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   We denote by cn E rat(S") the homotopy class of the identity map of S'i. Let En be

the S3-bundle over S7 induced from the canonical S3-bundle Sp(2) by ne7. Let En,k be

the S3-bundle over En induced from Ek by the projection pn : En---. S7. Then we have

a commutative diagram:

                        S3 S3 s3
                         ---
                       En,k - Ek - Sp(2)
                         t Sii`, t
                        E. gn s7 -Ee'z.7 s7.

   In [2] we encounter an obstruction element in nb(S3) which detects the triviality of

the bundle En,k. The purpose of this note is to show that ng(S3) really classifies the S3

-bundles over En for some integer ri.

   As is well known ([2]), we have the following cell structure:

                          En = (S3 U ncae') U ,elO,

where ca is the Blakers-Massey element generating nts(S3) gf Zi2 and 7 is the attaching

map of the top cell of En.

   We set (?n== S3Unw e7 and denote by i: ((?n, * )-(Qn,S3) the inclusion. Let x be

a generator of n7(Q.,S3) or Z. Then, by (5.1) of [3], we have

                              7'*7== [X, C3],

where [x, t3] is the relative Whitehead product of x and t3.

   We consider the following exact sequence induced from the cofibration S94 Qn

L' En:

         [En,BS3] -!iL nke(BS3) Sl'th" [:Qn,BS3] $pt't"" [:E.,BS3]

                         11 11 ll
                        nt}(S3) `-ZI'-- [Qn, S3] `-{!L [En, S3],

where BS3 is the classifying space and qn : En-SiO is a map pinching Qn to one point.

   If we can show that i,f : [En, S3]e[Qn, S3] is surjective, then the set [En, BS3]
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is not trivial since 7ao(BS3) E! 7zb(S3) 2-! Z3. So our task is to examine the map i,T:

[En, S3]-[Qn, S3].

   Let op2 E zg(S2) be the Hopf map and rp,z=Z'i-2 rp2 for n > 2, We denote by (a,b) the

                                                  12greatest common divisor of two integers a and b. Set c =                                                       Then we have the                                                 (12,n) '

following.

Lemma 1. i) 7'7ze set [Qn, S3] consists of the element toty6g and an extension cmL3 of

cmL3 for any intager m, where g: Qn.S7 is a mmp Pinching S3 to one point.

ii) [Qn, BS3] 2! Z(i2,n}-

Proof. In the exact sequence induced from the cofibration S6g'bl S34Qn, we have

        nt,(S3) Sl'!!l)itiW)" 71a(S3) L' [Q., S3] g' 7b(S3) `il-{'lgi21ite)' 7u,(S3)

        Zi2{a)} Z{C3} Z2{Wop6} Z2{ rp3}
and
            7u](BS3) -' [Q.,BS3] {-gL' n7(BS3) <21-l'!!YliW)' n;,(BS3)

               ll ll ll               O Zi2 Z.
By use of the first exact sequence, we have that there exists an extension cnze3 for each

mEZ since

                                         mn                  (nto)* (cme3) =(cmc3) o nw=                                              12w =O.                                        (12, n)

   On the other hand, by Leinma 5.7 of [51, we have

              (: nw)* rp3 = n( rp3 o : to)=3n( rp3 o : co)= n:I ]( rp2 o y') =O.

Thus g' is injective and cvrp6g is a non-zero element of [Qii, S3]. This proves i).

   In the second exact sequence, as (Zntu)" : Z-Zi2 maps 1 to n and g" is surjective,

                                            Z12we have Ker(g")=Im(:nto)" !! nZi2 and [Qn, BS3] :':v:: nz,, !i Za2,n). This pi"oves iD･

   Let h: S7-S` be the Hopf map. Then we know the following ([1], [5]):

          [e4, c4]=2h± Zto and tho(S`) = Z24{ho:3h} o Z,{:(to o :3to)}.

We show
Lemma 2. :7 = (Z i)*(a(h o Z3h) + b:(w o :3w)) for some in age rs a and b.

Proof. We consider an anti-commutative diagram ([4]):

                              nk}(Qn) 4' zb(Qn,S3)

                                i: lzt
                 7zLo(S`) eq'i)' tho(ZQn) A" n:to(:Qn,S`),

where Z' stands for the relative suspension and the lower sequence is exact. Since

7" *(:7)= -Z'(1'*7)=-:'[z, c31 =[= O by (2.30) of [4], there exists an element SE nio<S`)

satisfying :7=:(:i)*6. This completes the proof.
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Remark. According to Lemma 2.32 of [4], 6 is represented by the Hopf construction

of a mapping of type (c3, nto). So we have

                        Z7 =: ±2n(: i)*(h o Z3h).

   Now we shall prove the following.

Theorem. 7" : [Qn, S3]-nb(S3) is trivial and ii : [En, S31-[Q., S3] is sury'ective of

nlO mod 3.

Proof. We consider the commutative diagram:

                         nb(S3) `-!L' [Qn,S3]

                           l: iz
                         icLo(S`) M'r'" [:Q.,S`].

By [5], we have 7"(wrp6g)= a)rp,g7 c (vrp,7ib(S7) == {cvrp, o (v, o q,)} == {torp,3} == {6(ca o : ]3w)}=O.

   Assume that there exists an integer m such that 7*cmL3 = to o Z3to. Then, by use

of Lemmas 1 and 2, we have

       =(w e :i 3w) = :(7* cmc,) = :cmc, o :io (a(ho Z3h)+ b:(to o Z3to))

                 =(CMC,) o (a(h o Z3h) + b:(w o :3w))

                 == cme4 o a(ho :Z]3h)+ cme, o b:(w o Z3(v)

                 = a((cmc, o h) o Z3h)+ bcmZ(w o Z3w)

                 =a((cmh + CM(CSn-1) [c,, c,]H(h)) o z3h) + bcm:(ca o :3w).

Here H is the Hopf invariant and we have used the Hilton formula. Hence we have

       (i- bcm)z(w o :3w) =a((cmh + CM(CSn-i) (2h± zcv)) o :3h)

                       =: a(((cm)2h± CM(C2M-1) zto). z3h)

                       =a(((cm)2h)o:h- 2                                    3 + cm(cM- 1) (: to . :3h))

                                        acm(cm-1)
                       ::: a(c7n)2 (h o :3h) ±                                                  :(to o :2h).
                                            2
Since :(ca o :2h) and :(w o :3w) are elements of the 3-primary component of iae(S`)

!li Z24 O Z3 ([1], [5]), we have :( cv o :2h) :-2:wo Z3h = -: (v o 2:3h = ±:(w o

:3w) = II 2:(co o :3a)).

Thus we have

         (1 - bcm)Z(to o :3ev) = a(c7n)2(h o :3h) - ac7n(cm - 1):(w e Z3to)

and

            a(cm)2 (h o :3h) -(l - bcm + acm(cm- 1)):(to o Z3 to)=O.

This implies that

                           a( cm)2 =O mod 24 (1)
and

                       cm(b-a(cm-1))!iElmod3 (2)
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By hypothesis nlOmod3, we have (12, n) == 1,2 or 4, and so c=12,6 or 3 which

contradicts (2). Hence we conclude that 7" is trivial. This completes the proof.

    Finally we have

Corollary. If nitiO mod 3, then [En, BS3] t e and ij (12, n)=1, then [E., BS3] or nb(S3).

Proof. Making use of the exact sequence induced from the cofibration S9 -L> Qn 4'

En and by Lemma 1. ii), we have

          [Q.,BS3] `-ll- [E.,BS3] "'-EllL 7rLo(BS3) pt'r" [:Qn,BS3]

              il 11 ll            Za2,n) nb(S3) {-2:L' [Q., S3].
By Theorem, 7" is trivial if n S O mod 3, and so q,*, is injective. This implies the first

half. If (12, n) = 1, we have [Qn, BS3] == O. This implies that q,", is surjective, so the

second half follows.

Remark. Corollary tells us that there exist only 3 S3-bundles over Ei :=: Sp(2), Es, E7

and Eii up to isomorphism of bundles.
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