′)-shuffles

(−1)ε(s+s
′)βεP lms+s′(sµzs ⊗ sνzs′)

for any zs ∈ i∗(H
q(NAs)) and zs′ ∈ i∗(H

q′(NAs′ )). Since the Cartan formula
holds in H(As+s′) and degeneracy maps are E-algebra maps, it follows that the
right hand side is equal to

∑
(ν,µ)

(−s,−s′)-shuffles

ms+s′

(∑
i+j=l(−1)εssµβ

εP i(zs) ⊗ (−1)εs
′

sνP
j(zs′)+

(−1)qε(−1)εssµP
i(zs) ⊗ (−1)εs

′

sνβ
εP j(zs′)

)
.

Thus we can get the Cartan formula on the E2-term.
We have to prove the latter half of the assertion in Theorem 7.1. The isomor-

phism H(η ◦ π) : F sH
∼=
→ F sH(B, ∂) maps an element of the form [zs ⊕ · · · ⊕ z0]
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to [ηz0]. Lemma 7.5 implies that the element [(−1)εsβεP izs ⊕ · · · ⊕ βεP iz0] is in
F sH . Since η is an E-algebra map, it follows that

H(η ◦ π)([(−1)εsβεP izs ⊕ · · ·βεP iz0]) = [ηβεP iz0] = βεP i[ηz0].

It is readily seen that the isomorphism E∗,∗∞
∼= F ∗H(B, ∂)/F ∗+1H(B, ∂) is com-

patible with the Steenrod operations and respects the algebra structure. We have
the result. �

Remark 7.6. When defining ’vertical’ Steenrod operations on the spectral sequence,
one may use the usual E-algebra structure of Total(A•) which is induced by the
shuffle product ([12, 2.2 Lemma]). However the attempt fails because the E-algebra
structure does not preserve the filtration of Total(NA).

As seen in the proof of Proposition 7.4, we define directly operations in the
spectral sequence without considering those in the filtration F ∗H of Total(NA).

Unfortunately, the formula βεP iSS(Bs,∗r−1) ⊂ Zs+1,∗
r−1 +Bs,∗r−1 in the proof of Proposi-

tion 7.4 means that the operations we define are not inherited to the filtration. Still
the proof of Theorem 7.1 allows one to conclude that the spectral sequence arising
from a simplicial E-algebra A converges strongly to H(Total(A)) as an algebra.

We conclude the section with some applications of Theorem 7.1.
Recall the simplicial resolution E(V•) → E(W ) mentioned in Section 4. Then

the simplicial E-algebra E(V•)�C∗(X) gives the spectral sequence in Theorem 1.4.
Lemma 4.2 guarantees that the assumption in the second assertion of Theorem 7.1
is satisfied. Therefore Theorem 1.5 yields the following theorem.

Theorem 7.7. The mod p BPS spectral sequence {Er, dr} admits a well compatible
DGA-A-module structure. Moreover {Er, dr} converges strongly to H∗(F(X,Y ))
as an algebra and an unstable A-module.

One can also define the action of the Steenrod operations on the bar type
Eilenberg-Moore spectral sequence.

Theorem 7.8. Let X, Y and Z be connected simplicial sets of finite p-type and
assume that Z is simply connected. Let X → Z be a map and Y → Z a fibration.
Then there exists a spectral sequence {Er, dr} admitting a well compatible DGA-A-
module structure with

E∗,∗2
∼= TorH∗(Z;Fp)(H

∗(X ; Fp), H
∗(Y ; Fp)).

Moreover {Er, dr} converges strongly to H∗(X ×Z Y ; Fp) as an algebra and an
unstable A-module

Proof. Let Cobar•(X,Z, Y ) be the cobar construction which is a cosimplicial sim-
plicial set (see [29, 2.3]). Observe that the inclusion ι : X ×Z Y → X × Y induces
a map X ×Z Y → Cobar•(X,Z, Y ) of cosimplicial simplicial sets. The Eilenberg-
Moore theorem asserts that the composition map

C∗(Cobar•(X,Z, Y ); Fp)
π
→ C∗(Cobar0(X,Z, Y ); Fp) = C∗(X × Y ; Fp)

ι
→ C∗(X ×Z Y ; Fp)

is a quasi-isomorphism, where π is the projection (see [31, Theorem 3.2]). Thus
Theorem 7.1 allows us to obtain the result. Observe that the torsion product
TorH∗(Z;Fp)(H

∗(X ; Fp), H
∗(Y ; Fp)) possesses the A-module structure. This implies

that {Er, dr} admits a well compatible DGA-A-module structure and converges to
H∗(X ×Z Y ; Fp) as an unstable A-module. �
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By applying Theorem 7.1 to the E∞-model for a mapping space due to Chataur
and Thomas [12], we have the following theorems (see Remark 7.6).

Theorem 7.9. Let Y be connected space of Fp-finite type and X• a simplicial finite
set. If the cosimplicial space F(X•, Y ) is convergent, then there exists a spectral
sequence {Er, dr} admitting a well compatible DGA-A-module structure with

E−s,∗1
∼= H(Y ; Fp)

⊗]Xs .

Moreover {Er, dr} converges strongly to H∗(F(|X•|, Y ); Fp) as an algebra.

Theorem 7.10. Let Y be a simply-connected space. Then there exists a spectral
sequence {Er, dr} admitting a well compatible DGA-A-module structure and con-
verging strongly to H∗(F(S1, Y ); Fp) as an algebra with

E−s,∗2
∼= HHs(H

∗(Y ; Fp)).

Here HHs(H
∗(Y ; Fp)) denotes the Hochschild homology of H∗(Y ; Fp).
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[11] D. Chataur, Formes difféntielles généralisées sur une opérade et modèles algébriques des
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