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We study a mechanism of symmetry reduction in a higher-dimensional field
theory upon orbifold compactification. Split multiplets appear unless all components in
a multiplet of a symmetry group have a common parity on an orbifold. A gauge
transformation property is also examined.

§ 1. Introduction

Recently, a new possibility? has been proposed to reconcile the coupling unification
scenario with the triplet-doublet mass splitting based on a 5-dimensional (5D) super-
symmetric (SUSY) model with SU(5) gauge symmetry. The minimal supersymmetric
standard model (MSSM) is derived on a 4D wall through compactification on S'/(Zz X
Z5).* The excellent characteristics of this model have been studied.*#** The key
features are as follows.

® Unless components in a multiplet have a common Z, X Z; parity on the orbifold, the
lowest modes in 4D fields do not form full multiplets of SU(5). It realizes a triplet

-doublet splitting and an SM-X,Y gauge multiplets splitting with a suitable

as'signmer‘lt' of ZxX Z; parity.

® A specific type of SU(5) gauge symmetry exists on one of 4D walls (a visible wall)
as well as in the bulk. It leads to a coupling unification at the zero-th order
approximation.

@ 5D bulk fields and 4D fields on the visible wall belong to some representations of

SU(). It guarantees the quantization of charge.

We expect that similar features hold in a class of higher-dimensional grand unified
theory (GUT) as suggested in Ref. 12). Concretely,
1.Unless all components in a multiplet of some unified gauge group Gy have a

*'Recently, Barbieri, Hall and Nomura have constructed a constrained standard model upon a
compactification of a 5D SUSY model on the orbifold S'/(Z:X Z3).» They used Z.X Z; parity to reduce
SUSY. There are also several works on model building through a reduction of SUSY®-" by the use
of a discrete symmetry and a reduction of gauge symmetry® by the use of Z; parity. Attempts to
construct unified models have been made through dimensional reduction over coset space.” The study
of higher-dimensional SUSY grand unified theories traces back to the work by Fayet.!®

**)'There are several works on the other type of 5D unifed models with 1D orbifold, i.e., 5D SU(5)
model with S'/Z,®, 5D SU(5) model with S'/(Z,X Z3)'® and 5D SUSY SU(5) model with S!/Z,!.
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common parity on an orbifold, split multiplets appear after the integration of the

extra space because the lowest modes, in general, do not form full multiplets of

Gy.

2.The higher-dimensional gauge symmetry is realized as an invariance under the
gauge transformation whose gauge functions have a definite parity on an orbifold,

and hence the gauge symmetry at some points on the orbifold turns out to be a

reduced one whose generators are commutable to a parity operator.

In this paper, we study the above features in GUTs on an orbifold, which would be
important for a construction of a realistic model and an exploration of the origin of
symmetries in the SM.

This paper is organized as follows. In the next section, we study a mechanism of
symmnetry reduction due to an intrinsic parity on an orbifold. We discuss the reduction
of gauge symmetry, a gauge transformation property and its phenomenological impli-
cations in §3. Section 4 is devoted to conclusions and discussion.

§ 2. Splitting from Zy parity

The space-time is assumed to be factorized into a product of 4D Minkowski space
-time M* and the 2#-dimensional (2#-D) orbifold 0**= T*/I1vZ~, whose coordinates
are denoted by x* (2=0,1,2,3) and y” (2=1,2,-*,2#), respectively. The notation ¥ (M =
0,1,2,3,5,---,2n+4) is also used for coordinates. The orbifold O*” is obtained by dividing
a 2n-D torus 7" with Zy rotations which are automorphisms of 7%".% The Zy rotation
is diagonalizable under a suitable complex basis (2, z) (i=1,2,--,%) for the extra
space and is given by the transformation z’— z'’=@jz’. Here 6} is an element of Zy
transformation written by

Hf:diag<exp 2ﬁjl\;;}/“,exp 27%”2,---, exp —%)
=diag(&, 6, 6) (2:1)

where m; are integers. The T2 is regarded as a 2x-D lattice that the point z° is
identified with z'+ #’e] where #' are integers and e are shift vectors on the lattice.
There are points fixed by the discrete transformation. They are called fixed points,*
which are denoted by z% and satisfy the relation zi= 8izk+ n'e}.

Here we study a field theory on 2D Z; orbifold as an example. The Z; orbifold is
obtained by dividing the SU(3) root lattice I'su with a Zs rotation whose element is

f=exp M. The shift vectors on sy are given by 1 and w=exp 2 %) Hence the
, 3 3

®Since fixed points are singular points on the space, orbifolds are not manifolds. We assume that
this singularity does not cause any trouble in an underlying theory.
**As we take a normalization where a size of extra space equals that of I'sys), we should consider
that the compact space has a physical size 22R on the estimation of a magnitude of physical
quantities.
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following identification holds on the orbifold,
z~zt+l~z+w~wz. (2°2)

There are three kinds of fixed points,

2p=0,25¢ 1120 (2-3)

An intrinsic Z; parity of the bulk field ¢(x”, 2z, 2) is defined by the transformation
p(z" 2, 2)> (2", wz, ©*2)=Pp(z*, 2, 2) (2-4)

By definition, P possesses only the eigenvalues 1, o or o® We denote the fields that are
eigenfunctions of P as ¢uwo, ¢ot, pwz Where the subscript corresponds to the eigenvalue
of P. The 6D fields ¢w(/=0,1,2) are Fourier expanded as

Pulz”, 7, 2)= 23 51 (2") fin(z, 2) (2-5)

where 7 and m are integers, and fi.(z, 2) are eigenfunctions of P whose eigenvalues

are w'. The fa(z, 2) are written as

Fel(z, 2= fun(z, 2)+F fanlwz, 0*2)+ fun(@®z, ©3), (2-6)
fz?;nl (Z, Z_) :fnm(Z, Z) + wzfnm((I)Z, C()ZZ) + a)fnm(a)zz, wZ), (2 ° 7)
f-’?;’lZ(Z, 2)= fun(2, 2)+ wfun(w2, w*2)+ Csznm(CUZZ, wZ), (2+8)

by the use of a function fan(z, Z) which satisfies periodic boundary conditions
fnm(Z, Z_) :fnm(2+ 1, Z"i'_ 1) :fnm(2+ w, Z_+ CUZ). (2 e 9)

The explicit form of fum(z, 2) is given by

Fam(2, z‘):exp<m'<<n~ n—;%m i>z+<n+ ”T/%m i)z)). (2-10)

From the expressions (2:5)-(2°10), we find the following features of eigenfunctions.
@ The 4D fields ¢%(x*) acquire mass (nZ—I—(LjLsz—m—)z)”Z/ R upon compactification.
@ The 4D fields with z=m=0 (4D zero niodes) appear from 6D fields whose Zs parity
is 1, ie., the duo(x”, 2, 2) has 4D zero mode.
@ The 6D fields whose Zs parity is w or @? vanish on the fixed points, i.e., dwi(x”, 25,
Zpp)= Quwr(x”, 25, Z)=0.
Let us study the case in which a field @(x*, z, 2) is an Ny-plet under some symmetry
group. The components of @ are denoted by @=(¢1, ¢z, ', dn,)7. The Zs transforma-
tion of @ is given by the same form as (2-4), but in this case P is an Ny X Ny matrix
which satisfies P*=17, where I is the unit matrix. The Zs invariance of the Lagrangian
density does not necessarily require that P be proportional to 7. Unless all components
of @ have a common Z; parity, the splitting in a multiplet occurs upon compactification
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because of the lack of zero modes in components with Zs parity other than one.

The generalization on a model with a generic orbifold is straightforward. Hence,
we expect that in a class of higher-dimensional GUT on an orbifold, unless all
components tn a multiplet of some unified gauge group Gy have a common parvity on
an orbifold, split multiplets appear after the integration of the extra space because zevo
modes, in generval, do not form full multiplets of Gu.

§ 3. Gauge transformation property

We apply the mechanism of symmetry reduction discussed in the previous section
to GUTs on M*x O*. Here we consider a non-SUSY model for simplicity. The SUSY
extension is straightforward. We take two basic assumptions. One is that the gauge
boson Am(x”, 2, 9= Alx", 2, 2)T* and a scalar field @(x* z°, z) exist in the bulk.
Here the T are gauge generators and the @(x*, 2, Z°) belongs to a vector representa-
tion of a unified group Gu. The other is that our visible world is one of 4D walls at a
certain point on the orbifold and matter fields are located on the wall.

The action integral is given by

= [Lowd**z+3 [ La*z, (3+1)

Louse=— %trFMNFMN%- | D@ — V(| 0) (3+2)

where Dy =0y — iguAul(z™), gv is a (4+2#)-D gauge coupling constant and L% is a

contribution from the p-th 4D wall. The above Lagrangian density L suu is invariant
under a Zy transformation and a gauge transformation defined as follows. The Zy
transformation for Ay and @ is given by

Aulx”, 2, 2) > Aulx®, 2%, )= PAu(x", 2, 2P,
Az, 25 ) Anlz?, 2 ZH)=0r'PAxx", 2°, 2P,
#x”, 2, 2 Asx”, 2% 2= 0.PAx" 2, )P,
O(x*, 2%, 20> O(x", 2%, 2= PO(xz", 2%, Z) {3-3)

-

where P is Zy parity operator, 2= 62" and 7°= 8:2'. The gauge transformation for Axy

and @ is given by

Aulx*, 2%, 2 Aidz*, 2%, 2)= UAn(z*, 2, 2) U™+ giu UdnU™,

O(x", 2, 29— O'(x", 2, 2= Ud(x*, 7', 7)) (3-4)
where U is a space-time dependent gauge transformation matrix. The Zy transforma-
tion is, in general, not commutable to a gauge transformation with generic gauge
functions, unless P is proportional to the unit matrix. But, when there is a relation

PT*P~'=g*T*% and the group structure constants f*’ vanish for £e«+ ks k{mod N),
there survives a specific type of unified gauge symmetry, which is compatible with the
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Zy transformation, based on a gauge transformation matrix given by
Ulx™y=exp(i€&{x™ T (3¢5)

where gauge functionsé&g{x") are eigenfunctions with eigenvalue 6% for Zy parity.
Actually the gauge transformation matrix (3-5) is obtained from the requirement that
a Zn parity of Aif and @ equals that of A% and @ or that the Zy parity assignment
of each component in a multiplet is preserved after the gauge transformation, i.e.,

PU(z", 2%, 2)=U(x", 2%, ZHP. (3-6)

The reduction of gauge symmetry occurs at a fixed point zj because the £5.{x") vanish
at z5 for k.+0(mod N). The residual gauge group is a subgroup of Gy, whose
generators are commutable to Zx parity operator. The interaction on zk is constrained
from the symmetry there. For example, the Lagrangian density on 2% should be
invariant under both Zy parity and the residual gauge transformation.

The above feature can be generalized in the case with a generic orbifold as a
statement that i higher—dimensional space-time, therve exists a specific type of unified
gauge symmetry based on gauge funclions with a definite parity on an ovbifold. Hence
the gauge symmetry is reduced to a smaller one whose generators are commaultable to a
parity operator at some poinits on the orvbifold because some of gauge functions vanish
there. ‘

Finally we discuss 4D particle spectrum of a model with Gy = SU(5) on Zy orbifold.
When we take P=diag(8%, 6%, 6% 1,1) for k=+0(mod N), the gauge symmetry is
reduced to that of the Standard Model, Gsy = SU(3)X SU(2)X (1), in 4D theory.® This
is because some of the gauge generators 7% a=1, 2, --+, 24) are not commutable with P,

pPTep-t= Ta, PTﬁ+P~1: Q" Tﬁ+, PTﬁ—P—lz Q‘kTﬁ‘ (3‘7)

where the T¢ are gauge generators of Ges and the 7% are other gauge generators.
The Zy parity assignment of 4D fields is given in Table I. The scalar field is divided
into two pieces: @ is divided into the colored triplet piece, ¢¢, and the SU(2) doublet
piece, ¢w. In the second column, we give the SU(3) X SU(2) quantum numbers of the 4D
fields. In the third column, Zy parity of 4D fields is given. We find that the 4D massless
fields include SM gauge bosons A%™ and a weak Higgs doublet ql')(ﬁg) and that the triplet
-doublet mass splitting of the Higgs multiplets is realized by projecting out zero modes
of the colored components. Whether or not extra massless particles appear depends on
an assignment of Zy parity. Let us take 6D SUB) GUTs as an example. In the case
with Zs orbifold, the SU(5) is reduced to Gsw in 4D theory with P=diag(w, », o, 1, 1)

*0ur symmetry reduction mechanism is regarded as a field-theoretic version of orbifold break-
ing mechanism in string theory®,'”. There are works'® that study the relationship between our
y
symmetry reduction mechanism and Hosotani mechanism'?.
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Table I 4D fields and Zy Parity.

4D fields | Quantum numbers | Zy parity
A8y H(1,3)+(1,1) |1
Azlt-(»in‘l) (32) (9k
AL (5 9) g
AT ED)FA3) AL |6
A (3,2) o460
A;?l-(ﬁn‘l) (3'2) e—kgl—l
AZ D4+, +HLY |6
AGHI (3 9) 846,
AL (32) 676,
¢(Cﬁn'r) (3’1) J213
&7 |1 1

and the 4D massless fields consist of SM gauge bosons A%, SM weak Higgs doublet
#%” and extra 4D scalar fields (A5, A2, In the case with Z orbifold, the SU(5)
is reduced to Gsy in 4D theory with P=diag(:*, %, 7%, 1, 1) for £k=0(mod 4). If we take
P=diag(7, ¢, 7,1, 1), extra 4D scalar fields appear. But if we take P=diag(—1, —1, —1,
1,1), the 4D massless fields consist of SM gauge bosons A and SM weak Higgs
doublet ¢%”. No extra 4D scalar fields appear.

§ 4. Conclusions and discussion

We have studied a mechanism of symmetry reduction due to an intrinsic parity on
an orbifold. In a class of higher-dimensional GUT, unless all components in a multiplet
of some unified gauge group Gy have a common parity on an orbifold, split multiplets
appear after the integration of the extra space because zero modes do not form full
multiplets of Gy. We have discussed the reduction of unified gauge symmetry, gauge
transformation property and its phenomenological implications. The higher-dimen-
sional gauge symmetry is realized as an invariance under the gauge transformation
whose gauge functions have a definite parity on an orbifold, and hence the gauge
symmetry at some points in the compact space turns out to be a reduced one whose
generators are commutable to a parity operator.

The origin of a specific parity assignment is unknown, and we believe that it will
be explained in terms of some yet to be constructed underlying theory. The merit of
this type of symmetry reduction is that there might be no sizable contribution to the
vacuum energy upon compactification because there exists no field with a non-vanish-
ing VEV of O(M¢) in our model.® Here Mc is a compactification scale, which is related

*n the framework of supergravity theory, a large amount of (negative) vacuum energy can bhe
generated on the breakdown of a unified gauge symmetry by Higgs mechanism through the non-
vanishing VEV of the superpotential.
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to a unification scale My.
To construct a more realistic model, it is reasonable to require the following

conditions on a 4D theory.

® The coupling unification holds at the zero-th order approximation.

@ The quantization of charge is derived.

@ The weak scale is stable against radiative corrections.
It is desirable that our 4D world is a specific point on an extra space where a unified
gauge symmetry survives from the first and second requirements. The stability of the
weak scale can be guaranteed by a SUSY extention of a model. However, in a higher
—-dimensional SUSY GUT, Higgs multiplet appears as a hypermultiplet and it is
difficult to project out all zero modes of colored Higgs multiplets by the use of a single
parity. Hence it would be quite interesting to study SUSY GUTs on a more complex
orbifold constructed by dividing a torus with several discrete symmetries.
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