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Abstract

Let M" be a Moore space of type (Zs, n—1). We calculate the homotopy groups
mon—(M™) in the range k=3,4 and » < 24. The methods are based on Toda’s
composition methods and we use Gray’s cellular structure of the homotopy fiber of the
pinching map from M" to an z-sphere S” and also use J ames’ exact sequence including

a relative homotopy group m(M", S* ).
1 Introduction and summary

We denote by ¢, € m(S”) the homotopy class of the identity map of S” and by M7
=S5"1U gu.ie” a Moore space of type (Zy, n—1). In particular we set M"=M{. The
purpose of the present note is to determine the stable group 7en—«(M") = mi_o(M? and
the metastable group m.-a(M") for n<24. For example, the notation (Zu)” @ (Z,)° or 47
+2° means the abelian group

7a® QL D7D -+ D Lo

r 8§

Our result is stated as follows.

Theorem 1.1  7i-o(M?) = mn-olM™) = (2" & (Z2)°, wheve v and s arve given in the
Jollowing table.

n|3(4|565 |6 |78 9 |10111|12113|14|15
1{o0;01/1]0]0]1]1}]0|0}]11}1
sjo0¢y1(2]1]1]0]071 12|54 ]1]|60

16171181920 | 21| 22|23 |24 |25
1jo0)]112]2]1
s1o0{23 (3|65 |2;1]2

*The second author is a student of the first.
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Theorem 1.2 (i) ma—s(M") for n<10 is isomorphic to the group G in the following
table.

n|2|3|4| 5 6 |718] 9 10

G| 4 2% 8+2° 4+2 412 | 84+2% | 4423
(ii) 7mn-s(M") = (2" ® (Ln)° for n=11, where v and s are given in the following fable.
n (|I11(12|13 141151617 1819|2021 222324
riyo0(2(1r)1+t1j211(1y113121]2
sfsf(s5[1]1j0[1{3|4|6|6]2]2

oo

We determine my,-o(M") for 3<n<7.

Proposition 1.3 m(M® = (Z2):, m(MY) XL ® (7o), m(M®) 2 Zs ® (Z2)°, mo(M®) =7s®
Zz and 7T12(M7) = Zo.

Our result overlaps with that of Baues-Buth [4]. The result of Theorem 1.2 for »
=5 and 9 corrects the corresponding result of Shinpo [13].

Our method is to use the composition methods developed by Toda [15]. We use the
second stage in the cellular decomposition of the homotopy fiber of the collapsing map
p: M*— S" obtained by Gray [6]. We also use the James exact sequence (James [7])
including the relative homotopy group m(M?”, S*7Y). The key step determining the
group extension of m(M") is Lemma 2.5 which ensures that elements of z(M"™) induced
from those of m (M) with lifts ([10]) are of order 2. We use the notations and the
results of [15], [9] and [8] freely.

2 Fundamental facts

For a pair of spaces (X, A), let 7a,x : A— X be the inclusion and px..: X—X/A be
the map pinching A to one point. In particular we set i»=14,x and p.=px,a for (X, A)
=(MZ S™"). Let ¢; be the identity class of M. Let 7 € m(S?) be the Hopf map and 7
=21""2n, for n=2. For integers @ and b, we denote by (a, b) the greatest common
divisor of @ and b. We set 7=21"n, (=2t i=2>."1 and p=2"p.. Then, as is well
known ([2]),

{M&, M5y =Z4{¢} ® Lo {inp} (¢ %2 mod 4)
and
{MZ, MZ =Z20{} (g=2 mod 4).

Although we know the group structure of [ME, ME] by Corollary II1.D.15 of [3] or
by Proposition 11 of [1], we show the following.
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Lemma 2.1 (i) [ME ME=Z.{&} ® Zy{izmeps} for ¢=2 mod 4.
(ii) [ Mi, ME=Z20les} ® Za{aismeps— 245} for g=2mod 4, where a is an odd integer.

Proof. TFirst we note that [ M3, ME] = [ M2, QME] is abelian by making use of Theorem
X.3.10 of [16].

By Proposition 7.1 of [12], the order of ¢ is ¢ or 2¢ according as ¢=2 mod 4 or ¢
=2 mod 4. We have m(M3)=7Z.{is}. We consider the following exact sequence induced
from the cofibration starting with ge.:

0 “‘ﬂz(Mg) ﬁ[MS, M?] ‘ﬂiﬁs(Mg) ‘q—”—*ﬁs(Mg)-

By [14], m(M3=Zgaq,e {372}. So the assertion (i) is obtained.

Next assume that ¢=2 mod 4. Then, in the above exact sequence, we have qu=
xia7eps for an integer x. By stabilizing the relation,we have g¢’=xizp and so x becomes
odd. Since 0=2qi=2xi37mps and #37eps is of order ¢, we can set 2xr=aq for an odd

integer a. So we have the relation gi=a ° %is??zm, and hence the element aizzaps—2¢

is of order _2q_ This leads to (ii), completing the proof. [

Let F be the homotopy fiber of the map p.: My— S”, According to [6], F has a
homotopy type of a CW-complex S* ' U "V J ¥*~1 {J «++ and the subcomplex Y=
S* U €D of the second stage has the following cell strucure.

Lemma 2.2
— — 2n—2
Y*Sn ! U qltn-1,en-11 € " )

where [, is the Whitehead product.

The following sequence is exact for £ <2u—5(=1v,mp):
Ty i(S™) -85 T ¥ Tl M) 14 (7). o)
We have a formula
Al 2B =A(a) > B(a € mu(S™), B € Murr(S™ ). (2)

We set i"=1isn1,y.
Lemma 2.3 Acw,=qi" for n=3.

Proof. We consider the exact sequence (1) for k=—1: :
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ﬂn(Sll)—A—) 7Tn—-1( Y)i) ”nfl(M‘;l)—’ 0.

Since - (Y)=Z{7"} and m(MP=Z¢{i.}, we have the assertion. [

Next we show the following result overlapping with that of [14].
Zogen (n=3)

Lemma 2.4 7 (MNH={in7n- ;{
(M3 { 7 1} Lo (n>4).

Proof. We consider the exact sequence (1) for £=0:
s 1(S™ 25 (V) ma(MF) 225 7a(S™).

Since M= 1tn, m2(S"Y), pn. is trivial and ix is an epimorphism. Note that geo 7=
g%z So, by (2) and Lemma 2.3, we have

A773=A£3 ° 72
:ql" ° 7
=1'°quen
=%,
Since m(Y)=Zaq{7 72}, we have m(ME) = m(Y)/(ImA) = Zq,q9).
For n >4, we have 2 Y)=Z2{i'77,—1} and :

Aﬂrz:Aln © Pn—1
:C]i, © Nn-1
=qt' n-1.

This leads to the assertion, completing the proof. [}

Assume that g is even and set ¢'= % Then we consider the following commutative
diagram between the cofiber sequences:
Sn~1 2tn-1 Sn—l 7 2” P Sn
= q 7 Cn = (3)
Snﬁl Gin-1 Sn—l in M;z Pn Sn.

Here p: M{— S” is the collapsing map, ¢ : S*'— M is the inclusion and ¢, : Mi— M2
is the natural map.

When there exists an element g € m.(MJ) satisfying p.f=a for a given element «
€ m(S™), B is called a lift of @. A lift § is written as [¢]. Now we show a sharper result
than that of Lemma 3.3 of [13].
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Lemma 2.5 Let ¢=0 mod 4, q':—g— and n > 3. Suppose that a € m.(S™) has a lift {a] €
m(MP). Then cilale mMP) is a lift of a. Moveover, if 2[a]=0 or 2[a]=1ipn1a, then
calal € mMD) is of order 2.

Proof. By the diagram (3), we have pn° cao[al=plal=a. If 2[a]=0, then 2c.[a]=0.
Suppose that 2{¢]=i7,—12. Then we have 2¢ci[a]l=cnoi° gn1°@=1in° q tn-1° Pn-1° =0
for n=4. Note that 2¢, 0 =0 if « is lifted to M# ((10]). For »=3, we have

2¢cilal=csoicpeoa
=ie g’ e mea
=go o (q)Voa
=0.

This completes the proof. []
The following elements are known to be lifted to M7 ([10]): 7.(n = 3), vi(n =5),
ex(m=4), Dnn =), ptn(n=4), kuln=11), 62(n=17), waln =15), fx(n=4), 6.(n = 8).

The problem whether es, us, 7 can be lifted to M5 and &; can be lifted to M7 is open
({10]).

3 Proof of the theorems

A lift of an element ax € m(S") is also denoted as @.-1 € m(MJ). We recall that
m(M3) is isomorphic to Zs and it is generated by a lift 7 of #s and 27=175. We show
the following ([4]).

Example 3.1 m(Md=2Z:{cs7} & Zo{ian?} for ¢=0 mod 4.

Proof. We consider the exact sequence (1) for =3 and £=1:
(S L5 m( V)25 m(M3)-22 m(S?).
By (2) and the proof of Lemma 2.4, we have
AB) =423 na=q*i' o 73=0.
Obviously m(Y)=Z:{77%}. By Lemma 2.5 for 7s, ¢s7 is of order 2. This completes the

proof. [

Hereafter we shall work in the 2-primary components of homotopy groups, unless
otherwise stated.

The stable group z# (M?) has the exponent 4 because 4¢'=0 € {M? M?}. By making
use of the exact sequence induced from the cofibration starting with 44, we can
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determine the stable group 7z (M2 for £ < 23. For example, we determine the group in
the case of £=3, 4, 8 and 17. The rest of Theorem 1.1 is obtained by the similar
argument.

Example 3.2 (1) (M) =2{7} ® Zolin?} and (M =2.{7n} ® Z.iv}).
( ii ) 7['85(M2) :Z4{ Z.G} D Zz{ 1/2}.
(i) 7S(MAY=Z480} ® Zo{i} ® Zolin®} @ Za{ino}, where 80 is a coextension of 8p.

Proof. The first half of (i) is easily obtained.
In the exact sequence
coe 2 1S(SH - 1 (MP) S 1¥(SH— 0,

we have p«(77)=7" and the order of /v is 4. This leads to the second half of (i).
In the exact sequence

s (S m M) (S0,

we know m(S?)=7{1v?} and m(SY)=Zus{c}. The order of ic is 4. The order of y?=
2”(05);?) is 2 because 1% € m(M5) is of order 2 ([10]). This leads to (ii).
In the exact sequence

0— (S THMH LS 75(SH S - -,
we know mASH=Zuz{0} ® Zo{n} and mHSH=Zufn*} ® Zolno). Since ps8o=8p, the
order of @7 is 4. This leads to (iii), completing the proof. []
We show

Lemma 3.3 w(M*)=Zsltsvs} ® Zolis220} & Zo{ Fume).

Proof. In the exact sequence (1) for n=5, t=2:
(S92 (V)= m(M9) L2 (S,

we have pss(Fanet=1n8 and 7z Y)=Zs{7 vs} ® Z1o{i’23v"} because 4], ¢]=8vs. Here, by
abuse of notation, 2Jv’ stands for a generator of the direct summand Zis of m(S%).

By Theorem XI1.8.9 of [16], we have 4¢ 0 vu=4vs+6[ ¢, ¢a]=1614—6231". So we have
Avs=Ats0 =47 o yy=—64"231". This leads to the group m(M°®), completing the proof.
]

Let A be a connected CW-complex and X=AUe” be the complex formed by
attaching an #n-cell. Let CY be the reduced cone of a pointed space Y. For an element
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@ € m-1(Y), we denote by & € m.(CY, Y) an element satisfying 08’= a, where d: m(CY,
Y)— m-1(Y) is the connecting isomorphism. Let w € m(X, 4) be the characteristic map
of the n-cell " of X. For g€ m-i(S"), we set d=wd € m(X, A). Let w € m(M"*, S*™)

and y € m(M$ S™ 1Y) be the characteristic maps of the #n-cells of M* and M

respectively. Let [w, ta-1] € mn—a(M”, S*Y) be the relative Whitehead product ([5]).
Then, by (3) and [5], we can take w=cx»y and we have

Cn['}’, ln—l]:‘z[CU, Ln~1]- (4)

Let j: (M?”, %)— (M" S" ') be the inclusion. We show
Lemma 3.4  ms(M®)=Zs{ioos} ® Zo{isD0") ® Zuf V).

Proof. We consider the homotopy exact sequence of pair (M° S%:
7T16(M9, SB)_6> 7?15(58)& ﬂls(Mg)”J}_) 7[15(M9, SB).

Since ms(M®, S®)=Za{v8} and j. vE=1%, jx is a spilit epimorphism. By Theorem 2.1 of [7],
me(M®, S% is generated by elements s and [@, ). By Theorem X1.8.9 of [16], dgs=4
tg° Os=405+6[ ts, ts]=160—6210". By [5], 0w, ts]=—4[ s, ts]=—80s+421¢". So we have

8( 5s+2[a), 68]):22(7/
and
82 03+3lw, t:])=80%.
This determines the group ms(M°), completing the proof. [
We recall that ms(S%=2Z.{0"}, 20"=31¢" and H(o")=74({[15]). By the Hilton
formula ([16]), 2¢s° 067" =20"+[ts, ts] ° H(0”}=310", because [ ¢, ts]° 75=[ 76, 76]=16°[ ¢z,
tz1=0. So we have the relation 4¢° 0”=2210"

is taken as a representative of a Toda bracket {z, 4¢, 07}. 6 is a lift of 316”. We recall
that ma(S®="Zs{7s} ® Zs{ees} ([15]). Then we show

=0 and a coextension ¢” € mi{M") of ¢”

Lemma 3.5 By a suitable choice of a coextension g’, the order of o is 4.

Proof. We have 40" € {ir, 4¢s, 0"} o dera=—1:{4¢s, 07, 4t13}. By Corollary 3.7 of [15], we
have {2¢, 320”, 20:h2 (26 ms=0 mod 2ma(S%={25s}. So we have {2¢, 2167, 2013} >
0 mod 22 ° ma( S8+ 2m4(S€)={27}. Here we have used the relations 2¢° es=0 and 2¢°
Ue=4Ds.

We have
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{466, O‘”, 4613} C {2&5, 266, ° O”, 4613}
= {Zéey ZGW, 4613}

D {26, 207, 2013} © 2014
=0 mod {4176}+2L6° 72'14(86):{4175}.

~ . "",’ -~ . o ~i7 4 4
So we have 40”=4aivs for a € Z. We set ¢” =0"—aiz0. Then p0” =2306"=20¢" and

46" =0. By renaming o as g”, we have the assertion. This completes the proof. [

We set 40,=3"""50"(1>9). Since pus14on=40n1., the order of 4o, (n=9) is 4. We

show
Lemma 3.6 7T17(M1°):Z4{4i_59} 2] Zz{l.m[tg, 69]} 52 Zz{iloﬁg} 52 Zz{iloég}.

Proof. We consider the exact sequence (1) for »=10 and £=7:

716(S) 2> 710 ¥) " mr( M) S 77(S1),
We have Im A=0 and mAY) = m(S*y=Za{ce} ® Za{ Do} ® Z2{[ o, o]} by[15]and Lemma 2.
2. This completes the proof. []

The group m,_s(M™) for 11 < n <13 is given as follows {[13]).

Example 3.7 (l) 7[19(M11):Z4{Z'11[610, 610]} @ Zz{iu)/lso} D Zz{l'uﬂlo} & Z2{5117710€11} @ Zz{ﬁm}
® Za{ &0}

(ii) (M) =Zo{i2011018) © Zo{irausnz) @ Zz{);% vis} © Zof{ finn} @ Zof 11615}

(i)  ms(M ¥ =Z{is iz, ti2]} ® Z{i13E1a} B Zo{ Fraptna).

Although we can get the group m(M") quickly ([13]), we take a roundabout way.
First we recall that xi0 € m4(S") is not lifted to M5° ([10]) and has the property ([15], [9])
2t10° K10=2k10=0.

So we can define a coextension o€ {7, 2t10, ko) C ms(M3") of K. We know ms(S™0)=
ZLG{E.O,} @ Zz{ 7710/(11} 5 Z2{0'1ol717} and ﬂzs(Sll):Zm{zzpl} @ Zz{7]11/€12}. Then we show
Lemma 3.8 By a suitable choice of a coextension R,

2 o= 1910k mod 010017

and the ovder of o is 4.

Proof. By Corollary 3.7 of [15], we have
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{201, i, 205} 2 ks =ik mod 2me(SM={22%0'}.
Since X200, 10, 2024} T — {2011, K11, 2¢25)1, We have
{2010, K10, 2¢2a} 2 roen mod {0w0i7} +2ms(S™)={220", crobii7}.
So we have

2ho € {7, 2010, K10} ° 2025
= —Z.{Zéloy K10, 2624}

] ok
mod {2¢2¢', iowi.

So, by a suitable choice of a coextension £, we have the relation. In the stable range,

we have ik #+0 in ms(M2). Hence the order of 7y is 4. This completes the proof. []

Hereafter we set #Z,=21"""#%o for n =10 for the coextension o in Lemma 3.8.
Since oufis=0, we have 2%.=t9ukn+1 for n =11,

We recall that o% is not lifted to M2° ([10]). The following is a byproduct of our
roundabout way.

Lemma 3.9 [615, ém] S {2[16, (7123, 2630} mod 271'31(816).
Proof. Since 2¢%=[us, ¢s), a Toda bracket {2as, 0%, 4e0) is well defined. By
Proposition 2.6 of [15], we have

H{lee, 6126, 4&30}1: *A_1(2(7125) 04z = “{4631}: i{ZH([ém, Lls])}.

The indeterminacy of {2, 0%, 43001 1S 2ei6° 2 Mol S™) +4m(S*®)={4] t16, t16), 2016). S0
{2¢16, 0%, 4¢aohr contains 2| e, cs] modulo elements of 3 70(S')={ 01, mek7}. In the stable
case, 7k+0 and <2¢, ¢°, 4¢> 30 mod 2a%(S%)={2p}. Hence we have

2[616, 516] € {2116, 5126, 4[30}1 mod {4[615, Lls], 2016}.
We have

{2016, 0%, 4eso}1 C {2016, 0%, 4230} D 2{2016, 0fs, 230}
mod 26 ° a1(S") +471(S™)={4[ tz6, t16], 2016}

So, for any element @ € {21, 0%, 4¢3}, we have
261/52[616, 616] mod {4[616, Lw], 2016}.

This implies the relation a=[as, ts) mod {2[ ¢, tsl, ©16, Mekiz}. By the same argument
as the above in the stable range, we have
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a/E[zm, 616} ITlOd {2[616, 616], 2‘015}:271'31(516).
The indeterminacy of {2cse, 0%, 2¢a0} is 2e1s© m31(S %) + 27:1(S ') =2 7:(S'®). Hence we have
[ts, 1] € {2016, 0%, 2030} mod 271(S*®). This completes the proof. []

Let %€ mi(M37) be a coextension of 0% Then we show

Lemma 3.10 ﬁ31(M217):Z4{/?16} & Z4{(’7\1ée} 5% Zz{l'ple}, where 2 fis= i?]m/(n and 2 0126 - Z'{Lm,
us] for a suitable choice of a coextension c%.
Proof. In the exact sequence

71'32(le7, SIG)—B’ 7[31(516)”1-—*’ 71'31( 217)i’ 7T31(M217, Sw),

we know mu(M37, S = (S =Zs{ 0k} ® Zo{ 7). So js is an epimorphism. By Theorem
2.1 of [7], we have ms(Md7, SO =Za{ 016} ® Zo{ D1sitir} ® Z{[w, t6]}. We have (pie)=2p1s,
N Pski7)=0 and [ w, te])=—2[ s, c16). We know 2 /%= insir.

By Lemma 3.9, we have

2(;156 S {Z', 2 1, (7126} 0231
= —i{2ue, ofs 230}
3 Z'[éla, t16]
mod 27 7(S™).

So, by a suitable choice of the coextension o%, we have 2515621'[516, t6). This completes
the proof. []
We set o2=3""5% for # > 16. Now we show

Lemma 3.11 (M) =Zt1:[ 016, ti6]} B Za{t17016} B Za{irzperiz} D Zo{ Crr/is} @ ZZ{CU(;lie}.

Proof. We consider the exact sequence (1) for k=14 and »=17;
72‘32(517)*4" 751 ( Y)’ﬁ’ 7T31(]Ml7)ﬂ’S ”31(517)-

We know 71’31(517):Zz{l€17} @ Zz{(7127} and ﬂaz(SU):Z:«z{{On} @ Zz{7]17/{13}. We have 7T31( Y)=
Zsz{ i/ple} b Z4{ Z.'[éls, 616]} 5] Zz{ i'?]w/{n}. We have A(‘Ow):lll'/pm and A(?]n/ﬁ'lg):O. By
Lemmas 2.5 and 3.10, the order of ci7&s is 2. By Lemmas 2.5, 3.10 and by (3), we have

2cr0fs=ciz° Z.[éls, tls] = 17° 216 © [éls, 616] :4i17[£16, 616] =0.

This completes the proof. []
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The following result is easily obtained.

Lemma 3.12 (l) 7T41(M22):Z4{Z'22/521} © Z4{22:;1} © Zz{izz[ L21, 621]} @ Zz{ 6;;1}, where 22:;1 €
{izz, 4[21, 2521}. N
(ii) 7T43(M23)=Z4{ izs[ézz, (o2} @ Z4{2P/fvzz} 52 Zz{ iz3 7722/?23} D Zz{izadgz}, where 2ixn € {Z'zs, 4429,
2 ftza).
(i)  mus(M ) ="Z2{ 404 t23, toa]} B Zo{0Ba0m} B Zo{ Fosltoa} D Ziol tanisftos) B Zio{ doaios Bos).

The rest of Theorem 1.2 is obtained by the similar argument ([13]).

4 Some unstable homotopy groups of #”
In this section, we shall prove Proposition 1.3. We recall that m(Ms)=Z.{5} ®

Z:A7sns), where jud=[7, ] and 316=24v, ([11]). We show

Lemmad.l1 There exists an element 8 € m(M?) satisfying j+0=|w, 6}, 20="1cs8 and
ﬁﬁ(M4):Z3{e} @ Zz{l'4l/+26} &3] Zz{C4ﬁ3775}.

Proof. By Theorem 2.1 of [7], we have m(M*, SH=Zx{7?} ® Zu{[w, ]} and m(M*, S?)
=7{v"} ® Zo{[w, 75]}. In the homotopy exact sequence of a pair (M*, S%:

m(M*, S5 m(S% 25 m( M) -2 m(M*, S m(S?),
we have

37/7\32:4630 75=0, dlw, ta}=—[4¢s, ts]=0,
0y =430 ' =4y =0 and ol w, 7s]=—[4es, 7:]=0.

So there exists an element 4 € m(M*) satisfying j«8=[w, ts] and we have a short exact
sequence:

0— ms(S? 5 m(MH 25 m(M*, $%)— 0.
By (4), we have
Jlcn®)=cnjxd=cily, sl=2lw, 6]=2j.0.

So we have the relation 20 =ci8+ aisy’ for an integer a. Note that we take ¢s=2lcs in
the diagram (3). Then, by Lemma 3.3, we have
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28 =  C5o21u
= 2(i5°2£4° 1/4)
2(s(dva—2307)
= 8isvsa—2i:200
0.

Therefore we have 2218=ais2}v". Since %20 is not divisible by 2 by Lemma 3.3, «
becomes even. So we have the relation 26= ¢ mod 24,v". By the diagram (3), we have
40=2ci0=cs° 1V =14°2¢30 v =24’ +0. Hence the order of § is 8 and 24, =40=2¢40.
Thus we have 20= =% ¢ and we get the group m(M*). This completes the proof. [

Let v’ € {is, 4cs, v’} C m(M* be a coextension of /. Then we show
Lemma 4.2 m(M)=ZJ{20"} ® Zo{isvans) & Zolis(S) 10}
Proof. We consider the exact sequence

(M, SH 2 m(SH-55 m(MP) -2 m(MF, SH—2 m(SH).

By Theorem 2.1 of [7], we have m(M® SY=Z{[w, u]} ® Z{X'V} and m(M® S%)=
ZA0s7%7} ® Zo{[ w, ¢a]}. Here X1 m(M?, S?— m(M® S*) is the relative suspension. We
have 0w, u]=—8uvs, jx 20" =3VV", O0fii=4t° vio p=160—623") o 7:=0 and 9w, 7.]
=0. So the following short exact sequence splits:

0— m(SH) 25 m(M%)— Zu( 3} — 0.

This completes the proof. [

We set 2v,= 3% for n>5. By use of the exact sequence (1) for =6 and k=
3, we have

Example 4.3 m(M®=272vs) ® Zo{isvsns).

By Theorem 1.2 of [7], we have mo(M°® S%=Zs{[w, ts]}. Let B¢ mo(M® be an
element satisfying j«8=[w, ¢s]. Then we show

Lemma 4.4  mo(M®=Zs{5} & Zo{isvsnd).

Proof. In the exact sequence
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mi(M®, S mio(S%) 5 mo( M~ mo(M°, S°)— 0,

we have mi(M® S®=Z.{[w, 75]} and dlw, 75]=0. So it suffices to show 85=0. By the
parallel argument to the proof of Lemma 4.1, we have a relation

28=csA+ bisvsni (b=0, 1),

where A is a generator of mo( M%) =Zs satisfying j«A=[7, ) and 4A=1ws78 ([11]). By the
diagram (3), we have

8B=cs° tvsai=1s°2¢s5° vsma=0.

This completes the proof, []
Finally the following is easily obtained.

Example 4.5 m(M"=Z{iré}.
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