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Abstract: The unique existence of the time-global solution is shown for a certain
degenerate parabolic equation with a zero boundary condition.

1. Introduction

In this paper, we consider, from a classical point of view, the following degenerate

parabolic equation
(1.1) ulz, )=r(l—2)uwlz, t) 0<x<1l,0<t< o)
with boundary-initial conditions

1.1y ulx,0)=ulx) O=x=1),
(1.1y” u(0,)=u(l,8)=0 (+=20),

[as the case may be, suitable compatible conditions are imposed].

We shall construct the solution to (1.1)-(1.1)-(1.1)” by means of the theory of
integral equations and that of orthogonal functions. The uniqueness of the solution is
shown by the use of the maximum principle. The notation used is conventional, so that

we do not explain it in particular beforehand.

2. Preparation

Firstly, we search for functions {U(x, )} satisfying only (1.1)-(1.1)". According to
the well-known method of separation of variables, if U(x, )= X(x)T(#), then X (x)
and 7T'(#) satisfy

X"(x) _ T(t)
X(x) — TW)

whence we have for X(z) and 7(¢), resp.,

2.1 x(1—2x) =-—21 (A const.),
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(2.2) z(1—x)X"=—-2X (X(0)=XQQ)=0),
2.2y T'=—AT (e, TG)=ce™ (¢ : const.)),

where we note that the ordinary differential equation (2.2) is an hypergeometric one
with —af=A, ¢+ B+ 1=0and y =0, being of the Fuchsian type with singular points
at x =0,1. Thus, we have as solutions for (2.2), putting A=A, =(n+1)(n +2)(n =0,
1! 2! .. .))

(2.3) Xn(x)ZISng%F(—~n—2, n+1, 7, x),
<a/= —n—2, B=n+1; y:WF}y(;r)l)).

More exactly speaking,

23 X =2(-a)- 3OV e yp(2) (n=0,1,2,).

(k+D1E!
Moreover, each X,(x) is to be expressed as
L 1 d” n+l n+1
(2.4) Xalx) —WW[I (1—x)"],

which turns out to be A‘ Layi(1—2¢) dt, where L,y (z) is the Legendre polynomial of

(n-+1)-th degree, satisfying

(2.5) 12Ty Lia(2) = 22-L Lun(@) + (4 1) (n42) Lun(z) =0,

Lemma 2.1. (1) The functions {X,} make an orthogonal system with weight w(x)
(w(x) =x(1 —x)); (i)

(pn,pn)w = ’/Olb{)(]))pn(l‘)z dr = (Xn,Xﬂ)w—‘ = (n+1)(ni2)(2n+3) -

Proof. (i) By use of integration and subtraction we have easily,
(An = Au) (X, X1 = (A = 2u) (D, )0 = 0,

which implies that

(2.6) (X, Xn)ws = (Do) =0 (n+ m).

(ii) The result is obtained after applying integration by parts several times to

(X, Xt = £ liw(D"w"“) (D"w™) dr. (QED))

Thus, it follows that Un(x, ¢) = ]CZZ‘,O ce ™ Xol(x) (n=0,1,2,-) (¢, : const.) satisfy
(1.D)-(1.1)".
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3. Some lemmas

We state some lemmas before proceeding to the process of constructing the
solution of (1.1)-(1.1y-(1.1)".

Now, we consider the integral equation below, which corresponds to the ordinary
differential equation (2.2)',

(3.1) X(x)—A/ Gz 5)55% Ozz=1),

where G (x,€) is the kernel of the integral equation corresponding to the Dirichlet
eigenvalue problem "= — py (y(0) = (1) =0), i.e.,

(I-2)¢ (£=x)

3.1y G<x’5):{(1—5)x (£=x),

{N.B.: /0-1 Gz, &) w(&)tde=—(1—x)log(l —x) —xlogr<log2 <1,
0= Gz, Ow(&)" < 1].

The equation (3.1) is to be changed into a symmetric form

(3.2) X(x)< j%(”—)) /1/ Clz, &) X(x)de=aC « X(x),

Ji=.
\/%%3% (r =< 8),

where
(3.2) Gz, 8) = G(x, &)w(z) T w(&)z =

[NB.: G(z,8)=0G(,z), 0= G=1].
Thus, {X.(x)} of (2.3) satisfy,

(3.3) j@% 2a) = MG o 2 () = 40 G Rola)

(A =(n+1)(n+2)), (n=0,1,2,).
Lemma. 3.1. (i)s;cg;lafé(x,sfdsgl (I=1[0,1]): (ii)

(3.4) [ (G(@.8)— G2 &) de <5z .

Proof .

) [ e@era=1oT [Tart s (1 st

'* See the afterword of this paper.
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(ii) Let x be smaller than xz (21 < xz), which does not violate the generality. Now,
v
(3.5 [ (G0~ Clan)yde=["TTae+ [ Fde+ [[1-Fde=Lthth

We estimate [;, taking notice of the inequalities,

(3.6) ‘/ 1/ 1/1 o 1= ‘rz Voo—xn 0<om<xsl),

(3.7) Lé—;—lg(xz—xl)-%xl—’ézlfdégxz—xl <0<J:1 %)
(3.7)/ ]12%12(1‘2 - 1’1) ° I Ilﬂ%:%(xz - xl)(*log(l—xl))

<2 Jh—x - fﬂ «/1—xi (—log(1—a1))

=2Vm—xz <%§x1<x2§1>

Hence we have as a result,

(3.8) Lh=2Vm—2 (0sn<n<l)

In the same way, for Iz follows a similar estimate,
(3.8 LE2Vm—u (0=m<m<l).

Moreover, we obtain for 7,
(3.9) L=["lPass [C1ede=mmsmom,

because 0 < G(x1, €) £ 1 and 0 = G(x, £) = 1. As a final result, our assertion (3.4) holds.

(QED.)
According to lemma 3.1, for any f(x) € C*{0,1)) N L*[0,1]), we have inequalities,

(3.10) |G o fl) £ flle (Schwarz’s inequality),
(3.10) 1Goflx) —Gofla) V5 |m—m l%”f”u (Schwarz’s inequality).

Therefore, the functions {Go f(z);l/l.:=<1} are uniformly bounded and
equicontinuous, which leads us to Ascoli-Arzela’s theorem of choice, so that G is

completely continuous as an operator from L*[0,1]) into itself as well as one from
C%[0,1]) into itself (cf. Yoshida[14]).

Lemma. 3.2. Let y(x)e C%[0,1]) satisfy, for some A€ R},

— 102 = cO. Y
(3.11) y(@) =G oL@ (= Wwla) - & £ (@)
Then it holds for y(x) that




The Dirichlet Problem for a Certain Degenerate Parabolic Equation 5

(3.11) ly()] = Ay |9 w(z) (Ci: positive const.).
Proof. We write (3.11) in a concrete form,

(3.12) v(@) =2 [ Gla, &)z u(e) e

_ ,1[ N i:g y(&)de+ [ 1—55%(5) dE],from which we have firstly,

(3.13) ly() =2

(1—x)log(l—x)+xlogzxla|y|® (0<x<1).

Noting that
(3.13) s £ wlz)|Q—2)%« 2 %%og(l —x)+ 2 (1—2) log x|s

< Clao) w(x)?, <C(a):§c1_elll)l"'|82% (0<a<1)>,
We easily have the inequality

(3.14) ly(x) = [AC(@)|y | w(x)* (0=x<])

By use of the estimate (3.14) we again estimate y(x) in (3.12), which brings forth
another result, i.e,,

(3.15) @)= AFC@Iy |0 [ Gla, w(e)  de

S [APC(aly [O[1—2)z* {1-1—2)*} + z(1—2)*(1— 2]
=[APC(Dy | w(x) [xfolz, &) +(1—2)* Sl -z, a)]c,

where fox, @) is a continuous function on [0,1] such that (cf. [6],[12])
(3.16) 1—-(1—x)*=2x - filx,a) (a>0),

INB.: 0= fillz,0) =1, /(0,a)=a, f(l,a)=1].

Thus, we have our assertion with C1=a£%fl){C(a)[--~]c}(§ 4).

(QE.D)

Lemma. 8.3. Let y(x) and A be the same as in Lemma 3.2, Then v'(0) and y’(1) exist.
Proof. According to (3.12), () has an expression

(3.17) v@) = - [ TEev@de+ [ Lu@d] 0<a<),
whence we have, by (3.11), the boundedness of '(x), i.e.,
@19 @Al ele@las + [ Ll a]

larclylo| [(eas+ [(a-oae|=Lralylo, (0<a<)
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Next, for & and x” such that 0 < x" < x < 1, it holds that
* 1 1.
— ). TV~ | gu(§)ae

<lapCly o[ [eae + -]
=[ARC|y @z 2],

°

(3.19) ly'(x) — y' ()] =14

which implies the existence of ;HPO y'(x) and »’(0), at the same time guaranteeing their
equality. The same holds for x=1. (QED)

Lemma. 3.4. Let y(x) and A be as in Lemma 3.2. Then (i) y(x) has a form,

(3.20) y(x)=w(x)(z), (k(x)e C¥(0,1)) N C°(10,1D),
where

) B v(x)w(x)?t (O<x<l)
(820 h(x)_{y'«» (@=0),— (1) (z=1).

Moreover, (ii) A is positive for y(x) =0, and (iii) y € C¥[0,1]).

Proof. (i) The assertion is obvious by the strength of lemmas 3.2 and 3.3, as seen
below,

y(x)=y(0) _ lim _yz) _ lim 4(x)
E ,

y'(0)= lim lim gy = lim

y/(1)= = lim i(z).

(3.21)

(ii) From (3.11) we have, for a small number (> 0),
1-¢ 1-¢ 1—¢ 2
(3.22) f v (2)y(x)dz = y'(2)y(x) I:E—ﬁ y'(x)*dx
ey
= —/1/ Y dx.

w(x)

Since y(x) belongs to C*([0,1]) by lemmas 3.2 and 3.3, letting ¢ tend towards 0, we see
that

(3.22) lly(x)za’x =A 01 Z;((fc))z dz,

which implies the positivity of A.
(iii) Remark that ¢”(x) = —Ah(x). (QED)

Lemma. 3.5. The system of functions {X»=Jw p,} is complete in
F={wr; feC0,1D}.
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Proof. Tt suffices to demonstrate that Parseval’s equality holds for an arbitrary

Jwfed, ie,
(3.23) IR I
:§o<[mfxndx>2:§0</; WD, a’x)z,

where X, and p, (#=0,1,2, ) are normalized respectively with weight 1 and weight
w. Now, according to Bernstein ([2]), the sequence of polynomials {P.(x)} defined by

(3.2) P2 =B (1) (L) e =20 (=012
converges uniformly to f(x) on [0,1]. Each P.(x) is to be expressed as
(3.24 Piz)= 2 CPpulz)  (n=0,1,2,).

For an arbitrary (> 0), there exists N € N such that

(3.25) A(2) = P = |7(@) = B, Cmalw)| <& (Vaz ).
It is obvious by Bessel’s inequality and the orthogonality of {p.} with weight w that
(3.26) Oé];wfzdx~ é (fwfpkdxy:fw-yf— i‘. <fopkdx>pk2

<f ‘J‘(Jc}w Cfc")pk(x)‘ dx<—€—*

dx

which shows the validity of (3.23). (QED)

Lemma 3.6. If, for some A(3=0) such that A%+ A, (n=0,1,2,--+), y(x) satisfies (3.11),
then y(x)=0.

Proof. Assume that y(x)=0. Then, by lemma 3.4, y(x) has a form y(x) = w(x)k(x)
(he C%([0,1]), 2==0), Next, we have easily

0% =(7,G oK) =(Ge g, X)) =275, R, (7 = yw™2),
(3.27) (A= 0(, Xn) =0,
(171 Xn) = (Wh:pn) =0

Putting F=#4 in (3.23), we obtain lwhzdx:O, which implies that y(x)=

w(x)h(x) =0 (contradiction). (QED.)

Corollary of lemma 3.6 The set of eigenvalues of G and that of eigenfunctions
of G are equal to {A)e—0 and {Xn)5=0, vespectively.
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Proof. By the lemma, it is obvious. (QED)
Lemma. 3.7. The system of {Xn)oeo is complete in C°(0,1]).

Proof. Let f(x) belong to C%[0,1]), being such that (f, X,) =0 (2 =0,1,2,+--). Then
we have,

(3.28) 0=, %) =20(f,GoXo) = (G F, X)
=a(Corm) =012,

where we note that p,(x) is a polynomial of #-th degree for each %. Thus, it follows
that

(3.29) Go—fta) (e C0,11) =0,

which implies that

(3.29) o:$2<eoﬁ):—/;)— 0<z<1).

Therefore, from f€ C%[0,1]) follows that f(z)=0 (0 < x < 1). (QED)

Lemma. 3.8. (A. A. Markov’s Inequality, [5L[8]). Let @.(x) be a polynomial of n-th
degree, satisfying

(3.30) lQu(x)=M (O=z<).
Then it holds that

(3.30) Q)| =20*M  (0<zx<1).

Proof. See [5],[8], etc. (QED.)

4. Main theorem.

Here we shall construct the solution of (1.1)-(1.1)’-(1.1)", giving a certain condition
upon the initial data w(x). Firstly, we define a formal series solution U(x,t) for our

problem by
(4.1) U, 1) = ([l Xuwhwla) dix ) e Kol )
— 20 ane~/1nt Xn(x),

(A=(n+1)(n+2); X,’s are each normalized with weight w™!).
Now, we apply to our problem the following Hilbert-Schmidt expansion theorem,
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where the kernel G(z,#) is completely continuous as an operator from C°(0,1]) into
itself (cf.[14]):
Hilbert-Schmidt Expansion Theorem ([1], [13], [14], etc.).

For any function f€ C¥[0,1]) the series go(é o f, X)X converges to G ° f(x) in
an absolute and uniform way, wheve
Go f(z) = [ Cla £)/(8) de,
- (Gof %)= [(GoNOXn(E) .
If we put t=0 in Uz, t), then we have formally for Ulz,0) = uox),

(4.3) o) = 2 (oo, 107" Xo) Xo() = ()% 32 (oo, 007 ) ).

We seek a sufficient condition on #, for the equality (4.3) to hold. Since, under the
assumption #, € C*{0,1]), u, satisfies

4.4y uyg=—(—uy), ul0)=u1) =0 (whence u,c w-C¥[0,1])),
We can express o as
4.5 wlx) = [ Gla, X~ ui(@)ds = w(x)t [ Clz, &) (—whup) (§)d.

Thus, we have:

Lemma. 4.1. If we assume that

{uo(x> € C%([0,1) N C*((0,1))  (uo(0) = u(1) = 0),

(4.6) |
w(x)zug(x) e C([0,1]),

then uy(x) is to be expanded absolutely and uniformly on [0,1] as below,
4.7 ux) = w(x)'%‘go(é o (— wr ul), X)) Xo(x) = ni:‘.o(uo, w™ X)) Xu(2),
where we note that

@ (G (—whul), %) == (whuf, Go %) = — (whag, 52
= ()= () = (1035 ) =
0, An 0s /171 0 =bn/.

Lemma. 4.2. For each X.(x), normalized with weight w™, it holds that

(4.8) | XA < VA, =V(n+1)(n+2).

X
w
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Proof. From the equation X%+ A,w™ ' X, =0 we easily obtain

\2 . —1 2 —
(4.9) [(Xn) a’x~/1n/;w Xidr = A,

whence | X,|® < ﬁ (XD dx = 7, (QED)

Lemma. 4.3. For the sevies (4.7) we have an estimate

33 (™ X) Xal2)| <n§l:kb%,>% (z %—f (k< 0).

n=rk

(4.10)

Proof.

41D (™ X)X = (G o (—w? uf), Xn) X = (— wrul, CXn) Xn
= (—wing, Ko A7 Xo = badi Xy (n=0,1,2,),
(bn=(—w2ul, ) = aula),

where we note that

oo

1 .
SV ot = (wrul, wrul) (Parseval's equality),

n=0

(4.11y . .
sl I
n=0 /1,, n=0 (Y’l+1>(%+2) :
By (4.11),
¢ [
23 (o™ Xn) Xn<:c)‘ < 2 1 oal - 14 - | X0
L i L /4 1\
sslnlat= (g (3 E) (QED)

Lemma. 4.4. Under the assumption (4.6) on us, the sevies Ulx, t) of (4.1) converges
absolutely and uniformly on [0,1]1X[0,90). Moreover, for >0, Uz, t), Unlzx, t) and
Uiz, t) exist being expressed rvespectively as below,

Uz, t) = 720 anX(x)e ™,
(4.12) Uselz, 1) = 3} anXi(z)e ™,

Uz, 1) == 3 antaXo(z)e ™,

where, for an arbitvary positive t, each convergence is absolute and uniform on [0,1] X
[t,00), which implies that Uz, U and U are continuous there.

Proof. 1t is generally well known that, if { £.(x) € CY([0,1])} converges to f(x) on [0,
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1] and {/x(x)} does to g(z) uniformly on [0,1], then F'(x) = g(x). Also, for ¢ >0, e~ ™
< [+ 1 e N). By virtue of these relations and lemmas 3.8, 4.1~4.4, our
assertion is obtained. (QE.D)

Main Theorem. Under the assumption (4.6) on wuo, there exists a unique solution
u(z,t) of (1.1)-(1.1Y-(1.1)", belonging to C*([0,1]x[0, T N C*[0,11x(0, T']) for an
arbitrary T € (0,9). Moreovey,

u(a Ol = lal® , Jus(z, )] £ A3 0= Ay

qux(x,t)| éAzDo , |ut(x,t)|§A3D0.

(4.13)

Proof. It is obvious that w(x,#)=U(x,{) in (4.1) with the condition (4.6) given
upon u,, satisfies (1.1)-(1.1)". It remains for us to demonstrate (i) the continuity of
u(x,t) at +=0, (ii) the uniqueness of the solution, and (iii) the inequality in (4.13):
(i) The sequence {A,(t)=e "} is positive and monotonically decreasing in n. Putting
Biulx)=a.X:(z), we express u(zx,t)—ux) as follows:

(4 . 14) u(x, lL) - uo(x):ni::o[An(t)Bn(-r) _An(o)Bn(x)]

:ﬁo(An(t)_l)Bn(I)+ i (AHU)"DBN(I)

n=N+1

Since |Ax(t)—1|<1 and ;:IOB”(.Z) converges absolutely and uniformly in &, for an
arbitrary &(>0) there exists N € N such that
ng‘.H(An(t)hl)Bn(x)k &. Nextly, it holds that

(4.15) |40~ D Bu@)| = (1= An(0) 2| Bal)| < (1= An(0) s,

(MOZSUIID,gOIBn(I)I+1<OO>.
For My'e, there exists #(>0) such that 0 =1—-AN() < Mig'e(0 £ ¢t < 4), Thus we
have,

(4.15) lu(x, t) — ux)| < 2e, (0=t £ to(e, N(&))).

(ii) We assume that u(z,t)=0. Now, put v(x, t) = e u(x, t)(x >0). Then v(x,t)
satisfies

v = e u, — pe " u = w(x) v — 1o,
(4.16)

v(x,0) = uo(x), v(0,¢) =v(1, t)=0.

If v{x,t) takes its maximum as a positive number at (x1, &) € Qr =(0,1)x 0, TI(0< T
< ), then v.(x1, 4) 2 0, vz(21, 1) = 0. Therefore,
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(4‘ 17) 0= 7),5(.1‘1, h) — w(xl)vm(xl, LL1) = — #U(.Z‘h f1> <0

which is contradictory. Similarly v(z,#) does not take its minimum as a negative
number in Qr. As a conclusion, we have

min[0, minz(x)] £ v(x, £) < max[0, max u(x)],
(4.18) lo(x, D=l (0=t T),

|ulz, )| = }}g ™| ® =1u,|® O=t= T).

We note that the third inequality also holds for «(x,#)=0. Hence, if there are two
functions wi(x, #) and wu2(x, t) satisfying (1.1)-(1.1)'-(1.1)", then |ux, t) — oz, £)| =
[(2¢y — 22)(2, 0)|@ = 0.

(iii) The four inequalities are obvious by (4.18), and by lemmas 3.8 and 4.1~4.4, where
we note that X.(x) is a polynomial of {n+2)-th degree for each » and that the
following inequalities hold,

2(%“"2)2@7}” = Al, 4(%4‘2)46—/‘"! = Az,
(4.19)

Ane” ™t < As (Al A, As are positive constants).

(QED.)

Afterword : Strictly speaking, there may be need to make some comment on the
correspondence relation between the differential equation (2.2) and the integral
equation (3.1). However, we only make a remark that it plays an important role that
the differential equation (2.2) is of the Fuchsian type with singular points at x=0,1. In
this paper, we have made discussions on the basis of the integral equation (3.1), almost
independently of the differential equations (2.2). Lastly, we add, for reference, that, if
X(x) satisfies (2.2), then X" (x2)=0{ogx){(0<x=1/2) and X'(x)=0(log(1—x))(1/2<
x<1), which is derived directly from (2.2), and, accordingly, that X(x) is to be
expressed in the form of (3.1).
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