Some homotopy groups of the mod 4 Moore space

Juno MUKAI and Tomohiro SHINPO*

Department of Mathematical Sciences, Faculty of Science, Shinshu University (Received July 15, 1999)

Abstract

Let M^n be a Moore space of type (\mathbb{Z}_4 , n-1). We calculate the homotopy groups $\pi_{2n-k}(M^n)$ in the range k=3, 4 and $n \leq 24$. The methods are based on Toda's composition methods and we use Gray's cellular structure of the homotopy fiber of the pinching map from M^n to an *n*-sphere S^n and also use James' exact sequence including a relative homotopy group $\pi_*(M^n, S^{n-1})$.

1 Introduction and summary

We denote by $\iota_n \in \pi_n(S^n)$ the homotopy class of the identity map of S^n and by $M_q^n = S^{n-1} \cup_{q\iota_{n-1}} e^n$ a Moore space of type $(\mathbb{Z}_q, n-1)$. In particular we set $M^n = M_4^n$. The purpose of the present note is to determine the stable group $\pi_{2n-4}(M^n) \cong \pi_{n-2}^s(M^2)$ and the metastable group $\pi_{2n-3}(M^n)$ for $n \leq 24$. For example, the notation $(\mathbb{Z}_4)^r \oplus (\mathbb{Z}_2)^s$ or $4^r + 2^s$ means the abelian group

$$\underbrace{\mathbf{Z}_4 \oplus \cdots \oplus \mathbf{Z}_4}_r \oplus \underbrace{\mathbf{Z}_2 \oplus \cdots \oplus \mathbf{Z}_2}_s.$$

Our result is stated as follows.

Theorem 1.1 $\pi_{n-2}^{s}(M^2) \cong \pi_{2n-4}(M^n) \cong (\mathbb{Z}_4)^r \oplus (\mathbb{Z}_2)^s$, where r and s are given in the following table.

		A											
п	3	4	5	6	7	8	9	10	11	12	13	14	15
r	1	0	0	1	1	0	0	1	1	0	0	1	1
S	0	1	2	1	0	0	1	1	2	5	4	1	0
п	16	17	18	19	20	21	22	23	24	25			
r	0	0	1	1	0	1	2	2	1	0			
s	0	2	3	3	6	5	2	1	2	4			

^{*}The second author is a student of the first.

Theorem 1.2 (i) $\pi_{2n-3}(M^n)$ for $n \le 10$ is isomorphic to the group G in the following table.

n	2	3	4	5	6	7	8	9	10
G	4	8	2²	$8 + 2^{2}$	4 + 2	4	2	$8 + 2^{2}$	$4+2^{3}$

(ii) $\pi_{2n-3}(M^n) \cong (\mathbb{Z}_4)^r \oplus (\mathbb{Z}_2)^s$ for $n \ge 11$, where r and s are given in the following table.

п	11	12	13	14	15	16	17	18	19	20	21	22	23	24
r	1	0	2	1	1	1	2	1	1	1	3	2	2	0
s	5	5	1	1	0	1	3	4	6	6	2	2	2	5

We determine $\pi_{2n-2}(M^n)$ for $3 \le n \le 7$.

Proposition 1.3 $\pi_4(M^3) \cong (\mathbb{Z}_2)^2$, $\pi_6(M^4) \cong \mathbb{Z}_8 \oplus (\mathbb{Z}_2)^2$, $\pi_8(M^5) \cong \mathbb{Z}_4 \oplus (\mathbb{Z}_2)^2$, $\pi_{10}(M^6) \cong \mathbb{Z}_8 \oplus \mathbb{Z}_2$ and $\pi_{12}(M^7) \cong \mathbb{Z}_2$.

Our result overlaps with that of Baues-Buth [4]. The result of Theorem 1.2 for n = 5 and 9 corrects the corresponding result of Shinpo [13].

Our method is to use the composition methods developed by Toda [15]. We use the second stage in the cellular decomposition of the homotopy fiber of the collapsing map $p: M^n \to S^n$ obtained by Gray [6]. We also use the James exact sequence (James [7]) including the relative homotopy group $\pi_*(M^n, S^{n-1})$. The key step determining the group extension of $\pi_*(M^n)$ is Lemma 2.5 which ensures that elements of $\pi_*(M^n)$ induced from those of $\pi_*(M_2^n)$ with lifts ([10]) are of order 2. We use the notations and the results of [15], [9] and [8] freely.

2 Fundamental facts

For a pair of spaces (X, A), let $i_{A,X}: A \to X$ be the inclusion and $p_{X,A}: X \to X/A$ be the map pinching A to one point. In particular we set $i_n = i_{A,X}$ and $p_n = p_{X,A}$ for (X, A) $= (M_q^n, S^{n-1})$. Let ι'_n be the identity class of M_q^n . Let $\eta_2 \in \pi_3(S^2)$ be the Hopf map and η_n $= \sum^{n-2} \eta_2$ for $n \ge 2$. For integers a and b, we denote by (a, b) the greatest common divisor of a and b. We set $\eta = \sum^{\infty} \eta_2$, $\iota' = \sum^{\infty} \iota'_2$, $i = \sum^{\infty} i_2$ and $p = \sum^{\infty} p_2$. Then, as is well known ([2]),

$$\{M_q^2, M_q^2\} = \mathbf{Z}_q\{\iota'\} \oplus \mathbf{Z}_{(q,2)}\{i\eta p\} (q \neq 2 \mod 4)$$

and

$$\{M_q^2, M_q^2\} = \mathbb{Z}_{2q}\{\iota'\} (q \equiv 2 \mod 4).$$

Although we know the group structure of $[M_q^3, M_q^3]$ by Corollary III.D.15 of [3] or by Proposition 11 of [1], we show the following.

Lemma 2.1 (i) $[M_q^3, M_q^3] = \mathbb{Z}_q\{\iota_3\} \oplus \mathbb{Z}_q\{i_3\eta_2p_3\}$ for $q \equiv 2 \mod 4$. (ii) $[M_q^3, M_q^3] = \mathbb{Z}_{2q}\{\iota_3\} \oplus \mathbb{Z}_{\frac{q}{2}}\{ai_3\eta_2p_3 - 2\iota_3\}$ for $q \equiv 2 \mod 4$, where a is an odd integer.

Proof. First we note that $[M_q^3, M_q^3] \cong [M_q^2, \Omega M_q^3]$ is abelian by making use of Theorem X.3.10 of [16].

By Proposition 7.1 of [12], the order of ι'_3 is q or 2q according as $q \neq 2 \mod 4$ or $q \equiv 2 \mod 4$. We have $\pi_2(M_q^3) = \mathbb{Z}_q\{i_3\}$. We consider the following exact sequence induced from the cofibration starting with $q\iota_2$:

$$0 \longleftarrow \pi_2(M_q^3) \stackrel{i_3^*}{\longleftarrow} [M_q^3, M_q^3] \stackrel{p_3^*}{\longleftarrow} \pi_3(M_q^3) \stackrel{q_{13^*}}{\longleftarrow} \pi_3(M_q^3).$$

By [14], $\pi_3(M_q^3) = \mathbb{Z}_{(2q,q^2)}\{i_3\eta_2\}$. So the assertion (i) is obtained.

Next assume that $q \equiv 2 \mod 4$. Then, in the above exact sequence, we have $qt'_3 = xi_3\eta_2p_3$ for an integer x. By stabilizing the relation, we have $qt' = xi\eta p$ and so x becomes odd. Since $0 = 2qt'_3 = 2xi_3\eta_2p_3$ and $i_3\eta_2p_3$ is of order q, we can set 2x = aq for an odd integer a. So we have the relation $qt'_3 = a \cdot \frac{q}{2}i_3\eta_2p_3$, and hence the element $ai_3\eta_2p_3 - 2t'_3$ is of order $\frac{q}{2}$. This leads to (ii), completing the proof. \Box

Let *F* be the homotopy fiber of the map $p_n: M_q^n \to S^n$. According to [6], *F* has a homotopy type of a CW-complex $S^{n-1} \cup e^{2(n-1)} \cup e^{3(n-1)} \cup \cdots$ and the subcomplex $Y = S^{n-1} \cup e^{2(n-1)}$ of the second stage has the following cell structure.

Lemma 2.2

$$Y = S^{n-1} \cup_{q[\iota_{n-1}, \iota_{n-1}]} e^{2n-2},$$

where [,] is the Whitehead product.

The following sequence is exact for $k \leq 2n-5$ $(i=i_{Y,M\emptyset})$:

$$\pi_{n+k+1}(S^n) \xrightarrow{\Delta} \pi_{n+k}(Y) \xrightarrow{i_*} \pi_{n+k}(M^n_q) \xrightarrow{p_{n*}} \pi_{n+k}(S^n).$$
(1)

We have a formula

$$\Delta(\alpha \circ \Sigma \beta) = \Delta(\alpha) \circ \beta \ (\alpha \in \pi_m(S^n), \ \beta \in \pi_{n+k}(S^{m-1})).$$
(2)

We set $i' = i_{S^{n-1},Y}$.

Lemma 2.3 $\Delta \iota_n = qi' \text{ for } n \geq 3.$

Proof. We consider the exact sequence (1) for k = -1:

$$\pi_n(S^n) \xrightarrow{\Delta} \pi_{n-1}(Y) \xrightarrow{i_*} \pi_{n-1}(M_q^n) \longrightarrow 0$$

Since $\pi_{n-1}(Y) = \mathbb{Z}\{i'\}$ and $\pi_{n-1}(M_q^n) = \mathbb{Z}_q\{i_n\}$, we have the assertion. \square

Next we show the following result overlapping with that of [14].

Lemma 2.4 $\pi_n(M_q^n) = \{i_n \eta_{n-1}\} \cong \begin{cases} \mathbf{Z}_{(2q,q^2)} & (n=3) \\ \mathbf{Z}_{(q,2)} & (n \ge 4). \end{cases}$

Proof. We consider the exact sequence (1) for k=0:

$$\pi_{n+1}(S^n) \xrightarrow{\Delta} \pi_n(Y) \xrightarrow{i_*} \pi_n(M^n_q) \xrightarrow{p_{n*}} \pi_n(S^n).$$

Since $\pi_n(M_q^n) = i_{n_*} \pi_n(S^{n-1})$, p_{n_*} is trivial and i_* is an epimorphism. Note that $q\iota_2 \circ \eta_2 = q^2 \eta_2$. So, by (2) and Lemma 2.3, we have

$$egin{aligned} &\Delta\eta_3 = \Delta\iota_3 \circ \eta_2 \ &= qi' \circ \eta_2 \ &= i' \circ q\iota_2 \circ \eta_2 \ &= q^2i'\eta_2. \end{aligned}$$

Since $\pi_3(Y) = \mathbb{Z}_{2q}\{i'\eta_2\}$, we have $\pi_3(M_q^3) \cong \pi_3(Y)/(\mathrm{Im}\Delta) \cong \mathbb{Z}_{(2q,q^2)}$.

For $n \ge 4$, we have $\pi_n(Y) = \mathbb{Z}_2\{i'\eta_{n-1}\}$ and

$$\Delta \eta_n = \Delta \iota_n \circ \eta_{n-1}$$

= $qi' \circ \eta_{n-1}$
= $qi' \eta_{n-1}$.

This leads to the assertion, completing the proof. \Box

Assume that q is even and set $q' = \frac{q}{2}$. Then we consider the following commutative diagram between the cofiber sequences:

Here $p: M_2^n \to S^n$ is the collapsing map, $i: S^{n-1} \to M_2^n$ is the inclusion and $c_n: M_2^n \to M_q^n$ is the natural map.

When there exists an element $\beta \in \pi_k(M_q^n)$ satisfying $p_n\beta = \alpha$ for a given element $\alpha \in \pi_k(S^n)$, β is called a lift of α . A lift β is written as $[\alpha]$. Now we show a sharper result than that of Lemma 3.3 of [13].

Lemma 2.5 Let $q \equiv 0 \mod 4$, $q' = \frac{q}{2}$ and $n \geq 3$. Suppose that $\alpha \in \pi_k(S^n)$ has a lift $[\alpha] \in \pi_k(M_2^n)$. Then $c_n[\alpha] \in \pi_k(M_q^n)$ is a lift of α . Moreover, if $2[\alpha] = 0$ or $2[\alpha] = i\eta_{n-1}\alpha$, then $c_n[\alpha] \in \pi_k(M_q^n)$ is of order 2.

Proof. By the diagram (3), we have $p_n \circ c_n \circ [\alpha] = p[\alpha] = \alpha$. If $2[\alpha] = 0$, then $2c_n[\alpha] = 0$. Suppose that $2[\alpha] = i\eta_{n-1}\alpha$. Then we have $2c_n[\alpha] = c_n \circ i \circ \eta_{n-1} \circ \alpha = i_n \circ q' \iota_{n-1} \circ \eta_{n-1} \circ \alpha = 0$ for $n \ge 4$. Note that $2\iota_n \circ \alpha = 0$ if α is lifted to M_2^n ([10]). For n = 3, we have

$$2c_{3}[\alpha] = c_{3} \circ i \circ \eta_{2} \circ \alpha$$

= $i_{3} \circ q' \iota_{2} \circ \eta_{2} \circ \alpha$
= $i_{3} \circ \eta_{2} \circ (q')^{2} \iota_{3} \circ \alpha$
= $0.$

This completes the proof. \Box

The following elements are known to be lifted to M_2^n ([10]): $\eta_n (n \ge 3)$, $\nu_n^2 (n \ge 5)$, $\varepsilon_n (n \ge 4)$, $\bar{\nu}_n (n \ge 7)$, $\mu_n (n \ge 4)$, $\kappa_n (n \ge 11)$, $\sigma_n^2 (n \ge 17)$, $\omega_n (n \ge 15)$, $\bar{\mu}_n (n \ge 4)$, $\bar{\sigma}_n (n \ge 8)$. The problem whether ε_3 , μ_3 , $\bar{\mu}_3$ can be lifted to M_2^3 and $\bar{\sigma}_7$ can be lifted to M_2^7 is open ([10]).

3 Proof of the theorems

A lift of an element $\alpha_n \in \pi_k(S^n)$ is also denoted as $\tilde{\alpha}_{n-1} \in \pi_k(M_q^n)$. We recall that $\pi_4(M_2^3)$ is isomorphic to \mathbb{Z}_4 and it is generated by a lift $\tilde{\eta}_2$ of η_3 and $2\tilde{\eta}_2 = i\eta_2^2$. We show the following ([4]).

Example 3.1 $\pi_4(M_q^3) = \mathbb{Z}_2\{c_3\tilde{\eta}_2\} \oplus \mathbb{Z}_2\{i_3\eta_2^2\}$ for $q \equiv 0 \mod 4$.

Proof. We consider the exact sequence (1) for n=3 and k=1:

 $\pi_5(S^3) \xrightarrow{\Delta} \pi_4(Y) \xrightarrow{i_*} \pi_4(M_q^3) \xrightarrow{p_{3*}} \pi_4(S^3).$

By (2) and the proof of Lemma 2.4, we have

$$\Delta(\eta_3^2) = \Delta \eta_3 \circ \eta_3 = q^2 i' \eta_2 \circ \eta_3 = 0.$$

Obviously $\pi_4(Y) = \mathbb{Z}_2\{i'\eta_2^2\}$. By Lemma 2.5 for η_3 , $c_3\tilde{\eta}_2$ is of order 2. This completes the proof. \Box

Hereafter we shall work in the 2-primary components of homotopy groups, unless otherwise stated.

The stable group $\pi_k^s(M^2)$ has the exponent 4 because $4\iota'=0 \in \{M^2, M^2\}$. By making use of the exact sequence induced from the cofibration starting with $4\iota_1$, we can

determine the stable group $\pi_k^s(M^2)$ for $k \le 23$. For example, we determine the group in the case of k=3, 4, 8 and 17. The rest of Theorem 1.1 is obtained by the similar argument.

Example 3.2 (i) $\pi_3^{s}(M^2) = \mathbb{Z}_2\{\tilde{\eta}\} \oplus \mathbb{Z}_2\{i\eta^2\}$ and $\pi_4^{s}(M^2) = \mathbb{Z}_2\{\tilde{\eta}\eta\} \oplus \mathbb{Z}_4\{i\nu\}.$

(ii) $\pi_8^{\mathcal{S}}(M^2) = \mathbb{Z}_4\{i\sigma\} \oplus \mathbb{Z}_2\{\widetilde{\nu}^2\}.$

(iii) $\pi_{17}^{s}(M^2) = \mathbb{Z}_4\{\widetilde{8\rho}\} \oplus \mathbb{Z}_2\{\widetilde{\eta}\kappa\} \oplus \mathbb{Z}_2\{i\eta^*\} \oplus \mathbb{Z}_2\{i\eta\rho\}, \text{ where } \widetilde{8\rho} \text{ is a coextension of } 8\rho.$

Proof. The first half of (i) is easily obtained.

In the exact sequence

$$\cdots \xrightarrow{4\iota_*} \pi_4^S(S^1) \xrightarrow{i_*} \pi_4^S(M^2) \xrightarrow{p_*} \pi_4^S(S^2) \longrightarrow 0,$$

we have $p_*(\tilde{\eta}\eta) = \eta^2$ and the order of $i\nu$ is 4. This leads to the second half of (i). In the exact sequence

In the exact sequence

$$\cdots \xrightarrow{4\iota_*} \pi_8^S(S^1) \xrightarrow{i_*} \pi_8^S(M^2) \xrightarrow{p_*} \pi_8^S(S^2) \longrightarrow 0,$$

we know $\pi_8^{\mathfrak{S}}(S^2) = \mathbb{Z}_2\{\nu^2\}$ and $\pi_8^{\mathfrak{S}}(S^1) = \mathbb{Z}_{16}\{\sigma\}$. The order of $i\sigma$ is 4. The order of $\tilde{\nu}^2 = \sum^{\infty} (c_5 \tilde{\nu}_4^2)$ is 2 because $\tilde{\nu}_4^2 \in \pi_{11}(M_2^5)$ is of order 2 ([10]). This leads to (ii).

In the exact sequence

$$0 \longrightarrow \pi_{17}^{S}(S^{1}) \xrightarrow{i_{*}} \pi_{17}^{S}(M^{2}) \xrightarrow{p_{*}} \pi_{17}^{S}(S^{2}) \xrightarrow{4\iota_{*}} \cdots$$

we know $\pi_{17}^{\text{s}}(S^2) = \mathbb{Z}_{32}\{\rho\} \oplus \mathbb{Z}_2\{\eta\kappa\}$ and $\pi_{17}^{\text{s}}(S^1) = \mathbb{Z}_2\{\eta\kappa\} \oplus \mathbb{Z}_2\{\eta\rho\}$. Since $p_*\widetilde{8\rho} = 8\rho$, the order of $\widetilde{8\rho}$ is 4. This leads to (iii), completing the proof. \Box

We show

Lemma 3.3 $\pi_7(M^5) = \mathbb{Z}_8\{i_5\nu_4\} \oplus \mathbb{Z}_2\{i_5\sum\nu'\} \oplus \mathbb{Z}_2\{\tilde{\eta}_4\eta_6\}.$

Proof. In the exact sequence (1) for n=5, k=2:

$$\pi_8(S^5) \xrightarrow{\Delta} \pi_7(Y) \xrightarrow{i_*} \pi_7(M^5) \xrightarrow{p_{5*}} \pi_7(S^5),$$

we have $p_{5*}(\tilde{\eta}_4 \eta_6) = \eta_5^2$ and $\pi_7(Y) = \mathbb{Z}_8\{i'\nu_4\} \oplus \mathbb{Z}_{12}\{i'\Sigma\nu'\}$ because $4[\iota_4, \iota_4] = 8\nu_4$. Here, by abuse of notation, $\Sigma\nu'$ stands for a generator of the direct summand Z_{12} of $\pi_7(S^4)$.

By Theorem XI.8.9 of [16], we have $4\iota_4 \circ \nu_4 = 4\nu_4 + 6[\iota_4, \iota_4] = 16\nu_4 - 6\sum \nu'$. So we have $\Delta \nu_5 = \Delta \iota_5 \circ \nu_4 = 4i' \circ \nu_4 = -6i' \sum \nu'$. This leads to the group $\pi_7(M^5)$, completing the proof.

Let A be a connected CW-complex and $X=A \cup e^n$ be the complex formed by attaching an *n*-cell. Let CY be the reduced cone of a pointed space Y. For an element

 $\alpha \in \pi_{k-1}(Y)$, we denote by $\hat{\alpha}' \in \pi_k(CY, Y)$ an element satisfying $\partial \hat{\alpha}' = \alpha$, where $\partial : \pi_k(CY, Y) \rightarrow \pi_{k-1}(Y)$ is the connecting isomorphism. Let $\omega \in \pi_n(X, A)$ be the characteristic map of the *n*-cell e^n of X. For $\alpha \in \pi_{k-1}(S^{n-1})$, we set $\hat{\alpha} = \omega \hat{\alpha}' \in \pi_k(X, A)$. Let $\omega \in \pi_n(M^n, S^{n-1})$ and $\gamma \in \pi_n(M_2^n, S^{n-1})$ be the characteristic maps of the *n*-cells of M^n and M_2^n respectively. Let $[\omega, \iota_{n-1}] \in \pi_{2n-2}(M^n, S^{n-1})$ be the relative Whitehead product ([5]). Then, by (3) and [5], we can take $\omega = c_n \gamma$ and we have

$$c_n[\gamma, \iota_{n-1}] = 2[\omega, \iota_{n-1}]. \tag{4}$$

Let $j: (M^n, *) \rightarrow (M^n, S^{n-1})$ be the inclusion. We show

Lemma 3.4 $\pi_{15}(M^9) = \mathbb{Z}_8\{i_9\sigma_8\} \oplus \mathbb{Z}_2\{i_9\sum \sigma'\} \oplus \mathbb{Z}_2\{\widetilde{\nu_8}^2\}.$

Proof. We consider the homotopy exact sequence of pair (M^9, S^8) :

$$\pi_{16}(M^9, S^8) \xrightarrow{\partial} \pi_{15}(S^8) \xrightarrow{i_{9*}} \pi_{15}(M^9) \xrightarrow{j_*} \pi_{15}(M^9, S^8).$$

Since $\pi_{15}(M^9, S^8) = \mathbb{Z}_2(\widehat{\nu_8^2})$ and $j_* \widetilde{\nu_8^2} = \widehat{\nu_8^2}$, j_* is a spilit epimorphism. By Theorem 2.1 of [7], $\pi_{16}(M^9, S^8)$ is generated by elements $\widehat{\sigma_8}$ and $[\omega, \iota_8]$. By Theorem XI.8.9 of [16], $\partial \widehat{\sigma_8} = 4$ $\iota_8 \circ \sigma_8 = 4\sigma_8 + 6[\iota_8, \iota_8] = 16\sigma_8 - 6\sum \sigma'$. By [5], $\partial [\omega, \iota_8] = -4[\iota_8, \iota_8] = -8\sigma_8 + 4\sum \sigma'$. So we have

 $\partial(\hat{\sigma}_8 + 2[\omega, \iota_8]) = 2\sum \sigma'$

and

$$\partial(2\,\widehat{\sigma}_8+3[\,\omega,\,\iota_8])=8\,\sigma_8.$$

This determines the group $\pi_{15}(M^9)$, completing the proof. \Box

We recall that $\pi_{13}(S^6) = \mathbb{Z}_4\{\sigma''\}, 2\sigma'' = \Sigma \sigma'''$ and $H(\sigma'') = \eta_{11}^2([15])$. By the Hilton formula ([16]), $2\iota_6 \circ \sigma'' = 2\sigma'' + [\iota_6, \iota_6] \circ H(\sigma'') = \Sigma \sigma'''$, because $[\iota_6, \iota_6] \circ \eta_{11}^2 = [\eta_6, \eta_6] = \eta_6 \circ [\iota_7, \iota_7] = 0$. So we have the relation $4\iota_6 \circ \sigma'' = 2\Sigma \sigma''' = 0$ and a coextension $\widetilde{\sigma''} \in \pi_{14}(M^7)$ of σ'' is taken as a representative of a Toda bracket $\{i_7, 4\iota_6, \sigma''\}$. $\widetilde{\sigma''}$ is a lift of $\Sigma \sigma''$. We recall that $\pi_{14}(S^6) = \mathbb{Z}_8[\overline{\nu}_6] \oplus \mathbb{Z}_2[\varepsilon_6]$ ([15]). Then we show

Lemma 3.5 By a suitable choice of a coextension $\tilde{\sigma}''$, the order of $\tilde{\sigma}''$ is 4.

Proof. We have $4\tilde{\sigma''} \in \{i_7, 4\iota_6, \sigma''\} \circ 4\iota_{14} = -i_7\{4\iota_6, \sigma'', 4\iota_{13}\}$. By Corollary 3.7 of [15], we have $\{2\iota_6, \sum \sigma''', 2\iota_{13}\}_1 \ni (\sum \sigma'') \eta_{13} = 0 \mod 2\pi_{14}(S^6) = \{2\bar{\nu}_6\}$. So we have $\{2\iota_6, \sum \sigma''', 2\iota_{13}\} \ni 0 \mod 2\iota_6 \circ \pi_{14}(S^6) + 2\pi_{14}(S^6) = \{2\bar{\nu}_6\}$. Here we have used the relations $2\iota_6 \circ \varepsilon_6 = 0$ and $2\iota_6 \circ \bar{\nu}_6 = 4\bar{\nu}_6$.

We have

Juno MUKAI and Tomohiro SHINPO

$$\begin{aligned} \{4\iota_{6}, \sigma'', 4\iota_{13}\} &\subset \{2\iota_{6}, 2\iota_{6}, \circ \sigma'', 4\iota_{13}\} \\ &= \{2\iota_{6}, \sum \sigma''', 4\iota_{13}\} \\ &\supset \{2\iota_{6}, \sum \sigma''', 2\iota_{13}\} \circ 2\iota_{14} \\ & \ni 0 \mod \{4\bar{\nu}_{6}\} + 2\iota_{6} \circ \pi_{14}(S^{6}) = \{4\bar{\nu}_{6}\}. \end{aligned}$$

So we have $4\widetilde{\sigma''}=4ai_7\overline{\nu_6}$ for $a \in \mathbb{Z}$. We set $\widetilde{\sigma''}=\widetilde{\sigma''}-ai_7\overline{\nu_6}$. Then $p_7\widetilde{\sigma''}=\Sigma\sigma''=2\sigma'$ and $4\widetilde{\sigma''}=0$. By renaming $\widetilde{\sigma''}$ as $\widetilde{\sigma''}$, we have the assertion. This completes the proof. \Box

We set $4\widetilde{\sigma}_n = \sum^{n-6}\widetilde{\sigma}''(n \ge 9)$. Since $p_{n+1}4\widetilde{\sigma}_n = 4\sigma_{n+1}$, the order of $4\widetilde{\sigma}_n$ $(n \ge 9)$ is 4. We show

Lemma 3.6 $\pi_{17}(M^{10}) = \mathbb{Z}_4\{\widetilde{4\sigma_9}\} \oplus \mathbb{Z}_2\{i_{10}[\iota_9, \iota_9]\} \oplus \mathbb{Z}_2\{i_{10}\overline{\nu_9}\} \oplus \mathbb{Z}_2\{i_{10}\varepsilon_9\}.$

Proof. We consider the exact sequence (1) for n=10 and k=7:

$$\pi_{18}(S^{10}) \xrightarrow{\Delta} \pi_{17}(Y) \xrightarrow{i_*} \pi_{17}(M^{10}) \xrightarrow{p_{10*}} \pi_{17}(S^{10}).$$

We have Im $\Delta = 0$ and $\pi_{17}(Y) \cong \pi_{17}(S^9) = \mathbb{Z}_2{\lbrace \varepsilon_9 \rbrace} \oplus \mathbb{Z}_2{\lbrace \overline{\nu}_9 \rbrace} \oplus \mathbb{Z}_2{\lbrace [\iota_9, \iota_9] \rbrace}$ by [15] and Lemma 2. 2. This completes the proof. \Box

The group $\pi_{2n-3}(M^n)$ for $11 \le n \le 13$ is given as follows ([13]).

Example 3.7 (i) $\pi_{19}(M^{11}) = \mathbb{Z}_4\{i_{11}[\iota_{10}, \iota_{10}]\} \oplus \mathbb{Z}_2\{i_{11}\nu_{10}^3\} \oplus \mathbb{Z}_2\{i_{11}\mu_{10}\} \oplus \mathbb{Z}_2\{i_{11}\eta_{10}\varepsilon_{11}\} \oplus \mathbb{Z}_2\{\tilde{\nu}_{10}\} \oplus \mathbb{Z}_2\{\tilde{\varepsilon}_{10}\}.$

(ii) $\pi_{21}(M^{12}) = \mathbb{Z}_2\{i_{12}\sigma_{11}\nu_{18}\} \oplus \mathbb{Z}_2\{i_{12}\eta_{11}\mu_{12}\} \oplus \mathbb{Z}_2\{\widetilde{\nu_{11}}^2\nu_{18}\} \oplus \mathbb{Z}_2\{\widetilde{\mu_{11}}\} \oplus \mathbb{Z}_2\{\widetilde{\eta_{11}}\varepsilon_{13}\}.$

(iii) $\pi_{23}(M^{13}) = \mathbb{Z}_4\{i_{13}[\iota_{12}, \iota_{12}]\} \oplus \mathbb{Z}_4\{i_{13}\zeta_{12}\} \oplus \mathbb{Z}_2\{\tilde{\eta}_{12}\mu_{14}\}.$

Although we can get the group $\pi_{31}(M^{17})$ quickly ([13]), we take a roundabout way. First we recall that $\kappa_{10} \in \pi_{24}(S^{10})$ is not lifted to M_2^{10} ([10]) and has the property ([15], [9])

$$2\iota_{10} \circ \kappa_{10} = 2\kappa_{10} = 0.$$

So we can define a coextension $\tilde{\kappa}_{10} \in \{i, 2\iota_{10}, \kappa_{10}\} \subset \pi_{25}(M_2^{11})$ of κ_{10} . We know $\pi_{25}(S^{10}) = \mathbb{Z}_{16}\{\sum \rho'\} \oplus \mathbb{Z}_2\{\eta_{10}\kappa_{11}\} \oplus \mathbb{Z}_2\{\sigma_{10}\bar{\nu}_{17}\}$ and $\pi_{26}(S^{11}) = \mathbb{Z}_{16}\{\sum \rho'\} \oplus \mathbb{Z}_2\{\eta_{11}\kappa_{12}\}$. Then we show

Lemma 3.8 By a suitable choice of a coextension $\tilde{\kappa}_{10}$,

 $2\tilde{\kappa}_{10} \equiv i\eta_{10}\kappa_{11} \mod i\sigma_{10}\bar{\nu}_{17}$

and the order of $\tilde{\kappa}_{10}$ is 4.

Proof. By Corollary 3.7 of [15], we have

Some homotopy groups of the mod 4 Moore space

 $\{2\iota_{11}, \kappa_{11}, 2\iota_{25}\}_1 \ni \kappa_{11}\eta_{25} = \eta_{11}\kappa_{12} \mod 2\pi_{26}(S^{11}) = \{2\sum^2 \rho'\}.$

Since Σ { $2\iota_{10}$, κ_{10} , $2\iota_{24}$ } $\subset -$ { $2\iota_{11}$, κ_{11} , $2\iota_{25}$ }, we have

 $\{2\iota_{10}, \kappa_{10}, 2\iota_{24}\} \ni \eta_{10}\kappa_{11} \mod \{\sigma_{10}\bar{\nu}_{17}\} + 2\pi_{25}(S^{10}) = \{2\sum \rho', \sigma_{10}\bar{\nu}_{17}\}.$

So we have

```
\begin{array}{rcl} 2\,\tilde{\kappa}_{10} & \in & \{i,\, 2\,\iota_{10},\, \kappa_{10}\}\circ 2\,\iota_{25} \\ & = & -i\{2\,\iota_{10},\, \kappa_{10},\, 2\,\iota_{24}\} \\ & & \\ & \ni & i\eta_{10}\kappa_{11} \\ & & \\ & & \text{mod} & \{2\,i\,\sum\rho',\, i\sigma_{10}\,\bar{\nu}_{17}\}. \end{array}
```

So, by a suitable choice of a coextension $\tilde{\kappa}_{10}$, we have the relation. In the stable range, we have $i\eta\kappa \neq 0$ in $\pi_{16}^s(M_2^2)$. Hence the order of $\tilde{\kappa}_{10}$ is 4. This completes the proof.

Hereafter we set $\tilde{\kappa}_n = \sum_{n=1}^{n-10} \tilde{\kappa}_{10}$ for $n \ge 10$ for the coextension $\tilde{\kappa}_{10}$ in Lemma 3.8. Since $\sigma_{11}\bar{\nu}_{18}=0$, we have $2\tilde{\kappa}_n = i\eta_n\kappa_{n+1}$ for $n \ge 11$.

We recall that σ_{16}^2 is not lifted to M_2^{16} ([10]). The following is a byproduct of our roundabout way.

Lemma 3.9 $[\iota_{16}, \iota_{16}] \in \{2\iota_{16}, \sigma_{16}^2, 2\iota_{30}\} \mod 2\pi_{31}(S^{16}).$

Proof. Since $2\sigma_{15}^2 = [\iota_{15}, \iota_{15}]$, a Toda bracket $\{2\iota_{16}, \sigma_{16}^2, 4\iota_{30}\}_1$ is well defined. By Proposition 2.6 of [15], we have

$$H\{2\iota_{16}, \sigma_{16}^2, 4\iota_{30}\}_1 = -\Delta^{-1}(2\sigma_{15}^2) \circ 4\iota_{31} = -\{4\iota_{31}\} = \pm\{2H([\iota_{16}, \iota_{16}])\}.$$

The indeterminacy of $\{2\iota_{16}, \sigma_{16}^2, 4\iota_{30}\}_1$ is $2\iota_{16} \circ \sum \pi_{30}(S^{15}) + 4\pi_{31}(S^{16}) = \{4[\iota_{16}, \iota_{16}], 2\rho_{16}\}$. So $\{2\iota_{16}, \sigma_{16}^2, 4\iota_{30}\}_1$ contains $2[\iota_{16}, \iota_{16}]$ modulo elements of $\sum \pi_{30}(S^{15}) = \{\rho_{16}, \eta_{16}\kappa_{17}\}$. In the stable case, $\eta \kappa \neq 0$ and $\langle 2\iota, \sigma^2, 4\iota \rangle \neq 0$ mod $2\pi_{15}^S(S^0) = \{2\rho\}$. Hence we have

$$2[\iota_{16}, \iota_{16}] \in \{2\iota_{16}, \sigma_{16}^2, 4\iota_{30}\}_1 \mod \{4[\iota_{16}, \iota_{16}], 2\rho_{16}\}.$$

We have

$$\{2\iota_{16}, \sigma_{16}^2, 4\iota_{30}\}_1 \subset \{2\iota_{16}, \sigma_{16}^2, 4\iota_{30}\} \supset 2\{2\iota_{16}, \sigma_{16}^2, 2\iota_{30}\} \\ \mod 2\iota_{16} \circ \pi_{31}(S^{16}) + 4\pi_{31}(S^{16}) = \{4[\iota_{16}, \iota_{16}], 2\rho_{16}\}$$

So, for any element $\alpha \in \{2\iota_{16}, \sigma_{16}^2, 4\iota_{30}\}$, we have

$$2\alpha \equiv 2[\iota_{16}, \iota_{16}] \mod \{4[\iota_{16}, \iota_{16}], 2\rho_{16}\}.$$

This implies the relation $\alpha \equiv [\iota_{16}, \iota_{16}] \mod \{2[\iota_{16}, \iota_{16}], \rho_{16}, \eta_{16}\kappa_{17}\}$. By the same argument as the above in the stable range, we have

$$\alpha \equiv [\iota_{16}, \iota_{16}] \mod \{2[\iota_{16}, \iota_{16}], 2\rho_{16}\} = 2\pi_{31}(S^{16}).$$

The indeterminacy of $\{2\iota_{16}, \sigma_{16}^2, 2\iota_{30}\}$ is $2\iota_{16} \circ \pi_{31}(S^{16}) + 2\pi_{31}(S^{16}) = 2\pi_{31}(S^{16})$. Hence we have $[\iota_{15}, \iota_{16}] \in \{2\iota_{16}, \sigma_{16}^2, 2\iota_{30}\} \mod 2\pi_{31}(S^{16})$. This completes the proof. \square

Let $\widetilde{\sigma_{16}^2} \in \pi_{31}(M_2^{17})$ be a coextension of σ_{16}^2 . Then we show

Lemma 3.10 $\pi_{31}(M_2^{17}) = \mathbb{Z}_4\{\tilde{\kappa}_{16}\} \oplus \mathbb{Z}_4\{\tilde{\sigma}_{16}^2\} \oplus \mathbb{Z}_2\{i\rho_{16}\}, \text{ where } 2 \tilde{\kappa}_{16} = i\eta_{16}\kappa_{17} \text{ and } 2\sigma_{16}^2 = i[\iota_{16}, \iota_{16}] \text{ for a suitable choice of a coextension } \tilde{\sigma}_{16}^2.$

Proof. In the exact sequence

$$\pi_{32}(M_2^{17}, S^{16}) \xrightarrow{\vartheta} \pi_{31}(S^{16}) \xrightarrow{i_*} \pi_{31}(M_2^{17}) \xrightarrow{j_*} \pi_{31}(M_2^{17}, S^{16}),$$

we know $\pi_{31}(M_2^{17}, S^{16}) \cong \pi_{31}(S^{17}) = \mathbb{Z}_2\{\sigma_{17}^2\} \oplus \mathbb{Z}_2\{\kappa_{17}\}$. So j_* is an epimorphism. By Theorem 2.1 of [7], we have $\pi_{32}(M_2^{17}, S^{16}) = \mathbb{Z}_{32}\{\hat{\rho}_{16}\} \oplus \mathbb{Z}_2\{\hat{\eta}_{16}\hat{\kappa}_{17}\} \oplus \mathbb{Z}\{[\omega, \iota_{16}]\}$. We have $\partial(\hat{\rho}_{16}) = 2\rho_{16}$, $\partial(\hat{\eta}_{16}\hat{\kappa}_{17}) = 0$ and $\partial([\omega, \iota_{16}]) = -2[\iota_{16}, \iota_{16}]$. We know $2\tilde{\kappa}_{16} = i\eta_{16}\kappa_{17}$.

By Lemma 3.9, we have

$$\begin{aligned} 2\widetilde{\sigma_{16}^2} &\in \{i, 2\iota_{16}, \sigma_{16}^2\} \circ 2\iota_{31} \\ &= -i\{2\iota_{16}, \sigma_{16}^2, 2\iota_{30}\} \\ &\ni i[\iota_{16}, \iota_{16}] \\ &\mod 2i_*\pi_{31}(S^{16}). \end{aligned}$$

So, by a suitable choice of the coextension $\widetilde{\sigma_{16}^2}$, we have $2\widetilde{\sigma_{16}^2} = i[\iota_{16}, \iota_{16}]$. This completes the proof. \Box

We set $\widetilde{\sigma}_n^2 = \sum_{n=16}^{n=16} \widetilde{\sigma}_{16}^2$ for $n \ge 16$. Now we show

Lemma 3.11 $\pi_{31}(M^{17}) = \mathbb{Z}_{4}\{i_{17}[\iota_{16}, \iota_{16}]\} \oplus \mathbb{Z}_{4}\{i_{17}\rho_{16}\} \oplus \mathbb{Z}_{2}\{i_{17}\eta_{16}\kappa_{17}\} \oplus \mathbb{Z}_{2}\{c_{17}\tilde{\kappa}_{16}\} \oplus \mathbb{Z}_{2}\{c_{17}\tilde{\sigma}_{16}^{2}\}$

Proof. We consider the exact sequence (1) for k=14 and n=17:

$$\pi_{32}(S^{17}) \xrightarrow{\Delta} \pi_{31}(Y) \xrightarrow{i_*} \pi_{31}(M^{17}) \xrightarrow{p_{17*}} \pi_{31}(S^{17}).$$

We know $\pi_{31}(S^{17}) = \mathbb{Z}_2\{\kappa_{17}\} \oplus \mathbb{Z}_2\{\sigma_{17}^2\}$ and $\pi_{32}(S^{17}) = \mathbb{Z}_{32}\{\rho_{17}\} \oplus \mathbb{Z}_2\{\eta_{17}\kappa_{18}\}$. We have $\pi_{31}(Y) = \mathbb{Z}_{32}\{i'\rho_{16}\} \oplus \mathbb{Z}_4\{i'[\iota_{16}, \iota_{16}]\} \oplus \mathbb{Z}_2\{i'\eta_{16}\kappa_{17}\}$. We have $\Delta(\rho_{17}) = 4i'\rho_{16}$ and $\Delta(\eta_{17}\kappa_{18}) = 0$. By Lemmas 2.5 and 3.10, the order of $c_{17}\tilde{\kappa}_{16}$ is 2. By Lemmas 2.5, 3.10 and by (3), we have

$$2c_{17}\widetilde{\sigma_{16}^2} = c_{17} \circ i[\iota_{16}, \iota_{16}] = i_{17} \circ 2\iota_{16} \circ [\iota_{16}, \iota_{16}] = 4i_{17}[\iota_{16}, \iota_{16}] = 0.$$

This completes the proof. \Box

The following result is easily obtained.

Lemma 3.12 (i) $\pi_{41}(M^{22}) = \mathbb{Z}_{4}\{i_{22}\bar{k}_{21}\} \oplus \mathbb{Z}_{4}\{\widetilde{2\xi_{21}}\} \oplus \mathbb{Z}_{2}\{i_{22}[\iota_{21}, \iota_{21}]\} \oplus \mathbb{Z}_{2}\{\widetilde{\sigma}_{21}\}, where \ \widetilde{2\xi_{21}} \in \{i_{22}, 4\iota_{21}, 2\xi_{21}\}.$ (ii) $\pi_{43}(M^{23}) = \mathbb{Z}_{4}\{i_{23}[\iota_{22}, \iota_{22}]\} \oplus \mathbb{Z}_{4}\{\widetilde{2k_{22}}\} \oplus \mathbb{Z}_{2}\{i_{23}\eta_{22}\bar{k}_{23}\} \oplus \mathbb{Z}_{2}\{i_{23}\sigma_{22}^{3}\}, where \ \widetilde{2k_{22}} \in \{i_{23}, 4\iota_{22}, 2\bar{k}_{22}\}.$ (iii) $\pi_{45}(M^{24}) = \mathbb{Z}_{2}\{i_{24}[\iota_{23}, \iota_{23}]\} \oplus \mathbb{Z}_{2}\{\widetilde{\rho}_{23}^{2}\sigma_{31}\} \oplus \mathbb{Z}_{2}\{\tilde{\eta}_{23}\bar{k}_{24}\} \oplus \mathbb{Z}_{2}\{i_{24}\eta_{23}^{2}\bar{k}_{25}\} \oplus \mathbb{Z}_{2}\{i_{24}\nu_{23}\bar{\sigma}_{26}\}.$

The rest of Theorem 1.2 is obtained by the similar argument ([13]).

4 Some unstable homotopy groups of M^n

In this section, we shall prove Proposition 1.3. We recall that $\pi_6(M_2^4) = \mathbb{Z}_4\{\delta\} \oplus \mathbb{Z}_2\{\tilde{\eta}_3\eta_5\}$, where $j_*\delta = [\gamma, \iota_3]$ and $\sum \delta = 2i\nu_4$ ([11]). We show

Lemma 4.1 There exists an element $\theta \in \pi_6(M^4)$ satisfying $j_*\theta = [\omega, \iota_3], 2\theta = \pm c_4\delta$ and $\pi_6(M^4) = \mathbb{Z}_8\{\theta\} \oplus \mathbb{Z}_2\{i_4\nu' + 2\theta\} \oplus \mathbb{Z}_2\{c_4\tilde{\eta}_3\eta_5\}.$

Proof. By Theorem 2.1 of [7], we have $\pi_6(M^4, S^3) = \mathbb{Z}_2\{\hat{\eta}_3^2\} \oplus \mathbb{Z}_4\{[\omega, \iota_3]\}$ and $\pi_7(M^4, S^3) = \mathbb{Z}_4\{\hat{\nu'}\} \oplus \mathbb{Z}_2\{[\omega, \eta_3]\}$. In the homotopy exact sequence of a pair (M^4, S^3) :

$$\pi_7(M^4, S^3) \xrightarrow{\vartheta} \pi_6(S^3) \xrightarrow{i_{4*}} \pi_6(M^4) \xrightarrow{j_{4*}} \pi_6(M^4, S^3) \xrightarrow{\vartheta} \pi_5(S^3),$$

we have

$$\partial \hat{\eta}_3^2 = 4\iota_3 \circ \eta_3^2 = 0, \ \partial [\omega, \iota_3] = -[4\iota_3, \iota_3] = 0,$$

$$\partial \hat{\nu'} = 4\iota_3 \circ \nu' = 4\nu' = 0 \text{ and } \partial [\omega, \eta_3] = -[4\iota_3, \eta_3] = 0.$$

So there exists an element $\theta \in \pi_6(M^4)$ satisfying $j_*\theta = [\omega, \iota_3]$ and we have a short exact sequence:

$$0 \longrightarrow \pi_6(S^3) \xrightarrow{i_{4*}} \pi_6(M^4) \xrightarrow{j_*} \pi_6(M^4, S^3) \longrightarrow 0.$$

By (4), we have

$$j_*(c_{4*}\delta) = c_{4*}j_*\delta = c_{4*}[\gamma, \iota_3] = 2[\omega, \iota_3] = 2j_*\theta.$$

So we have the relation $2\theta = c_4 \delta + ai_4 \nu'$ for an integer *a*. Note that we take $c_5 = \sum c_4$ in the diagram (3). Then, by Lemma 3.3, we have

$$c_{5}\Sigma\delta = c_{5} \circ 2i\nu_{4}$$

$$= 2(i_{5} \circ 2\iota_{4} \circ \nu_{4})$$

$$= 2(i_{5}(4\nu_{4} - \Sigma\nu'))$$

$$= 8i_{5}\nu_{4} - 2i_{5}\Sigma\nu'$$

$$= 0.$$

Therefore we have $2\sum \theta = ai_5 \sum \nu'$. Since $i_5 \sum \nu'$ is not divisible by 2 by Lemma 3.3, a becomes even. So we have the relation $2\theta \equiv c_4 \delta \mod 2i_4\nu'$. By the diagram (3), we have $4\theta = 2c_4 \delta = c_4 \circ i\nu' = i_4 \circ 2i_3 \circ \nu' = 2i_4\nu' \neq 0$. Hence the order of θ is 8 and $2i_4\nu' = 4\theta = 2c_4 \delta$. Thus we have $2\theta = \pm c_4 \delta$ and we get the group $\pi_6(M^4)$. This completes the proof. \Box

Let $\tilde{\nu'} \in \{i_4, 4\iota_3, \nu'\} \subset \pi_7(M^4)$ be a coextension of ν' . Then we show

Lemma 4.2 $\pi_8(M^5) = \mathbb{Z}_4\{\sum \tilde{\nu'}\} \oplus \mathbb{Z}_2\{i_5\nu_4\eta_7\} \oplus \mathbb{Z}_2\{i_5(\sum \nu')\eta_7\}.$

Proof. We consider the exact sequence

$$\pi_9(M^5, S^4) \xrightarrow{\partial} \pi_8(S^4) \xrightarrow{i_{5*}} \pi_8(M^5) \xrightarrow{j_{*}} \pi_8(M^5, S^4) \xrightarrow{\partial} \pi_7(S^4).$$

By Theorem 2.1 of [7], we have $\pi_{\$}(M^5, S^4) = \mathbb{Z}\{[\omega, \iota_4]\} \oplus \mathbb{Z}_4\{\Sigma'\hat{\nu}'\}$ and $\pi_{\$}(M^5, S^4) = \mathbb{Z}_2\{\hat{\nu}_4\hat{\eta}_7\} \oplus \mathbb{Z}_2\{[\omega, \iota_4]\}$. Here $\Sigma' : \pi_7(M^4, S^3) \to \pi_8(M^5, S^4)$ is the relative suspension. We have $\partial[\omega, \iota_4] = -8\nu_4$, $j_*\Sigma\tilde{\nu}' = \Sigma'\hat{\nu}'$, $\partial\hat{\nu}_4\hat{\eta}_7' = 4\iota_4 \circ \nu_4 \circ \eta_7 = (16\nu_4 - 6\Sigma\nu') \circ \eta_7 = 0$ and $\partial[\omega, \eta_4] = 0$. So the following short exact sequence splits:

$$0 \longrightarrow \pi_8(S^4) \xrightarrow{i_{5*}} \pi_8(M^5) \longrightarrow \mathbb{Z}_4\{\Sigma' \hat{\nu'}\} \longrightarrow 0.$$

This completes the proof. \Box

We set $2\tilde{\nu}_n = \sum^{n-2} \tilde{\nu}'$ for $n \ge 5$. By use of the exact sequence (1) for n=6 and k=3, we have

Example 4.3 $\pi_9(M^6) = \mathbb{Z}_4\{\widetilde{2\nu_5}\} \oplus \mathbb{Z}_2\{i_6\nu_5\eta_8\}.$

By Theorem 1.2 of [7], we have $\pi_{10}(M^6, S^5) = \mathbb{Z}_8\{[\omega, \iota_5]\}$. Let $\beta \in \pi_{10}(M^6)$ be an element satisfying $j_*\beta = [\omega, \iota_5]$. Then we show

Lemma 4.4 $\pi_{10}(M^6) = \mathbb{Z}_8{\{\beta\}} \oplus \mathbb{Z}_2{\{i_6\nu_5\eta_8^2\}}.$

Proof. In the exact sequence

Some homotopy groups of the mod 4 Moore space

$$\pi_{11}(M^6, S^5) \xrightarrow{\partial} \pi_{10}(S^5) \xrightarrow{i_{6*}} \pi_{10}(M^6) \xrightarrow{j_*} \pi_{10}(M^6, S^5) \longrightarrow 0$$

we have $\pi_{11}(M^6, S^5) = \mathbb{Z}_2\{[\omega, \eta_5]\}$ and $\partial[\omega, \eta_5] = 0$. So it suffices to show $8\beta = 0$. By the parallel argument to the proof of Lemma 4.1, we have a relation

$$2\beta = c_6\lambda + bi_6\nu_5\eta_8^2$$
 (b=0, 1),

where λ is a generator of $\pi_{10}(M_2^6) \cong \mathbb{Z}_8$ satisfying $j_*\lambda = [\gamma, \iota_5]$ and $4\lambda = i\nu_5\eta_8^2$ ([11]). By the diagram (3), we have

$$8\beta = c_6 \circ i\nu_5 \eta_8^2 = i_6 \circ 2\iota_5 \circ \nu_5 \eta_8^2 = 0.$$

This completes the proof. \Box

Finally the following is easily obtained.

Example 4.5 $\pi_{12}(M^7) = \mathbb{Z}_2\{i_7\nu_6^2\}.$

References

- M. A. ARKOWITZ and M. GOLASINSKI, Co-H-structures on Moore spaces of type (G,2), Canad. J. Math. 46 (1994), 673–686.
- [4] S. ARAKI and H. TODA, Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71-115.
- [3] H. J. BAUES, *Combinatorial Homotopy and 4-dimensional Complexes*, De Gruyter Expositions in Mathematics, 1980.
- [4] H. J. BAUES and J. BUTH, On the group of homotopy equivalences of simply connected five manifolds, Max-Planck-Institut für Mathematik 93–74, 1996.
- [5] A. L. BLAKERS and W. S. MASSEY, Products in homotopy theory, Ann. of Math., 58 (1953), 192-201.
- [6] B. GRAY, On the homotopy groups of mapping cones, Proc. London Math. Soc. (3) 26 (1973), 497–520.
- [7] I. M. JAMES, On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford
 (2) 5 (1954), 260–270.
- [8] M. MIMURA, On the generalized Hopf homomorphism and the higher composition. Part II. $\pi_{n+i}(S^n)$ for i=21 and 22, J. Math. Kyoto Univ. 4 (1965), 301–326.
- [9] M. MIMURA and H. TODA, The (n+20)-th homotopy groups of n-spheres, J. Math. Kyoto Univ. 3 (1963), 37–58.
- [10] K. MORISUGI and J. MUKAI, Lifting to mod 2 Moore spaces, Preprint.
- [11] J. MUKAI, Note on existence of the unstable Adams map, Kyushu J. Math. **49** (1995), 271 –279.
- [12] J. NEISENDORFER, Primary homotopy theory, Mem. AMS. 232, 1980.

Juno MUKAI and Tomohiro SHINPO

- [13] T. SHINPO, Properties of Toda brackets and homotopy groups of the mod 4 Moore space (in Japanese), Master Thesis of Shinshu University, 1996.
- [14] A. J. SIERADSKI, Stabilization of self-equivalences of the pseudoprojective spaces, Michigan Math. J. 19 (1972), 109-119.
- [15] H. TODA, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies 49, Princeton, 1962.
- [16] G. W. WHITEHEAD, Elements of Homotopy Theory, GTM 61 (1978), Springer.