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Abstract

We continue to determine the structure of modular adjacency algebras of
association schemes from [8] and [5]. In this paper we will determine the
structure of modular adjacency algebras of non-symmetric imprimitive
association schemes of class 3.

1 Introduction

To each association scheme (X, G) and to each field F', there is associated naturally
an associative algebra, so-called the adjacency algebra FG of (X,G) over F. It is well
-known that FG is semisimple if F has characteristic 0. However, little is known if F
has a positive characteristic. In the present paper, we focus on this case.

We want to characterize adjacency algebras of association schemes algebraically.
For example, we can consider a finite group as an association scheme and its adjacency
algebra is isomorphic to the group algebra of the original group. Then it is known that
the group algebra of the finite group over any field is a Frobenius algebra. However we
can find an association scheme easily such that its adjacency algebra is not a Frobenius
algebra. We have determined the structure of modular adjacency algebras of some
association schemes ([8] and [5]). Especially, in [5], we determined the structure of
modular adjacency algebras of association schemes of class 2. So in the present paper,
we will determine the structure of modular adjacency algebras of non-symmetric
imprimitive association schemes of class three.

It is known that association schemes of class d <4 are commutative and So are
their adjacency algebras.

*Communicated by A. Hanaki
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2 Association Schemes

In this section, we will recall a definition and some properties for association
schemes (see [2] and [9] for more details). We will almost use notations of Bannai and
Ito [2]. »

Let X be a finite set and {R;}o<i<a a partition of X XX. We call a pair ¥=
(X, {R:}o<i=a) an association scheme if the following conditions are satisfied :

1) Ro={(z,v)|reX}.
(2) There exists 7/€{0,1,...,d} such that R-={(y,x)l(x,y)=ER.} for any i{0,1,...,d}.
(3) For all 4,7,k<={0,1,...,d}, there exists a non-negative integer pi: such that for all
vreX{xeX|(y,x)ER; and (x,2)E R;}| =i if (y,2)E Rx.
Moreover ¥ is called commutative if p;r=p;n for any i, j, k<{0,...,d} and symmetric if
R:=R for any i<{0,...,d}. The elements of {p..} will be called intersection numbers of
(X,6).

Let X=(X, {R:}o=:=a) be an association scheme. Then the cardinality | X| of X is
called the order of the association scheme X and d the class of X¥. We call the positive
integer piso the wvalency of R; and denote it by ». The following properties for
intersection numbers are known.

Proposition 1. ([9, Lemma 1.1.3 and 1.1.4]) Let ¥=(X, {Ri}o=:=a) be an association
scheme and {px|0<1, j, k<d} the intersection numbers of ¥. Then
(1) Zéopacsbore= 2 i=o0bacobese.

(2)  Dave=Drac.
(3)  pascve=7pevrava.
(4) 2Zé=oDac="s".
(5) Zf-obParc="Va.

)

(6 Zg=0pabc1}c:1)a'l/b.
Let E and F be any subsets of {R;}o<:<a. We define the complex product EF of E

and F by
EF::{R9| 2 > pefgz":o}-
RecERsEF
We define F" :={R;|R,= F} for each FFC{R}o<i<a. Then a non-empty subset F of
{R:}o<i<a is said to be closed if FF'CF.

An association scheme is called primitive if it has no closed subsets except { Ry} and
{Ri}o=i=a (they are called #ivial closed subsets), and imprimitive otherwise.

3 Adjacency algebras of association schemes

Let ¥=(X, {R:}o=:=a) be an association scheme. For each R;, we define the | X]| X | X]
matrix A; indexed by the elements of X by
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1 if (x,y)ER;,
0 otherwise.

(Adzy :Z{

Let J be the |X| X |X| all 1 matrix. Then, by the definition, it follows that

¢y A;=]. It also follows that A;A;=>%0 pir Ax. We can naturally define an

algebra from this fact. For the commutative ring R with 1, we put R¥=@%-0 RA; as

a matrix ring over R, which will be called the adjacency algebra of X over R. In

particular, the adjacency algebra of an association scheme over a field of characteristic
0 is semisimple [9, Theorem 4.1.3].

Let C¥ be the adjacency algebra of an association scheme X over the complex
number field. We denote the set of irreducible characters of CX by [r7(%). In particular,
if ¥ is commutative, then |Ir»(¥)|=d +1.

Since the adjacency algebra is defined as a matrix ring, we can consider the
natural representation A;,~ A;. We call it the standard representation and its character
the standard chavacter. We denote the standard character by y(X). Let y(X)=
N yerrr@myy be the irreducible decomposition of the standard character. We call m,
the multiplicity of .

We introduce some results for the modular representation of association schemes.
Here modular means that we consider adjacency algebras of association schemes over
a field of a positive characteristic p. In the present paper, we consider only
commutative association schemes since association schemes of class 3 are
commutative.

Let ¥=(X, {Ri}o<i<a) be an association scheme of order ». Let (K, R, F) be a
splitting p~modular system for the adjacency algebra, and (x) the maximal ideal of K.
We denote the image of the canonical epimorphism R F by * . For the fundamental
results of the modular representation of the association schemes, see [5].
Proposition 2. ([1, Theorem 1.1] and [3, Theorem 4.2]) Let ¥=(X, {Ri}o<i=a) be an
association scheme of orvder n. We set that Irr(X)={yxo,....,xa}. Let m; be the multiplicity
of xi and p be a prime number. Put

d
F(X)= Plan! H;.;:_OO;;ZZ. .
Then the adjacency algebra of the association scheme X over a field of chavacteristic p
is semisimple, if and only if pIFX).

Let ¥ be a commutative association scheme. Then RX/zRX=FX and
7R¥% < rad(R¥X) [6, Theorem 1.14.1], so idempotents of F'X are liftable to idempotents of
R% [6, Theorem 1.14.2]. Consider the primitive idempotent decomposition of lrz in

FX:

lrx=fot -+ fEFX,
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then we have the primitive idempotent decomposition of 1z; in R¥:
lez=ep,+++ +e5,ERX,

where e},= f;. This decomposition yields the decomposition of algebras. We call this
eslek,) a block idempotent of RX(FX), and we write B;= ez R¥X and Bf=e% FX.

Let e,...,eq be the set of primitive idempotents in K¥. Then there is a partition
{0,...,d}=U$-0T; such that es=3,cre;, When e,E T}, we say that e; belongs to the
block B..

Let x; be the (one-dimensional) irreducible representation of K¥ corresponding to
e;. Then e; belongs to B; if and only if xi(es)=1. Since B} has the unique idempotent
e¥,, so we have Bf/rad(B¥f)=F. If x: and x,; belong to the same block, then x¥=x*.
Proposition 3. ([5, Lemma 1]) Irreducible characters y: and y; of KX belong to the same
block if and only if x{Ar)=x;(A,) (mod (7)) for all »=0,..d.

Proposition 4. ([5, Lemma 2]) The dimension of B} is equal to the number of y;
belonging to B..

4 Non-symmetric imprimitive association schemes of class three

Let X=(X, {R:}o=:=3) be a non-symmetric imprimitive association scheme of class
3, and A(0<7<3) its adjacency matrices. Put »=|X| and »; the valency of R;. We
assume that A.=‘As. We set that vi=~4;, and v.=vs=k.. By Proposition 1 (2) and (3),
we set non-negative integers a, b, ¢, d, e and f that

a= pu,

b=puz=pus=prarkr/ ko= pra1k1/ ko= pan b1/ ko= pair o1/ ks,
C= D122== P133= P212= Pas1 k1/ boo= DPa13= Dao1 fer/ s,

d = D125= P132= P213= Pazrfer/ ko= p312= pasi r/ koo,

€= D222™ D232 = D233 = D322 D323 = P33,

f=1D223= Pssa.

Then it follows that from Proposition 1 (1), (4), (5) and (6),

d:k1*1*2k2+

b:k1—c—d,
kz_l*c
2 y

APko+ dPki+ chike= o+ cdly+ dkev+ dbiFo.

%Z(C + d)
1 ’

e:

Since we consider only imprimitive case in the present paper, we may assume that
b=0 or c=d=0. Then there are the following three cases.
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(1) a=k—1, b=0, c=k, d=0, e:kZ_Zkl_l’ f:kz+§7‘1+1’
@ a=h-1 b=0, c=HzL g=BEL oy 2okl
(3) a=k1—2k2_1, b:kh CZO, d:O, e= kzz_l, f: kz;’l.

We can check that there are some association schemes for each type.

In the next section, we will determine the structure of modular adjacency algebras
of association schemes of each case using character tables calculated by S. Y. Song
(See [7]).

5 Modular Adjacency Algebras

In this section, we set ¥=(X, {R:}o=:<4) which is a non-symmetric imprimitive
association scheme of class three and non-negative integers a, b, ¢, d, e, f, ki and k.
are as above. Let F be a field of characteristic p such that F is a splitting field of F'X.
5.1. Case 1. The multiplication table is shown below :

Ao Ay As As
Ao Ao A1 Az A3
A | A iAo+ (kli—1)A; kA2 ki As
Az Az klAz eAz + an szo + kZAl + €A2 + QAS
As | As klAs kAot A1+ eAz+ eAs fAs+eAs
And the character table is as follows (P in [7]):
Ao A1 Az A3 My
Xo 1 kl kz kz 1
T 1 b —(kit+D)+Vnlt+1): —(k+1)—vaulla+1): kkz
2 2 11
1 k — (ki +1)—vnlki+1) —(k+1D)+vVulbi+1): ke
x2 ! 2 2 ot 1
- %kl
X3 1 1 0 0 Pt

It follows that the Frame number is $(¥)=#%(k+1)%. Since the multiplicities are
positive integers, we know that & +1|k and A& +1|%.

Lemma 5. Let p be a prime such that plki+1, then ple.

Proof. In the case p+2, we have obviously ple= e .

Let us assume that p=2. Let s and ¢ be integers such that & +1=2s, k=(k+1)t.
Then e=s(¢—1). When we consider the factor scheme 9) of ¥ by {Ro, R}, 9 is a non-
symmetric class 2 association scheme whose valencies are 1, ¢, ¢. Each valency of a
nonsymmetric class 2 association scheme is odd [5]. So ¢ is also odd. Thus 2[e. [
Theorem 6. The structure of the modular adjacency algebra of an association scheme

of case 1 is determined as follows.
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Flx,y,z1/(2% ¥* 2 xy, yz, zx) if plk+1,
FX={Fl[z]/()®F if pln, pYbi+1,
FeFeFoF otherwise,

where the first block from the left of the vight hand sides is the principal block.
Proof. Let ] be the all-one matrix. If F'X is not semisimple, J*&rad(F¥). Let us
assume that p|k+1. Then, from the character table above, it follows that F¥ is a 4-
dimensional local ring. We remark that e=f (mod p).

Since ple from Lemma 5, it follows that

(A%)*=eAs + fAF =0,
(AF+ AFV=(f +3e)(AF+ AH =0,
dims(AF)FX=dimrs(A5 + AHH)FX=1.

Therefore we obtain that F¥=Flx, y, z]/(2% v% 2% xy, yz, zx).

Next, let us assume that p|» and p/ k1 +1. Then it follows that F'¥ is the direct sum
of a 3-dimension local ring and a simple ring from the character table. We remark that
Pt ke and p+2 because n=2k,+ ki +1. Since

(A = Aff=—2kJ*,
(T} FXC(Af — AHF,

we obtain that FX=F[x]/(z®)® F. ]
There exist association schemes for every case treated in this theorem. For

example, let us consider an association scheme as06[6] in the list [4]. In this case, we

can see that its modular adjacency algebra F¥ is isomorphic to F[x]/(x% if p=3, and

Flz, y, z1/(x% v? 2% xy, yz, 2x) if p=2.

5.2. Case 2. The multiplication table is as follows :

Al A FiAo+(Bi—1) A klz_l Aot ’“2“ A klzﬂ Aot ’“2*1 As
Az Az /%12‘ 1 Az+ kl; 1 As k/;fi A1 + eAz+ 8A3 szo ‘l‘k;é—lcfh ‘f’ €A2+ €A3
As | As k‘; Lg,+ "“2‘ L4, szo+%fA1 F Aot eds kzld At eAs+ eAs
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And the character table is (Ps in [7]):

Ao A As As My
x 1 ki ko ko 1
1 1 1
1 1 1
_k1+1 __k1+1 2k,
wp bk 2 2 kit1

. Here we recall that

2 3
It follows that the Frame number is %(%):W

kod _ ko(l1+1)
k

intersection numbers are integers. Since ="oF is an integer, %i|k.. Thus we
1 1

may set that k.=mk. Since ki+1=2d, we have that F(¥)=16#n*md>.
Then we can show the following lemma for parameters.
Lemma 7. For the parvameters of association scheme of case 2, we obtain that
(1) 4ln, dlm and d|n,
(2) kit1|2k and ki+1|n,
(3) d=m(mod 2),
4) pXn if p*£2, p¥d and plm.
Proof . It follows that 4|% because e is an integer and e= 2k _4k1~1 — 4k, 4_ 2. And we

know that d|m since my4 is an integer and thus Ai+1|2k. Since n=2k+k+1=
4md+2d—2m, d|ln. We obtain the second property because the multiplicities are
integers. The third property holds since 4|n(=4md +2d —2m). The last property holds
because n=2k,+ ki +1=2mk +2d. ]
Theorem 8. The structure of the modular adjacency algebra of the association schemes
of case 2 is determined as follows.

Flx]/(x* if p=2, pkd, ple,
Flz, y1/(2* v9 if p=2, p¥d, ple,
oyl v A/ 0 2 2y, vz 2) i pld,
C|FeF[x]/(x)eF if p#2, phd, plm,
Flxl/(xHYeFoF if pF2, pld, p¥m, pln,
\FeFeoFaF otherwise,

where the first block from the left on the vight hand sides is the principal block.
Proof. From Lemma 7, the Frame number and the character table, it follows that
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the 4-dimension local ring if p=2 or pld,
Fya FoF[x]l/(z)8F if p=+2, ptd, plm,
| Flzl/(xHeFoF if p=#+2, pId, ptm, pln,
FOFOFOF otherwise.

Firstly, let us assume that p=2. Then it is obvious that J*€rad(FX). And we know
that (A + Af)*=0, (AF + AF) A= Af + Af, (A + AN AF=d(AF + AF), and (A5 + A A
=d(AF+ A¥). Therefore dimr(Ag+ AF)FX=1if d=0 (mod 2), and FJ*C(AF+ AF)FX
if d=0 (mod 2).

In the case that d=0 (mod 2), we have (AF)i’=e(AFf+AFH)=ec(J*—(AF+ Al)),
AFAF=AF, A¥AF=e(AF+ A¥), and AFAF=e(AF+ A¥F). Then from the possibility of
the algebra structure, (AF)F¥X satisfies one of FJ*C(A$)F%, F(Af+ Af)C(AF)FX, or
dims(AH)F¥=1. Thus we obtain that e=0 (mod 2). Therefore it follows that
F¥=Flx, y, z1/(x% ¥* 2% xy, yz, 2x).

In the case that d==0 (mod 2). We know that

J* if e=1 (mod 2),

Ar+A7y=]
(Af'+A2) A¥+AF  if e=0 (mod 2).

And it follows that (AF¥+A¥HAF=AF+ AF, (AF+AHAF=Af+eAF+(e+1)ASF, and
(Af+ ANAF=AF+(e+1)AF+ eAf. Therefore we obtain that

Flx]/(x" if e=0 (mod 2),

F 3€z{l:[gc, v1/(x% v)  if e=1 (mod 2).

From the above argument, it follow that, if p=2,

Flx]/(x% if e=0, d=1 (mod 2),
FX={Flz, y]/(2? % if e=1, d=1 (mod 2),
Flz, y, 21/(x% ¥ 2% xy, yz, zx) if d=0 (mod 2).

Secondly, let us consider the case that p+2 and p|d. Then, since e=0 (mod p), it
follows that (J*)*=(A%)*=(A#)*=0. Furthermore we have that dim FX/*=dimFXA5
=dimFX¥Af=1. Therefore we obtain that FX=Flzx, v, z|/(x% v? 2% xv, vz, zx). [

Note that there exist association schemes for every case treated in the above
theorem. Let us consider the cyclic group Ci of order 4. In this case, its group algebra
FC.=F[x]/(x% if p=2. Next, let us consider an association scheme as08[6] in the list
[4]. Then its modular adjacency algebra FX=F & F[x]/(x®) @ F if p=3. In the case of
an association scheme asl6[18], its modular adjacency algebra FX=
Flzx, y, 21/(x% 2 2% xy, yz, zx) if p=2. And last, let us consider an association
scheme as24[14]. Then its modular adjacency algebra FX is isomorphic to
Flx, y1/(x% 9% if p=2 and Fl[x]/(x®)® F®F if p=3.
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5.3. Case 3. The multiplication table is as follows :

Ao A A As
Ao | Ao A A As
Al A1 ,lele + (kl - 1 - Zkz)Al + k1Az + k1A3 k2A1 szl
Az Az szl €A2 + fAs szo + QAz -+ QAS
As As sz1 szo -+ eAz + eAg fA2+ @As
And the character table is (P- in [7]):
Ao Ax As As My
X1 1 k1 ko ko 1
—1+vn—Fk ¢ —1—vn—rh i nks
X2 1 0 -
2 2 n—rka
—1—vn—Fk 1 —1+vn—Fk i nke
X3 1 0
2 2 n—k
1 hi—n r k .
Xa 1 2 2 n—r

The Frame number is §(¥)=»n*(n— k)*. Since {Ro, R», K3} is the closed subset, we note
that % — ki|n, and #— ki| k. Then we can show the following theorem holds.
Theorem 9. The structure of the modular adjacency algebra of an association scheme of
case 3 is determined as follows.

Flx, y1/(x% xy, v if pln—rF,
FX={Flx]/(x)®oF&F if pln, prn—r,
FoFeoFaF otherwise.

where the first block from the left of the vight hand sides is the principal block.
Proof. From the Frame number and the character table, it is enough to show the
theorem for the case p|n— k& only. It follows that F¥ is a 4-dimension local ring from
the character table since 2/ 2k:+1=n— k.. It is obvious that J*Erad(F¥) and

(AF+AF+ AfY=Ql+1)(AF + AF + AF)=0,
(AF —Afy=Af + Af + Af.

Furthermore it follows that

dimr (A + A+ AHFX=1,
(Af — A$)Ai=0,
(AF — AF) Ae=Fko( AF — AF) — ko AS + AF + AS),
(A — A As= ko AT + AF + AT) — ko AF — AT).

Here p/t ke since pln—ki=2k+1. Hence FX=Flx, yv]/(2® xy, v?. OJ
There exist association schemes for every case handled in the above theorem. Let

us consider an association scheme as06[4] in the list [4]. Then we see, from the
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theorem, its modular adjacency algebra F¥ is isomorphic to Flx, y]/(2®, xy, v? if
p=3, and Flz]/(xH@ FeF if p=2.

Acknowledgement

The author is thankful to Akihide Hanaki for valuable suggestions and comments
and to the referee for lots of helpful remarks and suggestions.

References

[1] Z. Arad, E. Fisman, and M. Muzychuk, “Generalized table algebras,” Israel J.
Math. 144, 29-60, (1999).

[2] E. Bannai and T. Ito, Algebraic Combinatorics. I. Association Schemes,
Benjamin-Cummings, Menlo Park, CA, 1984.

[3] A. Hanaki, “Semisimplicity of adjacency algebras of association schemes,” J.
Alg. 225, 124-129, (2000).

[4] A. Hanaki and I. Miyamoto, http://kissme.shinshu-u.ac.jp/as/.

[5] A. Hanaki, M. Yoshikawa, “On modular standard modules of association
schemes,” J. Alg. Comb, 21 (3), 269-279, (2005).

6] H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press,
San Diego CA, 1987.

[7] S. Y. Song, “Class 3 association schemes whose symmetrizations have two
classes,” Journal of Combinatorial Theory, Series A 70 (1995) No.1, 1-29.

[8] M. Yoshikawa, “Modular adjacency algebras of Hamming schemes,” J. Alg.
Comb. 20 (3), 331-340, (2004).

[9] P. -H. Zieschang, An Algebraic Approach to Association Schemes (Lecture
Notes in Math. 1628), Springer, Berlin-Heidelberg-New York, 1996.



