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Abstract

Let u be a holomorphic function in the unit ball B of C” and ¢ be a
univalent holomorphic self-map of B. We give some sufficient conditions for
u and ¢ that the weighted composition operator «C, is bounded or compact
on the Hardy spaces H*(B) and the weighted Bergman spaces A”(v.) (0<p
<oo, —1<@<0), This our result is a generalization of a theorem of B. D.
MacCluer and J. H. Shapiro[9] concerning the composition operator C,. And
we also give similar sufficient conditions for such operator to be metrically
bounded or metrically compact on the Privalov spaces N?(B) (1< p<oco) and
the weighted Bergman-Privalov spaces (AN)P(vq) 1<p<oo, —1< @< 0),

1 Introduction

Let #»>1 be a fixed integer. Let B=B, and S=0B denote the unit ball and the unit
sphere of the complex #-dimensional Euclidean space C”, respectively. Let v and o
denote the normalized Lebesgue measure on B and on S, respectively. For each @ €
(—1,0), weset ca=I"(n+a+1)/{(n+1)(a+1)} and dv.(z)=—c.l—|2»%dv(z) (zE B).
Note that vo(B)=1. Let H(B) denote the space of all holomorphic functions in B. For
each p € (0, ®©) and @ € (—1, o), the Hardy space H?(B) and the weighted Bergman
space AP(v.) are as usual defined by

H”(B)={f SH(B) |/l =sup, ﬁ lfrlpa’o<00},

A(vo)={fEH(B) : |Alsin= [ I/ Pdve< 0],

where f-(z)=f(»z) for » € (0, 1), 2&C" with »zE€ B. As in [17], the Privalov space N?
(B) (1<p<co) is defined by
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N¥(B)={/E H(B): |/15rwr=gup, [ llog(1-+|/:))7do < co}.
The Nevanlinna space N(B) is as usual defined :
NB)={/EHB): flvwr=gup, [[log1+1f,)ds<oo}.

For the sake of convenience, the symbol N'(B) as well as N(B) is used to denote the
Nevanlinna space. For each p € [1, ) and a € (—1, ), we define the weighted
Bergman-Privalov space (AN)*(va) by

(ANY () ={ FEH(B) : |/ Raspon= [ log(1+11 )} dva< o).

Let ST3R) denote the class of those nondecreasing convex functions x : R— [0, o)

which are twice differentiable. Moreover, we define STAR)={x&ST}R): limg o tt
=oo}. For ¢ € [—1, ) and x€STHR), we define | * |« as follows:

Su pfx(loglfr Ydo if a=—1

Flixe=
171 fx(log\ﬂ)dva if @>—1,

for fEH(B). If (¢ )— ? (t<R, 0<p<co), then | flxe=[/4wa for @ € (—1, o) and
11— = 178 If x()={log(1+e9}* (tER, 1<p<), then | f|re=|7|Fanrowu for a €
(—1, 0) and ||f ”x,—l—”f |%=z). For the sake of convenience, we define A”(v_1)=H"(B) (0

<p<oo) and (AN)?(v-1)=NP(B) (1<p< ).

If u€H(B) and ¢ is a holomorphic self-map of B, then # and ¢ induce a linear
operator #C, on H(B) by means of the equation «Cof=u * (fop). This uC, is called
the weighted composition operator induced by « and ¢. In the case ¥=1 in B, u(Cy is
the composition operator C,. In the present paper we study the operator uC, on the
above function spaces.

In 1986, B. D. MacCluer and J. H. Shapiro got the following result about the
boundedness and the compactness of C, on H?(B) and on A”(v.):

Theorem 1.1 ([9], B. D. MacCluer-J. H. Shapiro). Suppose that ¢ : B—B is a
univalent holomorphic map, and that the Fréchet devivative of ¢~ is bounded on ¢(B).
Then

(@) For each p € (0, ©) and a = (—1, ), C, is bounded on H*(B) and on A(va).

(b) For p € (0, ©) and a € (—1, ), C, is compact on H?(B) and on A"(ve) if and

only if
1—|2?
‘2“11—%’7—0

Recently, C, on N®(B;) have been studied by J. S. Choa and H. O. Kim [2, 3, 4].
And C, on (AN)!(v) (in the case #»=1) have been studied by J. Jarchow and J. Xiao [7,
18]. Following [4], we say that a linear operator T is metrically bounded on (AN)"(ve)
if there exists a positive constant L such that | TFllcamrwe < LI fllanewe for all f &
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(AN)*(va). And we say that T is metrically compact on (AN)*(v.) if T maps every
closed ball Bx={f € (AN)*(va) : |fcanrreo <R} (0< R <o) into a relatively compact
set in (AN)P(vq).

This paper is organized as follows. In Section 2, we enumerate 13 lemmas that will
be used afterward. In Section 3, we give some sufficient conditions for # and ¢ that
uCy is bounded or compact on H?(B) and on AP(v.). This result is a generalization of
Theorem 1.1. Finally, in Section 4 we also give similar sufficient conditions for «#C, to
be metrically bounded or metrically compact on N?(B) and on (AN)"(v.). As a
corollary of this, we obtain an analogous version of Theorem 1.1 with respect to N?
(B) and (AN)?(va).

2 Preliminaries
For each ¢ & [—1, o), we define the nonnegative decreasing function K, by

1
2%Ca//: p“‘%l——pﬁ"log%dp if a>—1,

1ogit if g=—1,

Ko(t)=

for all ¢+ € (0, 1]. It is obvious that K,(1)=0 and K.(#)>0 for all + € (0, 1). The
following lemma is easily verified ([1, Proposition 2.3]).

Lemma 2.1. (@) K.(£)<1—¢* #f %£t<1.

(b) For each a = (—1, <o),

hm Ka(t) — NCa .
i (1—tH*7%  2(a+1)(a+2)"

Lemma 2.2. Let —1<a<oo, 0<7r<1 and z=vB\{0}. Then it holds that

Ka(|z|)£log%+Ka(Jz7l).

Proof. See [1, pages 48-49]. L]
Lemma 2.3. Suppose —1<a<co, yST*R), 0<r <1 and fEH(B)\{0}. Then

/7 1z.a= x(log| 7(0))
oy [ 2 ol (AR 2o k(2D ),

where (Rf)(z)ZZ'?:lzj%(z) is the radial derivative of f.

Proof. In the case »=1, this lemma is just [10, Lemma 3.10]. If 0<»<1 and a=—1,
it is just [10, Lemma 3.7]. If 0<»<1 and —1< a< oo, it follows from [10, Lemma 3.
10] with a simple change of variables. U]
Lemma 2.4. (a) Let 1<p<o0 and —1<a<co. Every f& H(B)\{0} satisfies the following
inequalities :
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gl Ot at D) o [ Allog(+17D)) (@1~ 2P du(2)
+(0g(L+1/O))”

<[ AP amrewer

< B2 Tt ) X (10g(1+ )1~ |2F)d(2)

+ [ llog 1+ 74Dy do,

where A is the Laplacian with vespect to the Bergman metvic on B, ar=

3n—1
TG T and & ~max(0, @)

(b) Let 1<p<oo. Every f&H(B)\{0} satisfies the following inequalities :

2aLm) X ((10g(1+1/ D)) A%+ {log(1+ 7O

<||f %o 5)
< 0L [ R((log(1+ 1)) AZk+ [ (tog(1+ 113} do.

Proof. (a) is just [11, Theorem 1(a)]. By letting ¢ | —1 in (a), we obtain (b) (cf. [11, the
proof of Theorem 2]). ]

Considering the weighted Bergman spaces Af(v.) instead of the weighted
Bergman-Privalov spaces (AN)”(va), we have the following lemma of which proof is
essentially the same as that of Lemma 2.4.
Lemma 2.5. Let 0<p<oo and —1<a<oo. Every f€H(B)\{0} satisfies the following
inequalities :

ana [ BUAPNRA=12P)d(2)+ FO)]
<[ A e e

< b [ RISDA |2 dv()+ [ |APdo,
where

a ' (n+a+1)
_ 2" (n+a+1)I(a+2)
Ane=1 94, (n)
n

b.2°" " T'(n+a+1)
By = (n+a+DI'(a+1)

— bngiin) if a=—1.

if a>—1,
if a=—

if a>—1,

Let ¥ denote the gradient with respect to the Bergman metric on B ([16, p.27]).
Then as in [16, p.30], for f€ H(B) and z€ B,
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(N@P=5 2110 (TN~ (RA)P]

g%%a—w)i(wo(z)v

where (V)P =2} (2)P. We note that
(RADI<I2I(VA(2)] 2.1)
and
(AP = 251-=PINRE 22)
Moreover, we have by a simple computation
Alxllogl (2= # osl (2) TG 3

for fEH(B) and z€ B\Z(f), where Z(f)={weB: f(w)=0}.
Lemma 2.6. Let 1<p<oo and —1<a<oco. Suppose f<H(B) and z=B.
Then

n+ta+l
+lz )

10g(1‘|‘lf(2)|)$< %_ po " learye -

Proof. See [12, Lemma 1], [15, Proposition 3.3] and [17, p.233]. O
By a simple computation with some change of variables in the case —1<a <o, or
with Lemma 2.6 in the case a=—1, we can easily prove the following lemma.
Lemma 2.7. Suppose a=[—1, ), p<[1, ) and ¢ is a biholomorphic map of B onto
B. Then the composition operator Cp induced by ¢ is metrically bounded on (AN)*(ve) :

n+l+a
“ qufH(AN)P(ua)§<%i Zggg > ? “f“(AN)P(Vu)

for fFE(AN)(va).
Let ¢: B~ B be a univalent holomorphic map. For z& B, We define

aco-lg

where ¢'(z) is the derivative of ¢ at z, |¢(z)| denotes its norm as a linear

2

transformation on C” and J.(z) is the complex Jacobian of ¢ at z. We can easily see
the next lemma (see [5], p.171).
Lemma 2.8. Suppose that a univalent holomorphic map ¢ : B— B satisfies

sup [[(e™) (w)] <oo.
weg(B)

Then 2, is bounded in B.

Lemma 2.9. Let 1<p <o, Suppose that ¢ : B~ B is a univalent holomorphic map and
Ry 1s bounded in B. Then C, is metrically bounded on N®(B). Move precisely, there
exists a positive constant L depending only on n and ¢ such that for all f€ H(B)
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I Cof |Ze e < LI 3

Proof. Set a=¢(0) and ¥=g@q°p, where ¢, is the involution described in [14, p.25].
Then ¢ is a univalent holomorphic self-map of B and ¢(0)=0. First, we show that Cy
is metrically bounded on N?(B). Take f< H(B)\{0}. Define y(#)={log(1+e?)}?(+SR).
Since Q24(2) < 2,.(¢(2))24(z) for any 2& B and (24,0¢) *+ 2, is bounded in B, we have

M ESUE.Q;/;(Z) < oo,

Note that M is a positive constant depending only on ¢. It follows from the chain rule
that for any z& B

V(7o 1)<V ¥ (IP<MI(VF)e ¥)(2)IPTu(2) (2.4)
Since ¥(0)=0, Schwarz’s lemma gives
|9 (2)<|z] (2.5)

for any z& B. Using (2.1), Lemma 2.1(a), (2.4), (2.5), a change of variables, (2.2), (2.3) and
Lemma 2.4(b) one after another, we have

fB 1" (log|(fe ¢ (Z)l\ll(i(effw)(g)ﬁj2|2|21 2 ”logﬁdu(Z)

<o [ xlosl(re WL - ane)
< 22D f

% ]y Qo N - L@ an2)

=yt [ 2ol A AL ) av)
220 1)( +1)M g VA dv(w)
S e P D)o e s

22(71 l’n(n+1)M I‘f”
= 2anl"(n) NP B)- (2.6)

On the other hand, since lQg‘llio:glzoizlogltélogf? for all +&(0, %], it follows from

Lemma 2.3 that

Sy gl W@IEL e oo L an(a)

log?2
~ log3—log2

X fﬁx”(log!(ﬂ ¥)(2) )I’(};(fg)é)ﬁfﬁgmd 2= l’logﬂdu(z)

_2nlog2 gy e
“Toa3—logzl w)%tlmm- 2.7)
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By Lemma 2.6, we have

(7 ¥)gllom= [ l0g(1-+1(F> ¥)aD)do
< max {log(1+[f(w)D}?

weYLS)
32"201325%%)(1*IWD_””J[”%(B)- (2.8)
(2.7) and (2.8) show that
[y tosl(re WD EL I o viog Lau()
<y max (1=l o 09
Since ¥(0)=0, it follows from Lemma 2.6 that
{log(1+1(F> PO <[/ I s). (2.10)

By (2.6), (2.9), (2.10) and Lemma 2.3, we have

1/ ¢lRee < La|l f 5w s

where

2n-2 n

Ly 4anI (n) log3—1082 ey ls)

Hence C, is metrically bounded on N?(B). Since ¢, is a biholomorphic map of B onto
B, Lemma 2.7 implies that C,, is also metrically bounded on N?(B). It holds that C,

= (Cyo Cy,, because ¢=g¢,°¢y. Thus we conclude that C, is metrically bounded on N”
(B):

| Cof 2o < LI f e

for all f€ H(B) where

L) - ()

Note that L is a positive constant depending only on »# and ¢. ]
For each ¢ € (—1, 0) and y& STHR), we define the weighted Bergman-Orlicz space
Ax(Va) by

Ave)={fEH(B): |fllx,e<o}.
Lemma 2.10. It holds that

ANV ()= U Ax().

for any as(—1, ).
Proof. Tt is easily seen that
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(AN'(v)> U Ay(v).

Take fE(AN)(vq). By the subharmonicity of the function log(1+|f|) in B, we
have

lim ﬁ log(1-+1f+/) dve= sup ﬁ log(1+ |/, dve< f log(1+|f])dve < . @2.11)

On the other hand, Fatou's lemma gives
[rog(1+1Ddve= [ timlog(1-+1,)dve
B Bril
£1ir£1111nf_/;log(1+|f¢|)dua. (2.12)
By (2.11) and (2.12), we obtain

lrigrllj;log(l+Ifr|)dya=/;log(1+|f])dua<00.

It follows from [6, Chap. V, Lemma 1.4] and [6, Chap. V, Theorem 1.3] that the family
{log(1+|f+))}o<r<1 is uniformly integrable with respect to the measure v.. The de la
Vallée Poussin’s theorem ([13, Theorem 3.10]) therefore implies that

/; x(log(1+|/ l))dvazogggl A x(log(1+|/:) dva < oo

for some y&ST?*R). Thus f€ A,(ve.). This completes the proof. ]
Lemma 2.11. Let 1<p<co and —1<a<o. Suppose that ¢: B— B is a univalent
holomorphic map and 9, is bounded in B. Then C, is metrically bounded on (AN)P
(va). More precisely, there exists a positive constant Lo depending only on n, a and ¢
such that

| Cof |2 anseway < Lall £IFanyeva

for all fE(AN)®(ve). .

Proof. First we consider the case 1<p<co. Define x(¢)={log(1+¢?)}?(+=R). Take f&
H(B)\{0}. As in the proof of Lemma 2.9, we set a=¢(0) and ¢=@.°¢. Like (2.4) and
(2.5), we have

V(Fe DRP<MI(VH)e RPTRF,  |¥(2)]<|2| (2.13)

for all z&€B, where M =sup:zesQ4(z)<oo. By Lemma 2.1(b), there are a positive
constant de.,» depending only « and #, and 706(%, 1) such that

Ko(|2]) € dan(1—|22)2*? (2.14)
for all z&€ B\»B. By using (2.1)~(2.3), (2.13), (2.14) and Lemma 2.4(a), we have

N RO o R G
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< Zz(n_l)da,nM
x [ ol 7 TAIDE (1~ [y (o)

— o [ logl )R 1 — oy ()

- 22(n~1)da’,é(n+1)M /};X”(lOg‘f(w)D (ijaggvz) 2 (1—‘7,()'2)%{)/(1/0)

=22 g, (n+1)M 'é A{log(1+[7D}*)w)(A—|wl)*dv(w)

2(n—1)
<2 djé’l’zrl(f+1)M 1712 ame v, (2.15)

where Ane={a] (n+a+1)}/{2°7 (n+a+1)I"'(a+2)}.
On the other hand, by Lemma 2.2 we can easily see that for all z&7B\{0}

Kl <[ (g D[ K2} 1] K2

= caKa(JflL), (2.16)

where 7= IEVO and Ca:<10g%0){Ka(%)}—l+1. It follows from (2.16) and Lemma 2.3
that

[ 708> @IEL AL o 2

<C. [ 2 Gogl(re 9L a2 ey ae)

g2%Ca”(wa)h”f)AN)P(ua% (2.17)
Moreover, by Lemma 2.6, we have
1 + n+a+l .
KCof)rltmmns max (FHE " e awc .19
{log(1+|/(O)DY*<| A 12 amyo - (2.19)

It follows from (2.15), (2.17)~(2.19) and Lemma 2.3 that C, is metrically bounded on
(AN)Y(va) :

| Coflfamewar < Dall IR anseve

for any p<(1, o) and any f< H(B), where

2(n—1) n+a+l
= 2 da,n(%+1)M + Ca max_ {lj w } +1
2nAn,a weP(r1B) 1 7/0‘

Since Cpo=CyoCyp, it follows from Lemma 2.7 that

| Cof I amypwar < Lall £l amreva (2.20)

for any pE(1, c°) and any f< H(B), where
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_n (1t]e(0) )
L=n (Lol
“ 1—]¢(0)]
Note that L. is a positive constant depending only on %, ¢ and ¢.

Now we consider the case p=1. Take fE(AN)(ve). For any »<(0, 1) and any p
&(1, o), we have by (2.20)

[ 101+ 17Grp(DDYdve(2) < L [ (log(1+ 172D} dval2).

By taking the limit as p { 1 above, it holds that
[1og(1+1/(rp(e)dvale) < La [ log(1+1/(r)dve(2). (2.21)

By Lemma 2.10, the family {log(1+|//])}o<r<1 is uniformly integrable with respect to
the measure v,. Hence

lim ﬁ log(1+ /) dva= A log(1+ ) dve. (2.22)

On the other hand, Fatou’s lemma gives

Jjlog(1-+17(e(2)Ddvlz) <limint [ log(1+|7(re(2)])dval2). 2.29)
(2.21)~(2.23) show that

I Cof llcamriva < Lall Fllcanyicvar-

This completes the proof. U]
The next lemma is a characterization of the compactness of #C, on H?(B) and on
AP(v,) in terms of sequential convergence. Its proof, which we omit, is based on the
fact that bounded subsets of H?(B) (respectively AP(v,)) are normal families. (cf. [5,
Lemma 3.11])
Lemma 2.12. Let 0<p<oco and —1<a<oo, Suppose that u< H(B) and a holomorphic
self -map ¢ of B satisfy (uCop) (AP(va)) CA?(va). Then uCy is compact on AP(va) if and
only if for every bounded sequence {f;} in AP(va) which converges to 0 uniformly on
compact subsets of B, we have limj-«|uCof;l|arwa=0.
For the metrically compactness of #C, on N?(B) (respectively on (AN)?(v.)), an
analogous result of Lemma 2.12 holds:
Lemma 2.13. Let 1<p<o0 and —1<La<0. Suppose that u< H(B) and a holomorphic
self -map ¢ of B satisfy (uCe)(AN)*(va)) CAN) (va). Then uCsq is metrically compact
on (AN (ve) if and only if for every bounded sequence {f;} in (AN)P(va) which
converges to 0 uniformly on compact subsets of B, we have 1im, .| #Cofilanyewa=0.

3 uC,on H?(B) and A”(v.)

Theorem 3.1. Let 0<p <o, u= H(B)\{0} and let ¢ : B— B be a univalent holomorphic
map such that ¢ is bounded in B.
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(@) Suppose u and ¢ satisfy the following conditions :
limsuplu(2)["*|(Va)(2) (1 —|2) <eo, (3.1)

- la(2)[PA—2") _
lim sup u12*|¢(2)|22 <o (3.2)

Then uCq is bounded on HP(B).
(b) Suppose u and ¢ satisfy the following conditions :

llziﬁnllu(Z)I"’ZI(Vu)(Z)IZ(l—IZIZ)ZO, (3.3)
- Ju(2)PA =2 _
L e G4

Then uCo is compact on HT(B).
Proof. Put Tf=uC.f for f& H(B). If we show that Tf< H?(B) whenever f& H?(B),
the closed graph theorem will give that 7T is bounded on H*(B). Since ¢ is a univalent
holomorphic self-map of B and £, is bounded in B, by Theorem 1.1(a), C, is bounded
on H?(B) (see [5, Theorem 3.41]). Thus | Cof s <| Collll | #2 for all f€ H?(B). And
S0,

[1CetPay < Cof Vi <N ColP Ve 35)
It follows from the chain rule that for any z&€ B

IV(TH)(2)P<2|(Vu)(2)PI(Cof 2)I*
+2lu(2)P(VA)(e(2) Pl e (2P
<2|(Va)(2)]"l7 ()P
+2Mu(2) PV ()P T(2)F, (3.6)

where M =sup.<zf24+(z)<co. By (3.1) and (3.2), there are two positive constants e, &
and 1/06(%, 1) such that

lu(2)P (V) (2)(1 -2 < e, 3.7
’”@T&;lim <e, (3.8)

for any 2€ B\nB. Take f€ H?(B)\{0}. By (2.1)~(2.2), (3.5)~(3.8), Lemma 2.1(a) and a

change of variables, we have

[ 2 B (1) )22l oghran(a)

<o [ ()@@l A @)1~ du()
0 [PV e@)AA D1~ |22 |
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<2 a [ (CNRFau(2)
+ Me, A s (V) (DI 1 = ()T rp(Z)[zdu(Z)]
<2 & [(CP2Pau(2)

+ Mex [ |V @A ()P0 =) dvlwo)|
<2 el ClPl Moo

2 1) Mes [ [T ()L ()l A1), (39
By (2.3) and Lemma 2.5, we have
L@ AP )P A <2l 310
It follows from (3.9) and (3.10) that
2
JE e I(Tf)(z)l‘"zlzi‘z‘”‘”logé(du(z)
<o alcdp+ LM g o < 31y
On the other hand, we set 71:% and 621-%. We can easily see that 0
< 8<1 and for all +&(0, 7]
5 log - <log ™. (3.12)

By using (3.12) and Lemma 2.3, we obtain

f R( Tf)(Z) |(Tf)(2)|p 2|Z| 2(n— DlngdH(Z)
é% / ARIDAE 7o) @)= -Mlog L aila)

< Sp z”(ucqaf)n”m(m
g% max|u(2)|” max [f(2)|"<eo. (3.13)
(3.11), (3.13) and Lemma 2.3 show | 7f|%ew) < 0. Hence u#Cof < HP(B). This completes
the proof of (a).

To prove (b), suppose that {f;} is a sequence in H?(B) which converges to zero
uniformly on compact subsets of B and || f|& & < L <co for all JEN. Let € >0 be given.
By (3.3) and (3.4), we can choose & (5, 1) such that

2 3
| (2)P2 (V) (2) (1 -2 <, (3.14)
Iu(2)| (1 |Z[2) <e (3.15)

1-]e(2)]?
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for any 2€B\7»B. By (a), it holds that T(H?(B))CH?(B). If we show that
lim;-w| Tfil|lz»s=0, then Lemma 2.12 will give that T'=uC, is compact on H?(B). In
the same way as in the proof of (a), by using (3.14), (3.15) and Lemma 2.5, we have

[ JAREBEE 1))z 0log Lran(a)

<o+ UL e

Gn-1D (3.16)

for all j&N.
On the other hand, as in (3.13), we obtain for all j&N

[ AR )y eMog tran(a)

< 2% maxlu(2)_max /(2" 3.17)

where n= 1 E " and 8:1—118372. Since {f;} converges to zero uniformly on compact
subsets of B,

l.im[ max |fj(z)|’°]=0 (3.18)
joo | zE@(715)
(3.17) and (3.18) show that
| 2
lim | R(ng(z) |(Tfj)(Z)ip’ZIZI“Z‘”‘l’logérdV(Z):0- (3.19)
(3.16), (3.19) and Lemma 2.3 imply that lim;-e| 77| x=&=0. This completes the proof of
(b). ]

Theorem 3.2. Let 0<p<oo and —1<a<co. Let uS H(B) and ¢ : B— B be a univalent
holomorphic map such that Qo is bounded in B.
(@) Suppose u and ¢ satisfy the following conditions :

limsup|z(2)I" (V) (2) (1~ 2*)* < o0, (3.20)

X 1_ z 2 a+2
11%|§Pp|u(2)‘p{1—_‘5](—l7|7} < oo, (3.21)

Then uCq is bounded on AP(v.).
(b) Suppose u and ¢ satisfy the following conditions :

Ilziirgqlu(Z)I""ZI(Vu)(Z)P(l—|?:|2)2=0, (3.22)

o} o

Then uC, is compact on AP(va).
Proof. Take f€ AP(v,)\{0}. As in the proof of Theorem 3.1,
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IV(uCof (2)P<2|(Vu)(2) Pl (o(2))?
+2Mu(2)PI(VF)(p(2)To(2)” (3.24)

for any 2€ B, where M =supzesf,(z) <co. By Theorem 1.1(a), C, is bounded on A”(v.).
By (3.20) and (3.21), there exist positive constants e, e and 7/06(%3 1) such that

| (2)P2(Va)(2)P(1— |22 < e, (3.25)

WP < (3.26)

for any z& B\»B. Furthermore, we have by Lemma 2.1(b)
Ka(|2‘>£dn,a(1*|2|z)a+2 (3.27)

for any z& B\» B, where dy,. is a positive constant depending only on 2 and a. By (3.
24)~(3.27), Lemma 2.5 and the same argument as in the proof of Theorem 3.1(a), we

S RO el a2 2)

- |: 22n—1dn,a€1" C¢|1p
< Py
22” 1(7’l+1)dn &M
an,aD”

have

s <o 3.29)
On the other hand, by (2.16) and Lemma 2.3, we obtain
/' JR(uCgvf)(Z) I(qu,f)(z)l" 2|Z| 2(n— “Ka(|zl)d)/(2)

—ef . R(uC¢f)(Z) Car D200y o a)

sZLpZCﬂ||<uc¢f>nnﬁw<oo, .29

1+ 7o

where 7= and C.=(log %;){Ka(%))}"l%—l. (3.28), (3.29) and Lemma 2.3 give that
l2Cof | arvy < <o, that is, uCof € AP(v,). This completes the proof of (a).

In order to prove (b), suppose that {f;} is a bounded sequence in A*(v.) which
converges to zero uniformly on compact subsets of B. As in the proof of Theorem
3.1(b), we can show that lim ;.| 2 Cof;|arwa=0. It follows from Lemma 2.12 that «C, is
compact on A”(v.). The proof is now complete. ]

4 uC, on N°(B) and (AN)"(v.)

Theorem 4.1. Let 1<p<oo, u&€ H(B)\{0} and let ¢ : B~ B be a univalent holomorphic
map such that o is bounded in B.
(a) Suppose u and ¢ satisfy the following conditions :
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(2) When 1<p<2,

lim sup[max{| u(D)P (V) (2)(1—]2)] < oo, (4.1)
lil};g}m[ max{] u(2)1|p—_7}loz({§)zl)2 1 —12») } < oo, (4.2)

(i1) When 2<p<oo,

lim sup[max{lu(2)| ™ [u(2)I"*H(Va) (2)(1 —|=P)] < oo, (4.3)
limsup| maX{lu(Z)llj’ll(;‘((j))l;}(l_ 12) |<ee. (4.4)

Then uC, is metrically bounded on NT(B).
(b) Suppose u and ¢ satisfy the following conditions :
(i) When 1<p<2,

|1zi|1}1l[max{| u(2)[P~1H(Vu)(2) (1 —]219)]=0, (4.5)
|Izilrpl[rnax{lu(Z)l\"’_‘ 7’&‘2)2,)2‘2}(1_|2|2)]=o. (4.6)
(17)) When 2<p<oo,
|lzillpl[max{lu(zr)l‘z,ku(2)I”‘Z}I(Vu)(z)lz(l—IZ\Z)]ZO, (4.7)
: {lu w212 T
tim | Pl A |=o. “3)

Then uC, is metrically compact on N¥(B).
Proof. Take f&NP(B)\{0}. Since ¢ is a univalent holomorphic self-map of B and £,
is bounded in B, by Lemma 2.9, C, is metrically bounded on N*(B), that is, | Cef| %)
< L||f||Z= where L is a positive constant depending only on # and ¢. And so,

[ 108 +]CofDydy <I Cof sy < L flocor (19)

By (4.1)~(4.4), there are positive constants €, € and 1/06(%3 1) such that when 1<p <
2,

max{|u(2)|P L (V)21 —|zP) < e, (4.10)
max{|u(z)1|’i3i,(LZZ§§)z|2}(l—|z|2) <e (4.11)

when 2<p<oo,
max{|u(2)|7%u (2P 2H(Vu)(2) (1|2 < e, (4.12)
max{lu(Z)I“l,lu(Z)llzp}(1~IZIZ) <e (4.13)

1—[e(2)
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for any z& B\7»B. Define

Ei={z€B: |u(2)|<1}, E'=E.N(B\»nB),
E:={z€B: |u(2)|>1}, E>=E,N(B\»B).

It is obvious that the following inequalities hold :

(0 = D]uCof | +1log(1 +|uCof ) <(p — | Cof | +log (14| Cof]),

2

1 < ul
(I+[uCef1)? — I+[CofD)?

1y log(U+-{uCof]) 1y log(I+]Cof)
=D+ A =D+

in F,. We can also easily see that if 1<p<2,

in £, and

{log(1+]uCof DIP2<|ulP~*{log(1+|CefD}** in Ey,

{log(1+|uCofD}*% _ {log(1+|Cof)}"2 )
Og(lJrlzi{CWfl)2 = Og(1+||c¢f|)2 in F.

When 2 < p < oo,

{log(1 +{uCof NP2 <{log(1+|Cof )} ~* in

{log(1+|wCof )} 2< |u|P2{log(1+| Cof)}*2 in E..

Put x(¢#)={log(1+¢%)}” (t=R). By a simple computation, we have

77 —_ {IOg(1+’uC¢fl)}p—2
X (logluC¢f|)—p (1+|uc¢ﬂ)2

X{(p—D]uCof|+1og(1+|uCof )} uCof]
in B. By (2.1), Lemma 2.1(a) and (3.6), we have

S ol Con N E R D 0g L (2)

\70B [(2Cof)(2)P 2"
<o [ ogl(uCon (@ TDUCLIIE |y o

M [ Clogl(uCaf o YRR ) )y 7 2y |

[(uCof)(2)I?
where M =supzesR,(z)<oo. Let Vi and V, be defined by

B [ Gogl(uCp @D THEECHEL 1y ),

[(uCof)(R)?

VZ:A\rOEX”(IOg|(uC¢f)(z)|) Lu(zlglzztlézj‘f))((zgp)?zz))lz (1=[2P)Je(2)Pdv(2).

By (4.21) and (4.23), we have

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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o TlegQHECAED . log(L LI (uCR)
Vi [l e B E D el

< (uCo (P LU CHHD 1 — 1y e

<p | JBLHCH 0 ) i Con@E |2 av o)

Let Vix (k=1, 2) be defined by

Vi J[ B UCL UL ) Pl Cot XA~ 1) aoA2).

Note that the following elementary inequality holds :

L
1+¢

Let 1<p<2. By (4.15), (4.17), (4.26) and (4.27), we have

Vias [ 1 el KA v r Con @A -1 a2

— [ Ju(2)P4{log(1+|(Can(2)*~*

x{FRU YT a2~ e at2)
< [ (2l 108 A+ CH@DPIT A~ )b 2).
And we have by (4.18), (4.26) and (4.27),

<log(1+t) (¢=0).

Vias [ LoBLLLCLDI ) @) Cn) DL 22

< [ {og1+(CaN@DPITa) DI~ |2P)du(2).
It follows from (4.25), (4.26), (4.28) and (4.29) that

Vlépzﬁilu(z))p"‘{log(HI(quf)(Z)l)}pl(Vu)(Z)lz(l—IZI"‘)dv(z)

+pzﬁé{log(l+I(C¢f)(2)|)}p|(Vu)(z)lz(1*IZIZ)dV(Z)

P zﬁmg{log(l +(Cof (DD} max{lu(2)P~, (V) ()1~ 2% dv(2).

By (4.9), (4.10) and (4.30), we obtain
Viser [ {og(1+Cof Dy dv= e’ Liflfo,
When 2<p<oo, by (4.15), (4.19), (4.26) and (4.27), we have

Vias [ HoBO G (7 )R Cn P~ ) 2)

< [ {log(1+(CoA DN (D ATV (D1~ |2} dil2).

17

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)



18 Y. MATSUGU, S. NAGAI and S. UEKI

And we have by (4.20), (4.26) and (4.27),

Vigs [ LN {logll ELCAIDDI 02 I Cor @1 -2 (2

SfEé{log(H [(CeH) (DI (2) P2 (Va) (2)P(1 =2l du(2).

By (4.25), (4.26), (4.32) and (4.33),

Vlépsz,l{log(HI(wa)(Z)l)}"lu(Z)\“"l(Vu)(Z)lz(l—IZIZ)du(z)
+p2£é{log(1+\(C¢f)(Z)D}”|u(Z)I”‘Z\(Vu)(Z)IZ(l'Izlz)du(Z)
=p’ /; o5 log(1H(Cof)(2)D) max{|u(2)[ |u(2)[~)
X|(Va)(2)*(1—|2%) dv(2).
(4.9), (4.12) and (4.34) give
Vi<eap®’L|flfw.
On the other hand, by (4.21) and (4.24), we have

[ leg(LHwCA@D s logAluCAED
O R o (RS R e e

X u(R)FI(VA(p(2)I(1— !Z|2)\]¢(2)|Z]a’u(2).
Let Vi (k=1, 2) be defined by

[ og(LH(uC (DD log(1 - (1 Co)(2))
Vo [ e — (o) + o L=

Xu(2)PIVAp(2) (1~ IZIZ)\]¢(Z)|2] av(2).

Let 1<p<2. By (4.14), (4.15), (4.17), (4.21) énd (4.37), we have

|u(2)[PH{log(1+|(Cof )R}
Vo< ﬁ[ “ Z|u(z)|2(g1+|(c¢f)(z)zl)2

X {(p—DI(Cef)(2)| +log(1+(Cof)(2)))
s UL O RO "V e

{log(1+|(CoN@DDIP 2 [ _ 1y Jog(1+|(Cof )(2)]) ,
A R (et o (R R vy s [CRLC

X BTN A~ DI (2

=L [ 7 Gog AN IEED (-1~ P2 2),

And we have by (4.16), (4.18), (4.21) and (4.37),

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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log(1H/(CaN (N2 | log(1--/(C.A)
Vo [ | PR E R o1 + R R}

X w2 FVA GNP~ 1P 2P a2
=L [ 2 (togl AN TEE P Lep@Pana). (g0

(4.11) and (4.36)~(4.39) give

Vi< [ 2 Gogl (o TAEDE (=1 P P (o)
+ [ ol (oD B ) -2 P

:A\roﬁx "(log|f((2))]) (fo()gp( é()§)2)

xmax{|u(2)[P 7 |u(2) P} (1 =2 To(2)Pdv(2)
<af 2 oal /e KDL (- jo@p b, @)

From (2.2), (2.3), (4.40), Lemma 2.4(b) and a change of variables, it follows that
(VAR (g
Vi<e | | alogl AN AL ) av(2)

( B\70B)

<D, [ oglr (TR @42

=a(n-+1) [ Allog(1+N))224%:

en(n+1)
< 2T (n) 1713z (4.41)

When 2<p<oco, by (4.14), (4.15), (4.19), (4.21) and (4.37) we have

_ [ [Hlog(1+](CoN)(R))>
Vz,xéﬁi[ |£(gz)|2(1+|(cj)(z)[ ’

X{(0=DICaf)(R)+log(1+(Cof )(2)))
<R (9o~ o | a(e)

~L [ 2ol (o TILED - P Panz). @42
And we have by (4.16), (4.20), (4.21) and (4.37),

@051 +(CA@D )y, Jorl+(CAE)
Vi [ [ 1O HORRHEAUDI () 1) s HC )

X (TN )1~ o | a2)
L [ 2 0ogl D TREDE P elbana.  499)

By (4.13), (4.36), (4.37), (4.42) and (4.43), we obtain
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Vi< [ 2 Gogl (oD B (a1 Pan(2)
+ [ ol AN T LA (P (1= P 2P 2)

=[x Gogl (I AAEE

x max{|u(2)| 7, ()" H1— |2 To(2)*du(2)

<e [ _xoal(eINTILED (- o2 Pl a2 (4.44)
As in (4.41), we have |

en(n+1)
Vz_m”f %) (4.45)

By (4.22)~(4.24), (4.31), (4.35), (4.41) and (4.45), we obtain

ﬁ \rogx”(logl(uC‘pf)(Z)l\ll(ﬁ(é:%’@)(ﬁll,l 2|72 ”logﬁdu(z

ne +)M
<22 1[61p2L+%]”f”§p(m. (4.46)

By (3.12), Lemma 2.3 and Lemma 2.6, we have

fr oﬁx”(logl(ucqaf)(Z)l\&ig%{z)(ﬁ)gl |22 ”logﬁdu(z)

% f "(logl(uCof )(2)]) ‘i(flg%‘”{z)ﬁ);iz |ZI’Z(”’”IogT;rdv z)

<Z)(uCo )1l

<22 [tmax(LJunl)"llog(1+|(Cof) Yo do

<2n max(1+|u(2)}* max {log(1+|/(2)))?

=75 1
<22 max(1+|u(2)y maxs){i'éH Ifecs (447
where = 1; and 8=1—%0g71. Moreover, we have by Lemma 2.6
0g 7
{log 1+ 1(0)/ (o (0))* < [max{1 |7 449

By (4.46)~(4.48) and Lemma 2.3, we obtain

2n—1 +
luCof |Fem < [22_14{ ewp’L +%}

1 , 1+ V
+5 max{l""”(z)]} zgé?r)fs){ 1—[z]

+lmax(1 1@V EHED 1 A5ocn, (4.49)

Hence uC, is metrically bounded on N?(B). This completes the proof of (a).
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To prove (b), suppose that {f;} is a sequence in N?(B) which converges to zero
uniformly on compact subsets of B and | f;|% ) < y<co for all J&N. Let ¢ >0 be given.
By (4.5)~(4.8), we can choose 706(%, 1) such that if 1<p<2,

max{|u(2)]?~, (V) (2)(1—]2) <, (4.50)
max{lu(z)ll”_” T{IDZ(tg)ZI)ZIZ}(l—IZIZ) <e (4.51)
if 2<p< oo,
max{|u(2)| 72| u (2P (V) ()1 -z <e, (4.52)
maxlulal gt < 4.53)

for any z& B\7»B. By (a), it holds that («Cy)(N?(B))C N?(B). By the same argument
as in the proof of (a), we have instead of (4.46)

S, 57 QoBlCor XL cirr-iog L a2

+1DOM
néZnF(n) ]6

for all J&N, by virtue of (4.50)~(4.53).
On the other hand, as in (4.47) we obtain for all j&EN

g22"~1y[p2L+ (4.54)

/r ; 2" (logl(uCefi)(2)]) ||(§(CZ§§@)(|§?52 IZI‘Z‘”‘”logﬁdu(z)

<2 max{1+]u(2))” max {log(1+]£(2)D)* (4.55)

where 7= 1;7" and 3:1—%. Since {f;} converges to zero uniformly on compact
subsets of B,

lj.{rg[zggrgcs){log(lﬂLlfj(Z)l)}”]=0. (4.56)
By (4.55) and (4.56), we have
lim [ /08 (uCof (D EACLID 2 mog Lavy—0. wsn)

By (4.54), (4.57) and Lemma 2.3, we can conclude that lim;-e|%Cefilln»=0. Thus
Lemma 2.13 implies that #C, is metrically compact on N?(B). This completes the
proof.

Corollary 1. Let 1<p<co. Suppose that ¢ is a univalent holomorphic self -map of B
such that Q. is bounded in B. Then C, is metrvically compact on N®(B) if and only if

. 1]z
ET-Te(aP "

Proof. Sufficiency is the case #=1 of Theorem 4.1(b). Suppose that C, is metrically
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compact on N”(B). Since ¢ is a holomorphic self-map of B, ¢ has a radial limit ¢*(&)
=lim,::¢(7¢)E B for almost every {&S. First we show that the pull-back measure s,
=gop*! satisfies the following condition :

e SCER)=0(k")  ashl( (4.58)

uniformly in ¢E€ S, where S(&,h)={z€B: |1—<z,>|<h}. We assume that it does not
hold that 1,(S(&,4))=0(h") uniformly in £ S. Then there are {}C S, {%,}€(0, 1) with
h; 10 (j—o0) and >0 such that

1e(S(&,h:)) = et} (4.59)
for all j&N. Put a;=(1—1%,)&(FEN). Define
(1 1— a; z %
£ =(—ladex| el ) (4.60

for z&B and j&N. We can easily see that f; is in the ball algebra A(B) and
1513 cm <22 H{(log2)” +1}

for all j&EN. Moreover, by (4.60) we see that {7} converges to 0 uniformly on compact
subsets of B. Since C, is metrically compact, we have

1}{2” Cofillnrm=0, (4.61)

by Lemma 2.13.
On the other hand, by using the continuity of the function F(v)=Re(1+v)#*(veE
C) at the origin in C, we can choose /=N such that

Re{1+ |"J|(1 \<azl £2) } 1 (4.62)

5 2

for any J&EN with j=j, and 2& S(&,h;). Moreover, we have by (4.62)

—|a,? }% 1
{(1 GadV S "~

for any j&EN with j=j, and z&S(&;,4,). Thus, for any jEN with j>j, and z& S(&,4;),
we have

1og+m<z>|=log+:<1~lafDexp(Re{ﬁ%le}zﬂ

zlog’r:(l‘laﬂ)eXD(ﬁ;)}

=log* :hjexp<~2‘%&-jg>}- (4.63)

Hence, by Fatou’s lemma and (4.63) we obtain for any j&N with 7>,



On a theovem of MacCluer and Shapiro 23

{10g+< hJGXD<W1¢;§>>}p/Jf¢(S (&,h5))

< {log*| £} due

T JS (k)

< [{tog(1+ |50 9*))7do
= [lim{iog(1+1(f 9).)}"do

<liminf [ {log(1+|(%> ), D) do
=| CefillZe ). (4.64)
It follows from (4.61) and (4.64) that

lim{log+<hﬁxp(ﬁ;))}pm@(§j,hj))=0. (4.65)

J—oo

Since

oot 1) _1->>}”:L
gLIEhJ {log (hﬁxp( e 57
(4.65) implies that
lim #W(Sgi%’h)) =.

J-roo J

This contradicts (4.59). Thus we establish that (4.58) holds. By MacCluer’s Carleson-
measure criterion([8]), C. is compact on H*B). It follows from Theorem 1.1(b) that

. 1—zF
e

This completes the proof. L]

Theorem 4.2. Let 1<p<co agnd —1<a<oo. Let ucH(B)\{0} and ¢: B> B be a
univalent holomorphic map such that Qp is bounded in B.
(a) Suppose u and ¢ satisfy the following conditions :
(i) When 1<p<2,

lim sup[max{|e«(2)|”~, (V) (2)*(1— =) <o, (4.66)

timsup| max(u(2)l = (@) {1 ) | <ee. (467)

(i1) When 2<p<co,

lim sup[max{a(2)| ™ |a(2) (Ve (2) (1 |2 <o, (4.68)

lirlrzlﬁpp[max{l u(z)|) u(z)l”}(%@%zj’f)au} < oo, (4.69)

Then uC, is metrically bounded on (AN)F(va).
(b) Suppose u and ¢ satisfy the following conditions :
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(i) When 1<p<2,

lim[mas{e(2)l*~ DI(Va)(2) L~ |10, (.70
lim| max{u(2) % u (DTt ) =0 @)

(i1) When 2<p<co,
}Zigg[max{lu(2)|‘2,[u(Z)lp‘Z}l(Vu)(Z)lz(l“IZIZ)Z]=0, (4.72)

llglrg[max{|u(z)|“'1,|u(z)lﬂ(léa(%%'?)aw]:O. (4.73)

Then uCy is metrically compact on (AN)P(va).
Proof. Take fE(AN)*(v2)\{0}. By the hypothesis of the present theorem and Lemma
2.11, C, is metrically bounded on (AN)?(v.), that is, | Cof |Panyea < LI flIF any»(vey Where
L is a positive constant dependmg only on n, ¢ and ¢. By (4.66)~(4.69), there are
positive constants e, e and VOE( 1) such that when 1<p<2,

2 y
max{|u(2)|" " 1}H(Vu)(2)|2(1—|z]?)°< e, (4.74)
max(|u() @) < .75
when 2<p < oo,
max{|u(2)| 7% |u(2)[PH(Vu) () (122 < e, (4.76)

max/{|u(2)] muna(%)“? & (4.77)

for any z& B\»B. By (3.27), (4.74)~(4.78), Lemma 2.4(a) and the same argument as in
the proof of Theorem 4.1(a), we obtain

S ol (uCor (RS UL 200 K (22

<on-lg, . [Elp L\ e(nr)M

2”+“+(n+a+1)F(a+2)}”f“p .
al(n+a+1) (ANPve) (4.78)

where M =sup:zesR4(z)<oo. (cf. (4.46))
On the other hand, by (2.16), Lemma 2.3 and Lemma 2.6, we obtain

[, 5 GogluCor R EHC N o2, ey (2)

<C. [ Gogl(uCar @I E R N ok, (o)
S2nCa”(uc?f)n“{)AN)”(Ua)
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<2nCq. max{l+|u(2)|}* max {log(1+|/(2)D}*
zZeT1B zep(r1B)

<2nCq ma)é(1+|u(z)l)p max { } 1712 anye(va)- (4.79)

2€¢(71B) 1 — <

where rl=1;7° and Ca=(log%0){Ka(%)}_l+1. (cf. (4.47)) Moreover, we have by

Lemma 2.6

{log(1+!(uC«af)(O)D}pS[max{l,lu(O)l}]ij_: Zggg }MH““][H?AN)NM. (4.80)

(4.78)~(4.80) and Lemma 2.3 show that «C, is metrically bounded on (AN)"(v.). This
completes the proof of (a).

To prove (b), suppose that { f;} is a bounded sequence in (AN)”(v.) which converges
to zero uniformly on compact subsets of B. Then we can show that
iMoo 2¢Cofill(anpvy=0, by the same way as that in the proof of Theorem 4.1(b).
Hence, by Lemma 2.13, we conclude that «C, is metrically compact on (AN)"(v.). The
proof is complete. ]
Corollary 2. Let 1<p<o0 and —1<a<oo, Suppose that ¢ is a univalent holomorphic
self ~map of B such that Qo is bounded in B. Then Co 1s metrically compact on

(AN)P(va) if and only if
. 1—|z>
I TP 0

Proof. The proof is entirely similar to that of Corollary 1 except that we choose

functions
(N (1 R i ,
(2=~ Iajl)exp{ (1_<Z’aj>)z} (z€B, jJEN)
instead of (4.60). []
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