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We denote by ¢» € m,(S”) the homotopy class of the identity map of S™. Let E, be
the S*-bundle over S7 induced from the canonical S*-bundle Sp(2) by #ne. Let Enx be
the S3-bundle over E, induced from E: by the projection p.: E~—— S?. Then we have
a commutative diagram:

SS S3 83

Ene — E¢ — Sp(2)
| L |
E, 2 § = g
In [2] we encounter an obstruction element in m(S® which detects the triviality of
the bundle E, . The purpose of this note is to show that m(S®) really classifies the 53
-bundles over E, for some integer .
As is well known ([2]), we have the following cell structure:
E,=(S*U pe’) U,e",
where o is the Blakers-Massey element generating zs(S®) = Z,2 and 7 is the attaching
map of the top cell of E,.
We set ©»=S%U .0 e” and denote by 7 : (@, * )—(Qn, S?) the inclusion. Let y be
a generator of m(Q., S =Z. Then, by (5.1) of [3], we have
Jxr=lx, tl,
where [y, ¢z] is the relative Whitehead product of y and ¢.
We consider the following exact sequence induced from the cofibration S*—"— Qx
s B
[En, BSY] <%= mfBSY) €2 [2Qu, BS] & [ZE,, BS’]
Il Il Il
w(SYH I [Qn ST = [E S,
where BS? is the classifying space and ¢» : E,—— S is a map pinching & to one point.
If we can show that 5 : [Ex, S*]——[@Qn, S*]is surjective, then the set [E., BS?]
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is not trivial since mo(BS? = m(S?) =Zs. So our task is to examine the map i :
[En; Sg]*)[Qn, SS]-
Let 7, € m(S?) be the Hopf map and 7.=21""%7, for n > 2. We denote by (a,b) the

greatest common divisor of two integers @ and b. Set ¢ = 2.7 Then we have the

following.

Lemmal. i) The sel [Qn, S*] consists of the element w19 and an extension T, of
cmes Jor any integer m, wheve g Qu——S" is a map pinching S* to one point.

i) [@n BS®*] = Zazn.

Proof. In the exact sequence induced from the cofibration S%-"*- S~ Q,, we have

m(SH HE m(SYH S [Qn ST T m(SY T (S
Il Il I I
Ziiw) Z{s) Z{wn} Zo{ 75}
and
m(BSY) < [Qu BS?] <¥— m(BS%H 2 m(BS?
It I Il
O Z12 Z
By use of the first exact sequence, we have that there exists an extension ¢, for each
m € 7 since

mn

(12, n)
On the other hand, by Lemma 5.7 of [5], we have
S nw)* n=n(n,° X wy=3n(1;° 2w)=n2n,° ) =0.

Thus ¢* is injective and w7.¢ is a non-zero element of [@,, S*]. This proves i).

(now)* (cmis)=(cmis) ° nw= 120=0.

In the second exact sequence, as (X nw)* : Z——Zys maps 1 to z and g* is surjective,

Z12
17z

we have Ker(g*)=Im(Znw)* = nZ; and [@», BS®] = = Za2.n. This proves ii).

Let #: S™——S* be the Hopf map. Then we know the following ([1], [5]):
[ts, u]l=20 £ Do and mo(SH = Zolho 230} & Za{Dw > TP w)}.
We show
Lemma 2. X7y =) (allio D3h) + 62w e 2Pw)) for some integers a and b.
Proof. We consider an anti-commutative diagram ([4]):

Q) > m(@Qn SY)
|= |z
7T10(S4) L 7T10(2 sz) L 71'10(2 @, 54),
where 2 stands for the relative suspension and the lower sequence is exact. Since
F (S ==V Gay)= =2V [, 3] = 0 by (2.30) of [4], there exists an element § € mo(S?)
satisfying 217 =(27)«8. This completes the proof.
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Remark. According to Lemma 2.32 of [4], § is represented by the Hopf construction
of a mapping of type (e, nw). So we have

2y = 20Xk 23°h).

Now we shall prove the following.
Theorem. 7*:[ Q. S®|l— m(S?) is trivial and & : | En, S*|——[Qn, S°] is surjective if
n=*=0 mod 3.
Proof. We consider the commutative diagram:
m(S?) < (@ S
| = 2
7T10(S4) & [ZQny 54]-
By [5], we have y*(07:9)= w7597 € 0nsn(ST)={ w75 (1, ° 1)} = {wni} = {6(w © 2w)} =0.
Assume that there exists an integer m such that y*¢mi; = we 2°w. Then, by use
of Lemmas 1 and 2, we have
Swe Sw) = Sy*ems) = Somz o S (alhe S0+ 53w Tio))
=(cme) o (a(he 2Bh)+ b2 w e 3%w))
=cmege alho DPhy+emeo b2 wo 2P w)
=al(emego ) o Z3h)+ bem 2w o 22 w)

= a<<cmh + Qm(c—;%:—ll[u, L4]H(/1)> ° Z3Iz> + bemNwo DPw).
Here H is the Hopf invariant and we have used the Hilton formula. Hence we have

(1—bem) X we 2Pw)= a<<cmh + %C—;n;ll(Zh -+ Z‘.a))> o Z%)
= a<<(cm)2h + 701%(6;”_ 1) Zw> ° 23h>
= a(emiiyo o+ D) (510 50

=alem)’ (ho 23*h) £ M%uz(w o 212h).

Since 2w 232h) and 2(we° 23*w) are elements of the 3-primary component of (S
~7u®Zs ([(1],[5]), we have XNwedPh)=—23we>3%h=—1w23%h =+ we
2Pw)= F23wo 2Pw).
Thus we have
(1—bem)2Nw o 2Pw) = alcm)?(ho 22h) — acm(cm—1) 2w ° 2P w)
and
alem)* (he 22— 10— bem + acm{cm— 1) 2w o 2XFw)=0.
This implies that
alem)* = 0 mod 24 (1)

and

cm(b—alem—1))=1mod 3 2)
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By hypothesis #=0mod 3, we have (12, #)=1,2 or 4, and so ¢=12,6 or 3 which
contradicts (2). Hence we conclude that y* is trivial. This completes the proof.

Finally we have
Corollary. If n=0mod 3, then [E., BS*] # 0 and if (12, n)=1, then [ En, BS®] = m(S?).
Proof. Making use of the exact sequence induced from the cofibration S* —"— Q, -
E, and by Lemma 1. ii), we have

[Qu BS®] <= [En BS®| <%= m(BSY) £ [51Q,, BSY
Il Il Il
Zoom mw(S?) L [@n, S?].

By Theorem, y* is trivial if # 2 0 mod 3, and so ¢, is injective. This implies the first
half. If (12, n) = 1, we have [Q,, BS®] = 0. This implies that ¢; is surjective, so the
second half follows.

Remark. Corollary tells us that there exist only 3 S*-bundles over E1=Sp(2), Es, E;
and Eu; up to isomorphism of bundles.
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