A Remark on Infinite Dimensional Gaussian Integral

In a Sobolev Space

Akira Asada and Nobuhiko TANAbe ${ }^{\dagger}$
Department of Mathematical Sciences, Faculty of Science, Shinshu University (Received 22 December, 1997)

Abstract

In [2] ($\infty-p$)-form on a k-th Sobolev space $W^{k}(X), X$ a compact (spin) manifold, was defined by using Sobolev duality. Integrals of ($\infty-p$)-form on an (∞ $-p$)-form on a cube in $W^{k}(X)$ were defined without using measure. We show when the lenghth of sides of the cube tends to ∞, infinite dimensional Gaussian integral that is principal on application converges if and only if the cube is imbedded in $W^{k}(X), k<$ $-d+\frac{1}{2}$.

0 . Introduction

Analysis on infinite dimensional spaces together with its geometric applications, has been treated mostly by using probablitic methods(e.g.[4],[8]). But more classical analysis related to the geometry of infinite demensional spaces seems not so well developed. We define an ($\infty-p$)-form on U, an open set of k-th Sobolev space $W^{k}(X)$ over a d-dimensional compact (spin) manifold X to be a smooth map f from U to $\Lambda^{p} W^{k}(X)$, the k-th Sobolev space of alternating functions (spinors) on p-th direct product $X_{\times \ldots \times} X$ of $X([2])$. Then we treat differential and integral calculuses of ($\infty-p$) -forms. The outline of the paper is as follows ; In sec. 1, we fix the Sobolev metric of $W^{k}(X)$ by apointing a non degenerate 1 -st order selfadjoint elliptic (pseudo) differential operator D on X. By using spectral eta and zeta functions of D and $|D|$, we define virtual dimension ν_{-}of $W^{k}(X)$ and volumes of cubes (powers of det $|D|$) in $W^{-t-\alpha}(X)$. Some caluculations related to these quantities are also done. In sec. 2, integrals of a function f on a cube in $W^{-t-\alpha}(X)$ is defined in the spirit of Riemannian integral. Some complete continuity of f is necessary (and sufficient) to the existence of the existence of the integral. Then ∞-forms are introduced. In this paper, we do not discuss these developed details. We show how infinite dimensional Gaussian integral $\mathrm{e}^{-\pi(x, D x)}$ on $Q(l, t)=\left\{\sum c_{n} e_{n} \| c_{n}\left|<\left|t \lambda_{n}\right|^{\}}\right\}\right.$converges to $1 / \sqrt{\operatorname{det}|D|}$ when $t \rightarrow \infty$ if and only if $l>(d-1) / 2$. As a consequence, we make clear that the convergence of infinite

[^0]dimensional Gaussian integral that appears in various field depends on the dimension of compact (spin) manifold, especially, and that dimension 1 is important.

1 Virtual dimension of a sobolev space

We review virtual dimension of a Sobolev space and the definition. Let X be a compact (spin) manifold with a fixed Riemanian metric, E a Hermitian vector bundle over X and $L^{2}(X)$ is the Hilbert space of sections of E. We denote L^{2}-metric of $f \in$ $L^{2}(X)$ by $\|f\|$. It is fixed by the Rieman metric of X. We take a non degenerate 1 -st order selfadjoint elliptic (pseudo) differential operator D acting on the section of E and fix the k-th Sobolev metric $\|f\|_{k}$ of f by

$$
\begin{equation*}
\|f\|_{k}=\left\|D^{k} f\right\| \tag{1}
\end{equation*}
$$

The k-th Sobolev space of sections of E is denoted by $W^{k}(X)$. By Sobolev' imbedding Theorem, $W^{k}(X)$ is contained in the space of continuous section of E if $k>d / 2, d$ is the dimension of X.

Since X is compact, D can be written as

$$
\begin{equation*}
D f=\sum \lambda\left(f, e_{\lambda}\right) e_{\lambda}, \tag{2}
\end{equation*}
$$

$\left\{e_{\lambda}\right\}$ is an O.N.-basis of $L^{2}(X)$. Then, to set

$$
\begin{equation*}
e_{\lambda, k}=\operatorname{sgn} \lambda|\lambda|^{-k} e_{\lambda}, \tag{3}
\end{equation*}
$$

$\left\{e_{\lambda, k}\right\}$ is an O.N.-basis of $W^{k}(X)$.
The spectral eta function $\eta_{D}(s)$ of D and $\zeta_{\mid D 1}(s)$ of $|D|$ are defined by

$$
\begin{equation*}
\eta_{D}(s)=\Sigma \operatorname{sgn} \lambda|\lambda|^{-s},\left.\zeta\left|\zeta_{D 1}(s)=\eta_{D^{2}}(s / 2)=\Sigma\right| \lambda\right|^{-s} . \tag{4}
\end{equation*}
$$

It is known ([3],[7],[9],[10])

1. These function are continued meromorphically on the whole complex plane with possible poles at $s=d, d-1, \cdots$ with the order at most 1 .
2. They are holomophic at $s=0$.

Definition 1.1 We say $\zeta_{|D|}(0)=\nu$ to be the virtual dimension of $W^{k}(x)$ (with respect to $D)$. We also define the determinant $\operatorname{det}|D|$ of $|D|$ and det D of D by

$$
\begin{align*}
& \operatorname{det}|D|=\exp \left(-\zeta_{D \mid}(0)\right), \\
& \operatorname{det} D=\exp \left(\pi \sqrt{-1} \zeta_{D_{-}}(0)\right) \operatorname{det}|D|, \zeta_{D_{-}}(0)=\left(\nu_{-}-\eta_{D}(0)\right) / 2 . \tag{5}
\end{align*}
$$

Then we have

$$
\begin{align*}
& \operatorname{det}(t D)=t^{\nu}-\operatorname{det} D, t>0, \\
& \operatorname{det}\left|D^{k}\right|=(\operatorname{det}|D|)^{k} . \tag{6}
\end{align*}
$$

2. Integrals on a cube in a Sobolev space

In $W^{-l-a}(X), \alpha>d / 2$, we set

$$
\begin{align*}
& Q(l, t)=\left\{\sum c_{n} e_{n}| | c_{n}\left|\leq\left|t \lambda_{n}\right|\right\}\right. \\
& Q(l, t,+)=\left\{\sum c_{n} e_{n}\left|0<c_{n} \leq\left|t \lambda_{n}\right|\right\}\right\}, t>0 . \tag{7}
\end{align*}
$$

For simple, we assume $l \neq 0$, and set

$$
\begin{equation*}
\operatorname{vol}(Q(l, t))=(2 t)^{l \nu}-(\operatorname{det}|D|)^{l}, \operatorname{vol}(Q(l, t+))=t^{l \nu}-(\operatorname{det}|D|)^{l} . \tag{8}
\end{equation*}
$$

Let s be in $I=[0,1]$ with the binary expansion $0 . s_{1} \cdots s_{n} \cdots$. Then we difine a subset $D(s)$ of $Q(l, t)$ by

$$
\begin{equation*}
D(s)=\left\{\sum c_{n} e_{n}\left|-\left|t \lambda_{n}\right|^{2} \leq c_{n} \leq 0, \text { if } s_{n}=0,0 \leq c_{n} \leq\left|t \lambda_{n}\right|^{4} \text {, if } s_{n}=1\right\} .\right. \tag{9}
\end{equation*}
$$

By definition $Q(l, t)=\cup_{s \in I} D(s)$. For a function $f(x)$ on $Q(l, t)$, we define functions \bar{f} and f on I by

$$
\begin{equation*}
\bar{f}(s)=\sup _{x \in D(s)} f(x), f(s)=\inf _{x \in D(s)} f(x) \tag{10}
\end{equation*}
$$

Then the integrals $\int_{I} \bar{f} d s \operatorname{vol} Q(l, t)$ and $\int_{I} f d s \operatorname{vol} Q(l, t)$ are upper and lower Riemannian sums of $f(x)$ with respect to the partition $\{D(s)\}$ of $Q(l, t)$.

We assume for $\left(s^{1}, \cdots, s^{m-1}\right) \in I^{m-1}$, the partition $D\left(s^{1}, \cdots, s^{m-1}\right)$ of $Q(l, t)$ has been defined to be $\left\{\sum c_{n} e_{n} \mid a_{n} \leq c_{n} \leq b_{n}\right\}$. Then for $s^{m}=0 . s_{1}^{m} s_{2}^{m} \cdots \in I$, we set

$$
\begin{align*}
& D\left(s^{1}, \cdots, s^{m}\right)=\left\{\sum c_{n} e_{n} \left\lvert\, a_{n} \leq c_{n} \leq a_{n}+\frac{b_{n}-a_{n}}{2}\right. \text {, if } s_{n}^{m}=0,\right. \\
& \left.a_{n}+\frac{b_{n}-a_{n}}{2} \leq c_{n} \leq b_{n}, \text { if } s_{n}^{m}=1\right\} . \tag{11}
\end{align*}
$$

The functions $\bar{f}\left(s^{1}, \cdots, s^{m}\right)$ and $\underline{f}\left(s^{1}, \cdots, s^{m}\right)$ are defined to be

$$
\begin{align*}
& \bar{f}\left(s^{1}, \cdots, s^{m}\right)=\sup _{x \in D\left(s, \ldots, s^{m}\right)} f(x), \\
& \underline{f}\left(s^{1}, \cdots, s^{m}\right)=\inf _{x \in D\left(s^{\prime}, \ldots, s^{m}\right)} f(x) . \tag{12}
\end{align*}
$$

Lemma $2.1 \bar{f}$ and f are continuous if f is continuous by the topology of $W^{-l-a}(X)$, $\alpha>d / 2$. Therefore we obtain
Theorem 2.1 if $f(x)$ is continuous by the topology of $W^{-l-\alpha}(X), \alpha>d / 2$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{I m} \bar{m} d^{m} S=\lim _{m \rightarrow \infty} \int_{I m} f d^{m} S \tag{13}
\end{equation*}
$$

Definition 2.1 Let f be a (real valued) function of $Q(l, t)$. Then we say f is integrable on $Q(l, t)$ if (13) is hold and define $\int_{Q(l, t)} f(x) d x$ by

$$
\begin{equation*}
\int_{Q(l, t)} f(x) d x=\lim _{m \rightarrow \infty} \int_{I m} \bar{f} d^{m} S \operatorname{vol}(Q(l, t)) . \tag{14}
\end{equation*}
$$

Integrals on $Q(l, t,+)$ are similarly defined.
Note. In the above definition of the integral, we used special division of $Q(l, t)$. But this is for simplicity and we can define integral by using more arbitrary division of $Q(l$, $t)$.

On exponetial calculation, because it is not too easy in 2.1, although it is essential at analysis, we use an alternative way([2]). We set

$$
\begin{align*}
& Q(l, t, N)=\left\{\sum_{n \leq N} c_{n} e_{n}\left|-\left|t \lambda_{n}\right|^{\prime} \leq c_{n} \leq\left|t \lambda_{n}\right|^{2}, 1<n<N\right\},\right. \\
& Q(l, t, \infty-N)=\left\{\sum_{n<N+1} c_{n} e_{n}\left|-\left|t \lambda_{n}\right|^{\prime} \leq c_{n} \leq\left|t \lambda_{n}\right|^{2}, n>N\right\} .\right. \tag{15}
\end{align*}
$$

By definition $Q(l, t)=Q(l, t, N) \times Q(l, t, \infty-N)$. We denote $x=\left(x_{N}, x_{\infty-N}\right) \in Q(l, t)$, where $x_{N} \in Q(l, t, N)$ and $x_{\infty-N} \in Q(l, t, \infty-N)$. Let f be a function on $Q(l, t)$. Then we set

$$
\begin{equation*}
\bar{f}^{N}\left(x_{N}\right)=\sup _{y \in Q(L, t, \infty-N)} f\left(x_{N}, y\right), \underline{f}_{N}=\inf _{y \in Q(l, t, \infty-N)} f\left(x_{N}, y\right) \tag{16}
\end{equation*}
$$

Then if f is continuous by the topology of $W^{-l-a}(X), \alpha>d / 2$, we have

$$
\begin{equation*}
\int_{Q(l, t)} f(x) d x=\lim _{N \rightarrow \infty} \int_{Q(L, t, N)} \bar{f}^{N}\left(x_{N}\right) d^{N} x\left|2 t \lambda_{1}\right|^{-l} \cdots\left|2 t \lambda_{1}\right|^{-1} \operatorname{vol}(Q(l, t)) \tag{17}
\end{equation*}
$$

3 Gaussian integral of infinite dimension in a Sobolev space

Let $f(x)$ be

$$
\begin{equation*}
f(x)=\exp \left(-\pi \sum \lambda_{n} x_{n}^{2}\right), x=\sum x_{n} e_{n} \in Q(l, t), \lambda_{n}>0(n=1,2, \ldots) \tag{18}
\end{equation*}
$$

Then, for the function $\int_{Q(L, t)} f(x) d x$ is computed as follows:

$$
\begin{align*}
& \int_{Q(t, t)} \exp \left(-\pi \sum_{n=1}^{\infty} \lambda_{n} x_{n}^{2}\right) d x \\
& \quad=\lim _{N \rightarrow \infty} \int_{\left.-\left(t_{1}\right)\right)^{t}}^{\left(t \lambda_{1}\right)^{2}} \cdots \int_{\left.-\left(t \lambda_{n}\right)\right)^{2}}^{\left(t \lambda_{N}\right)^{2}} \exp \left(-\pi \sum_{n=1}^{N} \lambda_{n} x_{n}^{2}\right) d^{N} x\left|2 t \lambda_{1}\right|^{-l} \cdots\left|2 t \lambda_{1}\right|^{-\iota} \operatorname{vol}(Q(l, t)) \\
& \quad=\lim _{N \rightarrow \infty}\left(\prod_{n=1}^{N} \int_{-\left(t \lambda_{n}\right)^{l^{2}}}^{\left(t \lambda_{n}\right.} \exp \left(-\pi \lambda_{n} x_{n}^{2}\right) d x_{n}\left|2 t \lambda_{n}\right|^{-l}\right) \operatorname{vol}(Q(l, t)) \\
& \quad=\lim _{N \rightarrow \infty}\left\{\prod_{n=1}^{N}\left(\frac{1}{\sqrt{\lambda_{n}}}-\frac{2}{\sqrt{\pi \lambda_{n}}} \operatorname{Erfc}\left(\sqrt{\pi \lambda}\left(t \lambda_{n}\right)^{l}\right)\right)\left|2 t \lambda_{n}\right|^{-l}\right\} \operatorname{vol}(Q(l, t)) . \tag{19}
\end{align*}
$$

Using incomplete Ψ-function

$$
\begin{align*}
& \operatorname{Erfc} x=\int_{x}^{\infty} \mathrm{e}^{-u^{2}} d u=\frac{1}{2} \mathrm{e}^{-x^{2}} \Psi\left(1 / 2,1 / 2 ; x^{2}\right) \\
& \Psi(a, c ; x)=\frac{1}{\Gamma(a)} \int_{0}^{\infty} \mathrm{e}^{-x u} u^{a-1}(1+u)^{c-a-1} d u \quad \operatorname{Re} a>0, \tag{200}
\end{align*}
$$

We have (cf.[5])

$$
\begin{align*}
& \int_{Q(l, t)} \exp \left(-\pi \sum_{n=1}^{\infty} \lambda_{n} x_{n}^{2}\right) d x \\
& \quad=\lim _{N \rightarrow \infty}\left\{\prod_{n=1}^{N} \frac{1}{\sqrt{\lambda_{n}}}\left(1-\frac{1}{\sqrt{\pi}} \Psi\left(1 / 2,1 / 2 ; \pi t^{2 l} \lambda_{n}^{2 l+1}\right)\right)\left|2 t \lambda_{n}\right|^{-l}\right\} \operatorname{vol}(Q(l, t)) \tag{21}
\end{align*}
$$

In (21) we regard as

$$
\begin{align*}
& \lim _{N \rightarrow \infty}\left|2 t \lambda_{1}\right|^{-i} \cdots\left|2 t \lambda_{N}\right|^{-i} \operatorname{vol}(Q(l, t))=1 \\
& \lim _{N \rightarrow \infty} \sqrt{\lambda_{1}} \cdots \sqrt{\lambda_{N}}=\sqrt{\operatorname{det}|D|} \tag{22}
\end{align*}
$$

Justifications of (22) will be discussed in Appendix, so we consider only the limit

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \frac{1}{\sqrt{\lambda_{n}}}\left\{1-\frac{1}{\sqrt{\pi}} \mathrm{e}^{-\pi t 2 \lambda_{n} 2 l+1} \Psi\left(1 / 2,1 / 2 ; \pi t^{2 l} \lambda_{n}^{2 l+1}\right)\right\} \tag{23}
\end{equation*}
$$

Generally, as the absolute sum $\Sigma|x|$ converges on finite value, we prove positively infinite product $\Pi(1+x)$ converges on finite value. Therefore, we discuss following convergence:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum\left|\mathrm{e}^{-\pi t^{2 t}} \lambda_{n}^{2 l+1} \Psi\left(1 / 2,1 / 2 ; \pi t^{2 l} \lambda_{n}^{2 l+1}\right)\right| \tag{24}
\end{equation*}
$$

Because convergence of exponetial function is too fast, we certify that Ψ-function converges as form of n^{-M}, M is a const. Ψ-function is written as

$$
\begin{align*}
& \Psi\left(1 / 2,1 / 2 ; x^{2}\right)=\frac{1}{\Gamma(1 / 2)} \int_{0}^{\infty} \mathrm{e}^{-x^{2} u} u^{-1 / 2}(1+u)^{-1} d t \\
& \quad=\frac{1}{x \Gamma(1 / 2)} \int_{0}^{\infty} \mathrm{e}^{-t} t^{-1 / 2}\left(1+\frac{t}{x^{2}}\right)^{-1} d t \tag{25}
\end{align*}
$$

In this equation, $\left(1+t / x^{2}\right)^{-1}$ is a monotone increasing function regarding x. If $x \geq a>$ 0 , We have

$$
\begin{equation*}
\frac{1}{x \Gamma(1 / 2)} \int_{0}^{\infty} \mathrm{e}^{-t} t^{-1 / 2} d t>\frac{1}{x \Gamma(1 / 2)} \int_{0}^{\infty} \mathrm{e}^{-t} t^{-1 / 2}\left(1+\frac{t}{x^{2}}\right)^{-1} d t \tag{26}
\end{equation*}
$$

Samely, if $x \geq a>0$,

$$
\begin{equation*}
\frac{1}{x \Gamma(1 / 2)} \int_{0}^{\infty} \mathrm{e}^{-t} t^{-1 / 2}\left(1+\frac{t}{x^{2}}\right)^{-1} d t>\frac{1}{x \Gamma(1 / 2)} \int_{0}^{\infty} \mathrm{e}^{-t} t^{-1 / 2}\left(1+\frac{t}{a^{2}}\right)^{-1} d t \tag{27}
\end{equation*}
$$

So Ψ-function does not diverge, and it contributes to infinite product as form in proportional to $1 / x=1 / \sqrt{\pi \lambda_{n}}\left(t \lambda_{n}\right)^{l}$. Therefore the convergence of infinite demensional Gaussian integral results in the convergence of the exponetial part of (24). Because $\lim _{n \rightarrow \infty} \sqrt[n]{1 / \sqrt{\pi \lambda_{n}}\left(t \lambda_{n}\right)^{h}}=1$. Therefore we get $(2 l+1) / d>1, i, e$.

$$
\begin{equation*}
l>\frac{d-1}{2} \tag{28}
\end{equation*}
$$

as the necessary and sufficient condition to the convergence of (23) by the asymptotic distribution of $\left\{\lambda_{n}\right\}([6])$. The consequence that the integrablity must depend on dimension d is interesting one. Since $Q(l, t) \subset W^{-l-a}(X), \alpha>d / 2$, (28) shows

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{Q(L, t)} \mathrm{e}^{-\pi(x, D x)} d x=\frac{1}{\sqrt{\operatorname{det} D}} \tag{29}
\end{equation*}
$$

holds if and only if $Q(l, t) \subset W^{k}(X), k<-d+1 / 2$. Since (23) divergence to 0 if $l \leq \frac{d-1}{2}$, we may consider

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{Q(L, t)} \mathrm{e}^{-\pi(x, D x)} d x=0 \tag{30}
\end{equation*}
$$

if $Q(l, t) \subset W^{-l-k}(X), \alpha \leq d / 2$.

Appendix

Since $\mathrm{e}^{-\zeta \dot{p}_{n} \mid(s)}=\Pi\left|\lambda_{n}\right|^{\left|\lambda_{n}\right| s}, s>d / 2$, replacing λ_{n} by $\lambda_{n}^{\lambda_{n}^{s}} \equiv a_{n}(s)$, we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \Pi a_{n}(s)=e^{-\zeta_{o}}(s) \\
& \lim _{n \rightarrow \infty} \Pi\left(a_{n}(s)\right)^{-1 / 2}=\left(e^{-\zeta_{o}}(s)\right)^{-1 / 2} \tag{31}
\end{align*}
$$

Analytic continuation on s provides (22). There remains one problem. Since we replace λ_{n} by $a_{n}(s)$. The infinite product

$$
\begin{equation*}
\Pi\left(1-\frac{2}{\sqrt{\pi}} \operatorname{Erfc}\left(\sqrt{\pi a_{n}(s)}(\operatorname{ta}(s))^{l}\right)\right) \tag{32}
\end{equation*}
$$

does not coverge. Therefore, we need first to consider the limit

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \int_{-\left(t a_{1}(s)\right)^{2}}^{\left(t a_{1}(s){ }^{2}\right.} \cdots \int_{-\left(t a_{N}(s) x^{2}\right.}^{\left(t a_{N}(s)\right)^{2}} \exp \left(-\pi \sum a_{n}(s) x_{n}^{2}\right) d^{N} x \times \tag{33}\\
& \quad\left(\prod_{n=1}^{N}\left(1-\frac{2}{\sqrt{\pi}} \operatorname{Erfc}\left(\sqrt{\pi a_{n}(s)}\left(t a_{n}(s)\right)^{\prime}\right)\right)\right)^{-1}\left|2 t a_{1}(s)\right|^{-1} \cdots\left|2 t a_{N}(s)\right|^{-1}\left(\mathrm{e}^{-2 t t_{0}(s)}\right)^{-1} \tag{34}
\end{align*}
$$

which is $\left(\mathrm{e}^{-2 t t_{b}(s)}\right)^{-1 / 2}$. Then we consider its analytic continuation to $s \rightarrow 0$.

References

[1] AsAdA, A.: Hodge operators of mapping spaces, Group 21, Physical Applications and mathematical Aspects of Geometry, Groups, and Algbres, 925-928, World Sci, 1997.
[2] Asada A. : Vector analysis on Sobolev spaces, I, II, Journ. Facul. Scien, Shinshu Univ. 31(1996). 7-20, 59-70.
[3] Atiyah, M. F,-Patodi, V. K.-Singer, I.M.: Spectral asymmetry and Rimannian Geometry, I ,II,III. : Math Proc. Camb. Phil. Soc., 77(1975), 43-69, 78(1975), 405-432, 79(1976), 71-99.
[4] Cruzeiro, A.B.-Malliavan, P.: Renormalized differential geometry of path space: Structure equation, Curvature, Journ Funct. Anal., 139(1996), 119-181.
[5] Erdélyi, A. et al.: Higher Transcendental Functions II, McGraw-Hill, 1953.
[6] HÖRMANDER, L. : The spectre function of an elliptic operator, Acta Math. 121(1968), 193
-218.
[7] Giliey, P.B.: The residue of the global η-function at the origin, Adv. Math., (1981), 290 -307.
[8] LeANDER, R. : Integration by parts formulas and rotationally invariant Sobolev calculus on free loop spaces, Journ. Geo. Phys, 11(1993), 517-528.
[9] Merlose, R.B.: The Ativah-Patodi-Singer Index Theorem, A.K.Peters, 1993.
[10] Seeley, R.T.: Complex powers of an elliptic operator, A.M.S.Symp. Pure Math., 10(1969), 288-307.

[^0]: ${ }^{\dagger}$ Post-MC research student, Fac. Sci., Shinshu Univ.

