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     We study a mechanism of symmetry reduction in a higher-dimensional field

theory upon orbifold compactification. Split multiplets appear unless all components in

a multiplet of a symmetry group have a common parity on an orbifold. A gauge

transformation property is also examined.

                           g 1. Introduction

   Recently, a new possibilityi) has been proposed to reconcile the coupling unification

scenario with the triplet-doublet mass splitting based on a 5-dimensional (5D) super-

symmetric (SUSY) model with SU(5) gauge symmetry. The minirnal supersymmetric

standard model (MSSM) is derived on a 4D wall through compactification on S'/(Z2×

Zll).") The excellent characteristics of this model have been studied."),'2)"") The key

features are as follows.

  @ Unless components in a muitiplet have a common Zh × a parity on the orbifold, the

   towest modes in 4D fields do not form full multiplets of SU(5). It realizes a triplet

   -doublet splitting and an SM-X,Y gauge multiplets splitting with a suitable

   assignment of &× Zll parity.

  @A specific type of SU(5) gauge symmetry exists on one of 4D walls (a visible wall)

   as well as in the bulk. It leads to a coupling unification at the zero-th order

   approxlmatlon.

  ee 5D bulk fields and 4D fields on the visible wall belong to some representations of

   SU(5). It guarantees the quantization of charge.

We expect that similar features hold in a class of higher-dimensional grand unified

theory (GUT) as suggested in Ref. 12). Concretely,

  1.Unless all components in a multiplet of some unified gauge group Gu have a

   ')Recently, Barbieri, Hall and Nomura have constructed a constrained standard model upon a

cempactification of a 5D SUSY model on the orbifold Sil(Z2 × Zi).2) They used Z2 × a parity to reduce

SUSY. There are also several worl<s on model building through a reduction of SUSY3)L'} by the use

of a discrete symmetry and a reduction of gauge symmetry8} by the use of Zh parity, Attempts to

construct unified models have been made through dimensional reduction over coset space.9) The study

of higher-dimensional SUSY grand unified theories traces back to the work by Fayet,'O}

  "')There are several works on the other tyPe of 5D unifed models with ID orbifold, i,e., 5D SU(5)

model with Si/Z28', 5D SU(5) model with Si/(ZhXa)i3' and 5D SUSY SU(5) moclel with Sila'`).



54 T. KAwAMoTo and Y, KAwAMuRA

   common parity on an orbifold, split multiplets appear after the integration of the

   extra space because the lowest modes, in general, do not form full multiplets of

   Gu･
  2.The higher-dimensional gauge symmetry is realized as an invariance under the

   gauge transformation whose gauge functions have a definite parity on an orbifold,

   and hence the gauge symmetry at some points on the orbifold turns out to be a

   reduced one whose generators are commutab!e to a parity operator.

   In this paper, we study the above features in GUTs on an orbifold, which would be

important for a construction of a realistic model and an exploration of the origin of

symmetries in the SM.

   This paper is organized as follows. In the next section, we study a mechanism of

symmnetry reduction due to an intrinsic parity on an orbifold. We discuss the reduction

of gauge symmetry, a gauge transformation property and its phenomenological impli-

cations in g3. Section 4 is devoted to conclusions and discussion.

                     g 2. Splitting from ZN parity

   The space-time is assumed to be factorized into a product of 4D Minkowski space

-time M` and the 2n-dimensional (2n-D) orbifold 02"iiii T2"/fiNZN, whose coordinates

are denoted by x" (pt = O,1,2,3) and gfi (pt" -- 1,2,･･･,2n),-respectively. The notation x" (n4 =

O,1,2,3,5,-･･,2n+4) is also used for coordinates. The orbifold 02" is obtained by dividing

a 2n-D torus T2n with Z>v rotations which are autornorphisms of T2".3) The ZN rotation

is diagonaiizable under a suitable complex basis (zi, z-b (i--1,2,･･･,n) for the extra

space and is given by the transformation z'.z"= e;'zj. Here ev' is an element of ZN

transformation written by

                di'=diag(exp 2ZftMi, exp 2rrfeM2 ,..., exp 2rrftni n)

                  =- diag( ei, a,･･･, 0n) (2el)
where mi are integers. The T2" is regarded as a 2n-D lattice that the point 2i is

identified with zi+nie; where ni are integers and ei are shift vectors on the Iattice.

There are points fixed by the discrete transformation. They are called fixed points,*)

which are denoted by afp and satisfy the relation 2tSp= ew'th' +nieL

   Here we study a field theory on 2D Zb orbifold as an example. The Zh orbifold is

obtained by dividing the SU(3) root iattice Iku{3) with a Zti rotation whose element is
0==exp 23ni. The shift vectors on ku(3) are given by 1 and toiiexp 2 3ni.*") Hence the

  '
   ')Since fixed points are singular points on the space, orbifolds are not manifolds, We assume that

this singularity does not cause any trouble in an underlying theory.

  "")As we take a normalization where a size of extra space equals that of l-ku{3), we should consider

that the compact space has a physical size 27[R on the estimation of a magnitude of physical

quantltles.
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following identification holds on the orbifold,

                          z"v z+1'v 2+ (v 'v cvz. (2e2)

There are three kinds of fixed points,

                                2+to 1+2ca                                          . (2"3)                          2lrp =: O,
                                 3, 3

An intrinsic Zb parity of the bull< field ip(x", 2, sl is defined by the transformation

                  di (x", z, z-) -. di (x", to2, w2e == Pip (x", z, zn) (2e4)

By definition, P possesses only the eigenvalues 1, to or to2. We denote the fields that are

eigenfunctions of P as dituo, iptoi, ditu2 where the subscript corresponds to the eigenvalue

of P. The 6D fields di.t(l=O,1,2) are Fourier expanded as

                     ip tui(x", z, A== 2 ip (.'IM'(x") fS;I (z, e (2e5)
                                n,m

where n and m are integers, and L9S(z, ;i) are eigenfunctions of P whose eigenvalues

are w`. The f):;I(2, 2) are written as

               12,,Y(2, ;i)=.Lim(z, al+Lim(toz, to2z-)+Lim(to22, cae, (2e6)

               .Lscl(z, z-)=f)im(z, e+ca2f}i7n(caz, to2e+w.Ltm(tu22, tozrm), (2e7)

               .LS;r(z, z-) == fL,.(z, e+ cvf},.(cvz, cv2sl+ cv2f),.(a)2z, (ve, (2es)

by the use of a function Am(z, z-) which satisfies periodic boundary conditions

                 f)im(z, ;i)= f;im(z+l, zF+1)= fhm(z+cv, z-+to2). (2eg)

The explicit form of .Lim(z, e is given by

            fLt.(2, z-)=exp( zi((n- n+v,I?iiM i)z+(n+ n+vt2:IM i)z-)). (2elo)

                                                       '

From the expressions (2e5)-(2elO), we find the following features of eigenfunctions.
  @The 4D fields ip(to'IM)(x") acquire mass (n2+ (n+32M)2)'t2/R upon compactification.

  @ The 4D fields with n= m=e (4D zero niodes) appear from 6D fields whose Zh parity

   is 1, i.e., the diteo(x", z, 'zH) has 4D zero mode.

  @ The 6D fields whose Zb parity is to or ca2 vanish on the fixed points, i.e., iptoi(x", 21,p,

   Z-Jp) =: ip.2(X", lp, }ilfp) == O.

Let us study the case in which a field di(x", z, e is an M-plet under some symmetry

group. The components of di are denoted by di=(ipi, ip2, ･･･, ipN.)T. The Zb transforma-

tion of ¢ is given by the same form as (2e4), but in this case P is an MXA() matrix

which satisfies P3=f, where I is the unit matrix. The Zb invariance of the Lagrangian

density does not necessarily require that P be proportional to 1. Unless all components

of di have a common Zi parity, the splitting in a multiplet occurs upon compactification



56 T, KAwAMoTo and Y, KAwAMuRA
because of the lack of zero modes in components with Zi parity other than one.

   The generalization on a model with a generic orbifold is straightforward. Hence,

we expect that in a class of higlaer-dimensional GUT on an orbij?)la unless all

components in a multiptet of some uniped gauge gromp Gu have a com7non Pan'ty on

an orbijiola split mzaltiplets aPPear dier the intagrtztion of the extrtz space because 2ero

modes, in genevaL clo not form focll nzultlZ)tets of Gu.

                 g 3. Gauge transformation property

   We apply the mechanism of symmetry reduction discussed in the previous section

to GUTs on M` × 02'i. Here we consider a non-SUSY model for simplicity. The SUSY

extension is straightforward. We take two basic assumptions. One is that the gauge

boson AM(x", zi, zH`)=Avax", z`, z-i) Ta and a scalar field di(x", zi, 2-b exist in the bulk.

Here the Ta are gauge generators and the di(x", zi, z-b belongs to a vector representa-

tion of a unified group Gu. The other is that our visible world is one of 4D walls at a

certain point on the orbifold and matter fields are located on the wall.

   The action integral is given by

                    S=fLbuikd`'2"x+;f£SS')d`'2"x, (3eD

                 ,C buik E!! - S tr]FhdiNF"N+IDMdi 12- V(1 di 12) (3e2)

where DMiiandind ig[u4IM(x"), gu is a (4+2n)-D gauge coupling constant and ,( SS'6) is a

contribution from the p-th 4D wall. The above Lagrangian density Lbutk is invariant

under a ZN transformation and a gauge transformation defined as follows. The Z)v

transformation for AM and di is given by

             A"(x", z`, z-b-A"(x", z'i, zm'i)=PA,(x", 2`, z-')P-i,

             Aai(x", zi, z-b-" Azt(x", z'i, z-'i) == 0iPAat(x", z`, 2-bPMi,

             Ai(x", zi, z-b-Ait(x", z'i, z-'b= 0tPAz-i(x", zl z'bPLi,

             ¢(x", 2i, 2-`) -> ¢(x", z'`, 2-' i) =z Pdi( tr", 2i, 2-i) (3e3)

where P is Z>y parity operator, 2'i-- 0i2` and z-'i= Piz-i. The gauge transformation for AM

and di is given by

         AM(x", zi, z-S-Aaf(x", 2i, z-b= UAM(xpt, z`, z-burmi+ Z                                                     UOMU-1,
                                                  9u
         di( v", zi, z-b. di'( u", 2i, ab =: Udi( v", zi, z-i) (3e4)

where U is a space-time dependent gauge transformation matrix. The Z)v transforma-

tion is, in general, not commutable to a gauge transformation with generic gauge

functions, unless P is proportional to the unit matrix. But, when there is a relation

pTap'i= 0k"Ta and the group structure constants faBr vanish for ka+kfi=t kr(mod N),

there survives a specific type of unified gauge symmetry, which is compatible with the
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ZN transformation, based on a gauge transformation matrix given by

                        U(x") -- exp( ieeak.(x") T a) (3e5)

where gauge functions6e"k.(x") are eigenfunctions with eigenvalue 0ka for ZN parity.

Actually the gauge transformation matrix (3e5) is obtained from the requirement that

a ZN parity of Afua and dik equals that of Afi and ¢k or that the ZAi parity assignment

of each component in a multiplet is preserved after the gauge transformation, i.e.,

                      PU([v", zi, z-i)=U(x", z'`, z-")P. (3e6)

The reduction of gauge symmetry occurs at a fixed point 2Sp because the #eak.(x") vanish

at 21fp for ka =f=O(mod N). The residual gauge group is a subgroup of Gu, whose

generators are commutable to ZN parity operator. The interaction on afp is constrained

from the symmetry there. For exaiinple, the Lagrangian density on tip should be

invariant under both ZAf parity and the residual gauge transformation.

   The above feature can be generalized in the case with a generic orbifold as a

statement that in higher-dimensional space-time, there exists a specijic mpe of unijied

gazrge symmet7y based on gaorge functions witla a dofnite Pardy on an orbtfold. Hl7nce

the gazrge symmet7fy is reduced to a smaller one wlaose genevators are commuinbte to a

Pardy opemtor at some Points on the o7btfald becablse some of gazrge .fatnctions vanish

there.

   Finally we discuss 4D particle spectrum of a model with Gu =SU(5) on Z}v orbifold.

When we take P=diag(ek, ek, ek,1,1) for k"O(mod N), the gauge symmetry is

reduced to that of the Standard Model, Gsnf =-=SU(3)× SU(2)× U(1), in 4D theory.*} This

is because some of the gauge generators Ta(a=1, 2, ''', 24) are not commutable with P,

             pTap-i= Ta, pT6+p-i=ek T6+, pTa'-p-i ,.. oLhTa- (3.7)

where the Ta are gauge generators of Gsnf and the Ta± are other gauge generators.

The Ztv parity assignment of 4D fields is given in Table I . The scalar field is divided

into two pieces : di is divided into the colored triplet piece, ipc, and the SU(2) doublet

piece, diw. In the second column, we give the SU(3)× SU(2) quantum numbers of the 4D

fields. In the third column, ZN parity of 4D fields is given. We find that the 4D massless

fields include SM gauge bosons A""<ag) and a weak Higgs doublet diXt) and that the triplet

-doublet mass splitting of the Higgs multiplets is realized by projecting out zero modes

of the colored components. Whether or not extra massless particles appear depends on

an assignment of ZN parity. Let us take 6D SU<5) GUTs as an example. In the case

with Zh orbifold, the SU(5) is reduced to GsM in 4D theory with P::=diag(to, to, w, 1, 1)

   ")Our symmetry reduction mechanism is regarded as a field-theoretic version of orbifold break-

ing mechanism in string theory3),'5}. There are worksi6} that study the relationship between our

symmetry reduction mechanism and Hosotani mechanismi7}.
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Table I 4D fields and Ziv ParitY.

4Dfields QuantuiTinumbers ZNparity

AZ(iinl) (8,1)+(1,3)+(1,1) 1

AZ",+(,i,fi) (3,2) 0k

A.tt-･("iul (S,2) 0-k

A:Sji,x)
(8,1)÷(I,3)÷(1,1) e,-i

A.ffi(,i,n) (3,2) eke,-i

A.M,-(,i,fi) (3,2) o-koii

AS,(,hrt) (8,1)+(1,3)+(1,1) e
,

A/1-A-(i}}ft) (3,2) okOi

A,fi.,-(,brt) (5,2) e-ke,

ip(c'"st) (3,1) ek
iptr,,r,) (1,2) 1

and the 4D massless fields consist of SM gauge bosons Apt"<OO), SM weak Higgs doubiet

ip(w'O) and extra 4D scalar fields (Al'(OO>, A".A--(OO)). In the case with a orbifold, the SU(5)

is reduced to GsM in 4D theory with P=diag(ik, i ik, 1, 1) for k=#O(mod 4). If we take

P=diag('i, i, i, 1, 1), extra 4D scalar fields appear. But if we take P= diag(-1, -1, -1,

1, 1), the 4D massless fields consist of SM gauge bosons Apta(OO) and SM weak Higgs

doublet ip(w'O). No extra 4D sca}ar fields appear.

                    g 4. Conclusions'aptd discussion

   We have studied a mechanism of symmetry reduction due to an intrinsic parity on

an orbifold. In a class of higher-dimensional GUT, unless all components in a multiplet

of some unified gauge group Gu have a common parity on an orbifold, split multiplets

appear after the integration of the extra space because zero modes do not form full

multiplets of Gu. We have discussed the reduction of unified gauge symmetry, gauge

transformation property and its phenomenological imp}ications. The higher-dimen-

sional gauge symmetry is realized as an invariance under the gauge transformation

whose gauge functions have a definite parity on an orbifold, and hence the gauge

symmetry at some points in the compact space turns out to be a reduced one whose

generators are commutable to a parity operator.

   The origin of a specific parity assignment is unknown, and we believe that it will

be explained in terms of some yet to be constructed underlying theory. The merit of

this type of symmetry reduction is that there might be no sizable contribution to the

vacuum energy upon compactification because there exists no field with a non-vanish-

ing VEV of O(Mc) in our model.") Here A4c is a compactification scale, which is related

   ')In the framework of supergravity theory, a large amount of (negative) vacuum energy can be

generated on the breakdown of a unified gauge symmetry by Higgs mechanism through the non-

vanishing VEV of the superpotential.
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to a unification scale Mu.

    To construct a more realistic model, it is reasonable to require the following

conditions on a 4D theory.

  @The coupling unification holds at the zero-th order approximation.

  @The quantization of charge is derived.

  ew The weak scale is stable against radiative corrections.

It is desirable that our 4D world is a specific point on an extra space where a unified

gauge symmetry survives from the first and second requirements. The stability of the

weal< scale can be guaranteed by a SUSY extention of a model. However, in a higher

-dimensional SUSY GUT, Higgs multiplet appears as a hypermultiplet and it is

difficult to project out all zero modes of colored Higgs multiplets by the use of a single

parity. Hence it would be quite interesting to study SUSY GUTs on a more complex

orbifoid constructed by dividing a torus with several discrete symmetries.
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