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Abstract

We will give a precise estimate for Grover’s extended quantum search
algorithm. It is shown by Grover himself that his search mechanism can find
a solution with O(/N ) steps under a hypothesis that the coefficients of a
unitary matrix is sufficiently small. We, however, give a precise expression of
the probability that the algorithm reaches a solution for any unitary matrix.
Finally, we will show the behavior of the probability by providing some
graphs.

1 Introduction

The theory of quantum computation has been well developed in the last decade. It
is now well understood that there are at least two effective algorithms that quantum
computers can solve. One is Shor’s prime factorization[9], which can break the RSA
public-key cryptosystem since it requires only O(»°) operations (exponentially faster
than classical computers can do) to factorize n-bit integers. The other is Grover’s
search algorithm(3, 4, 5], which can find a solution from N elements by O(/N)
operations, while classical computers need O(NN) operations.

Here, the terminology “classical computers” denotes the computer system widely
used at the present time in the world. They have n-bit registers which are denoted by
B”, where B={0, 1}. An element of B" is sometimes interpreted as an integer by the
following manner that (ji, /s, . . . , 72)<B" is displayed on the computer screen as 2" '/,
+2" %5+« +2%,. We may sometimes interpret the element of B” as a “signed”
integer or a “floating point” real number. We, however, emphasize that these all are
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just a problem of interpretation, and classical computers are generally defined as maps
B"- B".

Quantum computers, defined in the next section, are a theoretical model which
quantizes B to C?, of which idea was originally introduced by Feynman[2] and Deutsch
[1]. As mentioned above, there are some algorithms that quantum computers can solve
essentially faster than classical ones. One reason, from a theoretical point of view, why
quantum computers are much faster than classical ones is that they can compute
quantum Fourier transforms very quickly. However, as far as our knowledge, there
cannot be found any literature that explains it as mathematicians easily read. Hence
we will give a brief sketch of the quantum Fourier transform in section 3. Finally we
shall analyze Grover’s quantum search algorithm in section 4. The present paper is a
part of a master’s thesis of the first author[7].

2 Quantum Computers

Quantum computers are the systems that have z-quantum bit (qubit) registers,
which are quantum mechanical analogue of B”. First, we define a qubit. However, the
n-qubit register is not just an n-direct product of copies of a qubit.

Let us prepare a two-dimensional vector space Q over C. Then an element ¢=Q
have a form that ¢=qoeo+ qre1, where {e1, e} is a fixed orthonormal base of Q and ¢:
€C (=0, 1). The basis e and e; are sometimes denoted by Dirac notations |0>and |1,
respectively, and called computational basis states. Since we fixed the base, we can
identify ¢&=Q by (g0, ¢1)EC? and Q by C? In this manner, we may, as usual, take e,=
(1, 0) and e=(0, 1)/, and ¢ is called a superposition (linear combination) of
computational basis states. A state of a qubit is defined as an element of Q.

We assume that, if g=e¢;, (=0, 1), we obtain the value /€ B after an observation
of the qubit, respectively. Moreover, if the state of a qubit i 1s g= (go, 1)t = C? we obtain
a result 0 (resp. 1) with probability W (resp. 2 14 + o ). That is to say, the
observation is a random variable Q- B. Operations allowed on a qubit need to be
unitary from the hypothesis of quantum mechanics.

It is now natural that an #-qubit is expressed by an element of Q". However, the
operations {7 : Q”—Q” must be unitary on each component of Q”, that is, I is an n-
linear map. Hence we are lead to a definition that »-qubit state is an element of Q®”

n
/—Mh—\
=QRQ® -+ ®Q rather than Q”, of which base forms {Ciimin=€1® ;@ +++ ® i, j:E
B,i=1,2, ..., n}. The base ej,j,...;, is sometimes denoted by 277 27 2y e e 2%
or |jij2+++jn> (binary notation) in the Dirac notation. Therefore we can say that a

quantum computer is a unitary operator on 2”-dimensional complex linear space.
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3 Quantum Fourier Transform

A key property to explain why quantum computers can solve problems much
faster than classical ones is based on the quantum Fourier transform, which is
essentially same with the usual discrete Fourier transform. Although the quantum
Fourier transform itself does not explicitly appear in the present paper, we believe it
worthy to give a brief review here as was mentioned in section 1. A systematic
treatment of this topic can be found in [8, Chapter 5].

Let us consider a complex vector space CV with the usual complex inner product
¢+,+>. We fix two orthonormal basis {e*; £=0, 1, ..., N—1} and {/*; £=0, 1, . . .,

N —1} defined by ef=20%,; and f; S exp _2md 1k , namely,
JN N
0
27y —1k-0 }
: eXp{ N
0 eXp{_Zﬂ'V-lk‘l}
N
1
1 k=11 d ff=—Fp= V—1k:
1) e O , and f m exp[* 2 Aflk 2}
B 27[«/—1/@-(2\/—1)}
exp 27k
0
N—-1
Definition 3.1. For an element xzijéo.rkek of CV, let c=(co, 1, . .., cv-1)'ECY be a
coordinate of x with respect to {f*}, that is,
Nl /1 kj
cr i =Xx, f’”‘>:ﬁ goxjez =

We call a map C¥—C" defined by x~ ¢ the discrete Fourier transform denoted by c=
&x.
Remark 3.1. The discrete Fourier transform is a linear map CY—-C" and its matrix

representation F' is given by

27/=10-0 274/ —10-1 27/—10-(N~—1)
e N e N e N
27d—1 1.1 27/ =111 2ny/—=11-(N—1)
e N e N e N
F: 1 27ty —12-1 274—12.1 2nd—12-(N—-1)
/N e N e N e N
2ny/=1(N~1)-0 2my/—1 (N—1)-1 2n/—T (N-1)(N-1)
e N e ¥ Sy S

Now let us regard the C¥, N=2" as a tensor product (C*®”. Then, using a base {eo
=(1, 0)!, e1=(0, 1)*} of C? the base {e¢’, j=0, 1, ..., N—1} of (C*®" has the following
representation : If j=2>12"", /i €B, ¢’=¢;,®¢;,®++* B ¢;,

=1
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Definition 3.2. The discrete Fourier transform on C” is called the quantum Fourier
transform when C*" is identified with C®”.

In this setting, we have the following proposition.
Proposition 3.1 ([8]). For the base e’=e;,®e;,®@ ++-®e;, of C®*, we have

o a1
%e-’: 2"@ ZEHJ

Proof. It is clear by definition that, if kzéZ"‘lkl and N=2",

i1 E 27y — 172" e+ 2" Pyt - +2°kn)}
%Q - ngoexp{ N
1

N1 27:»/—1;2" 1k zm/—uzn 2k 274/—1 j20kp

(2) :mkzoe e oy N (ek1®ek2®...®ekn)

2n—1 n Zm/T Shk2n-1
2 ().

However, since 255 =21 %,m0 2 kno1=0" * * 20k1=0, We can rewrite (2) as

2ny—1 jk

.7'_,71 n 1 2nd—T ke
Se'= @2 P en O

We will introduce the following convent1ons to see the above theorem can be
rewritten in an easier form: (jijz. . . jn)2: ‘EZ” Yy, and (0. jije. . . jn)2: Z‘.Z" 7;, which
are just binary notations of j. We sometimes omit the subscript 2 1f there is no
confusion.

Corollary 3.2. We have the following formula :

| 1 1 1
J1I2eeedt — v
Fe - /27 (QZKJ-I O.jn> ®(ezw—1 0.4n-14n ® ® 2T 0g1izeein |

4 Grover’s algorithm

Grover’s quantum search algorithm is to find a solution from an indexed database.
The elements of the database is expressed as a tensor product of two state vectors
(consisting of index and datum), and the goal is to find an index with a high probability.
In other words, the algorithm distinguish knowing the solution to a search problem
from being able to recognize the solution. Generally speaking, to recognize the solution
is much easier than knowing it. For example, Eratosthenes’ sieve is a simple search-
based algorithm for prime factorization. It is very easy to check a prime number in a
database is a divisor for the specified number. The detailed discussion of this topic can
be found in [8].

The first algorithm for quantum search is discovered by Grover[3] in 1996, and
extended later by himself[6] to be able to apply it to a multi-solution case, which is
also applicable to rapid sampling obeying arbitrary probability distribution.
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Let s€{0,1, ..., 2"—1} be a source and define ¢° in a same manner with (1). We
assume that we have m targets and they are given by £#<{0, 1, ..., 2"—1}, i=1, 2
., m. For given e°, we define a matrix Is by /—2e°®e®, where, to avoid the
complication of the notations, ¢°® e¢® denotes a matrix defined by e®-(e®)*. Note that,
in the Dirac notation, ¢°® e¢*=|s><s|. Similarly we define I, by [—Z;mlet"@) e"'EI—Em1
|t:><t:. For a fixed unitary matrix U=(Uj)sj=01,...2»—1, We moreover define a matrix @ :
=— I, U 'I,U, which we call Grover’s operator.
Then, simple computations lead us to

{Qes=<1—4g”z|ut,.s|2>es+zgml UnsU~ e,
Qé UnsU ™™= _Zi‘ﬂ Usl’e®+ é Uns U "

We can summarize it as

Qfer %ﬁUU@) (¢f L2 Ul leff)(l_4”2 _2u>,

Ui=1 2u 1

where u :=v 27| Ussl®, 0<u<1).

Lemma 4.1. For <N, we have
Q"(es 1 f}UtisU*e”)z(es 1 UtisU‘let">A",
U i=1 U i=1

1—4u® —2u
2u 1 )

Proof. By induction. L]

The goal of the searchmg problem is to find ¢#’s. That is to say, it would be ideal

where A=A(u) ::<

if we got 7 satisfying @’e S—;Z‘. UwsU e In general, it is impossible so that we will
try to maximize the probability with which we can observe the target states (#s).
Grover[6] showed y=nx/(4u) is optimal under a condition that « is sufficiently small,
which is achieved if the number N of items in the database is very large, and this time
u~yM/N . We shall, in the present paper, establish the probability to be able to
observe target states without any restriction.

Lemma 4.2. We can observe the target states with probability

A7+ 28

SR T PP R ) W N s W E PR Y

where A=1-2u*+2uvu*—1, and lo=1—2u"—2uyu’*—1.

Proof. 1t is clear that A, and {12 are eigenvalues 1of A and their corresponding
eigenvectors are given by (_ "y m) and <* -t m), respectively. Hence the
lemma comes immediately. ]
Theorem 4.3. Set X=X(u, n):=(n—1) arccos(1—2u?%. Then we have
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3 P(u,n)z[a—zuZ)sinXHuW COSX} /
[(m (1—4u2)cosX—|-u(4u2—3)sinX>2
+((1~2u2)sinX+2uM cosXﬂ.

Proof. Put AV=": ain+y —1b1s, (@15, b1,,€R). Then we get the following recurrence
formula :

@ {al,m.lz(l—ZuZ)al,n-2u\/1— u® by,
bl,n+1=2u«/ 1— Z{Z ai,n +(1 _27/52) bl,rz.

1—2u? —2uv1—u®
Since ( 5 ) ) is a rotation matrix, we can easily solve (4). Similar
2uvl—u 1—2u
computations can be done on Az, and combining them ensures the conclusion. []
100 : ' ' ‘ ' |

80+

40+

20

o

Fig. 1



Grover’s algovithm 47

Although P(u, 7) is defined on [0, 1] XN, it is clear that we can extend it on [0, 1]
X R+. We omit to show 0P/dn(u, n) since it is rather complicated, but it is possible to
show P(u, 7) is smooth with respect to 7. It seems hard to write down an explicit
formula of 7 to maximize P(u, ) for each fixed «. For our purpose, however, it is
enough to draw reliable pictures. Finally, we conclude the paper with showing some of
them.

The Fig. 1 on the former page is the contour of (3) with »EN (left axis) and v <&
(0, 1) (bottom axis), and the dark area means P(u«, 7)~0 and the bright (white) area
means P(u, 7)~1.

We may observe that, the bright area behaves as Grover already showed in [6] in
the left-bottom corner (left), but it does not in the right-bottom corner (right).

301
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Finally we will end the paper with showing two pictures of other regions. We may see
that the Grover’s algorithm is very sensitive in the sense that the bright and dark are
neighbors in many places.
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