A classification of some S^{3}-bundles

T. E. Barros and J. Mukai*
Department of Mathematics, Federal University of San Carlos, SP, Brazil
and
Department of Mathematical Sciences, Faculty of Science, Shinshu
University
(Received October, 28, 1996)

We denote by $\iota_{n} \in \pi_{n}\left(S^{n}\right)$ the homotopy class of the identity map of S^{n}. Let E_{n} be the S^{3}-bundle over S^{7} induced from the canonical S^{3}-bundle $S p(2)$ by $n \iota_{7}$. Let $E_{n, k}$ be the S^{3}-bundle over E_{n} induced from E_{k} by the projection $p_{n}: E_{n} \longrightarrow S^{7}$. Then we have a commutative diagram:

In [2] we encounter an obstruction element in $\pi_{9}\left(S^{3}\right)$ which detects the triviality of the bundle $E_{n, k}$. The purpose of this note is to show that $\pi_{9}\left(S^{3}\right)$ really classifies the S^{3} -bundles over E_{n} for some integer n.

As is well known ([2]), we have the following cell structure:

$$
E_{n}=\left(S^{3} \cup_{n \omega} e^{7}\right) \cup_{\gamma} e^{10}
$$

where ω is the Blakers-Massey element generating $\pi_{6}\left(S^{3}\right) \cong Z_{12}$ and γ is the attaching map of the top cell of E_{n}.

We set $Q_{n}=S^{3} \cup_{n \omega} e^{7}$ and denote by $j:\left(Q_{n, *}\right) \longrightarrow\left(Q_{n}, S^{3}\right)$ the inclusion. Let χ be a generator of $\pi_{7}\left(Q_{n}, S^{3}\right) \cong \mathbf{Z}$. Then, by (5.1) of [3], we have

$$
j_{*} \gamma=\left[\chi, \iota_{3}\right],
$$

where $\left[\chi, \iota_{3}\right]$ is the relative Whitehead product of χ and ι_{3}.
We consider the following exact sequence induced from the cofibration $S^{9} \xrightarrow{\gamma} Q_{n}$ $\xrightarrow{i_{n}} E_{n}$:

$$
\begin{array}{ccccccc}
{\left[E_{n}, B S^{3}\right]} & \stackrel{q_{\pi}^{*}}{\leftrightarrows} & \pi_{10}\left(B S^{3}\right) & \stackrel{(\Sigma \gamma)^{*}}{ } & {\left[\Sigma Q_{n}, B S^{3}\right]} & \stackrel{(\Sigma i n)^{*}}{ } & {\left[\Sigma E_{n}, B S^{3}\right]} \\
& \| & \| & \| \\
\pi_{9}\left(S^{3}\right) & r^{r^{*}} & {\left[Q_{n}, S^{3}\right]} & \stackrel{i_{n}^{*}}{\leftrightarrows} & {\left[E_{n}, S^{3}\right],}
\end{array}
$$

where $B S^{3}$ is the classifying space and $q_{n}: E_{n} \longrightarrow S^{10}$ is a map pinching Q_{n} to one point.
If we can show that $i_{n}^{*}:\left[E_{n}, S^{3}\right] \longrightarrow\left[Q_{n}, S^{3}\right]$ is surjective, then the set $\left[E_{n}, B S^{3}\right]$

[^0]is not trivial since $\pi_{10}\left(B S^{3}\right) \cong \pi_{9}\left(S^{3}\right) \cong \mathbb{Z}_{3}$. So our task is to examine the map i_{n}^{*} : $\left[E_{n}, S^{3}\right] \longrightarrow\left[Q_{n}, S^{3}\right]$.

Let $\eta_{2} \in \pi_{3}\left(S^{2}\right)$ be the Hopf map and $\eta_{n}=\sum^{n-2} \eta_{2}$ for $n \geq 2$. We denote by (a, b) the greatest common divisor of two integers a and b. Set $c=\frac{12}{(12, n)}$. Then we have the following.
Lemma 1. i) The set $\left[Q_{n}, S^{3}\right]$ consists of the element $\omega \eta_{6} g$ and an extension $\overline{C m L_{3}}$ of $c m u_{3}$ for any integer m, where $g: Q_{n} \longrightarrow S^{7}$ is a map pinching S^{3} to one point.
ii) $\left[Q_{n}, B S^{3}\right] \cong \mathbf{Z}_{(12, n)}$.

Proof. In the exact sequence induced from the cofibration $S^{6} \xrightarrow{n \omega} S^{3} \xrightarrow{i} Q_{n}$, we have

and

By use of the first exact sequence, we have that there exists an extension $\overline{\mathrm{cml}_{3}}$ for each $m \in \mathbf{Z}$ since

$$
(n \omega)^{*}\left(c m \iota_{3}\right)=\left(c m \iota_{3}\right) \circ n \omega=\frac{m n}{(12, n)} 12 \omega=0 .
$$

On the other hand, by Lemma 5.7 of [5], we have

$$
\left(\sum n \omega\right)^{*} \eta_{3}=n\left(\eta_{3} \circ \sum \omega\right)=3 n\left(\eta_{3} \circ \sum \omega\right)=n \Sigma\left(\eta_{2} \circ \nu^{\prime}\right)=0 .
$$

Thus g^{*} is injective and $\omega \eta_{6} g$ is a non-zero element of [$\left.Q_{n}, S^{3}\right]$. This proves i).
In the second exact sequence, as $(\Sigma n \omega)^{*}: \mathbf{Z} \longrightarrow \mathbf{Z}_{12}$ maps 1 to n and g^{*} is surjective, we have $\operatorname{Ker}\left(g^{*}\right)=\operatorname{Im}\left(\sum n \omega\right)^{*} \cong n \mathbf{Z}_{12}$ and $\left[Q_{n}, B S^{3}\right] \cong \frac{\mathbf{Z}_{12}}{n \mathbf{Z}_{12}} \cong \mathbf{Z}_{(12, n)}$. This proves ii).

Let $h: S^{7} \longrightarrow S^{4}$ be the Hopf map. Then we know the following ([1], [5]):

$$
\left[c_{4}, c_{4}\right]=2 h \pm \sum \omega \text { and } \pi_{10}\left(S^{4}\right)=\mathbf{Z}_{24}\left\{h \circ \sum^{3} h\right\} \oplus \mathbf{Z}_{3}\left\{\Sigma\left(\omega \circ \Sigma^{3} \omega\right)\right\}
$$

We show
Lemma 2. $\Sigma \gamma=(\Sigma i)_{*}\left(a\left(h \circ \Sigma^{3} h\right)+b \Sigma\left(\omega^{\circ} \Sigma^{3} \omega\right)\right)$ for some integers a and b.
Proof. We consider an anti-commutative diagram ([4]):

where Σ^{\prime} stands for the relative suspension and the lower sequence is exact. Since $j^{\prime} *(\Sigma \gamma)=-\Sigma^{\prime}\left(j_{*} \gamma\right)=-\Sigma^{\prime}\left[\chi, c_{3}\right]=0$ by (2.30) of [4], there exists an element $\delta \in \pi_{10}\left(S^{4}\right)$ satisfying $\Sigma \gamma=(\Sigma i)_{*} \delta$. This completes the proof.

Remark. According to Lemma 2.32 of [4], δ is represented by the Hopf construction of a mapping of type $\left(\iota_{3}, n \omega\right)$. So we have

$$
\Sigma \gamma= \pm 2 n\left(\sum i\right)_{*}\left(h^{\circ} \Sigma^{3} h\right)
$$

Now we shall prove the following.
Theorem. $\gamma^{*}:\left[Q_{n}, S^{3}\right] \longrightarrow \pi_{9}\left(S^{3}\right)$ is trivial and $i_{n}^{*}:\left[E_{n}, S^{3}\right] \longrightarrow\left[Q_{n}, S^{3}\right]$ is surjective if $n \neq 0 \bmod 3$.
Proof. We consider the commutative diagram:

By [5], we have $\gamma^{*}\left(\omega \eta_{6} g\right)=\omega \eta_{6} g \gamma \in \omega \eta_{6} \pi_{9}\left(S^{7}\right)=\left\{\omega \eta_{6} \circ\left(\eta_{7} \circ \eta_{8}\right)\right\}=\left\{\omega \eta_{6}^{3}\right\}=\left\{6\left(\omega \circ \Sigma^{3} \omega\right)\right\}=0$.
Assume that there exists an integer m such that $\gamma^{*} \overline{c m u_{3}}=\omega^{\circ} \sum^{3} \omega$. Then, by use of Lemmas 1 and 2, we have

$$
\begin{aligned}
\Sigma\left(\omega \circ \Sigma^{3} \omega\right) & =\Sigma\left(\gamma^{*} \overline{c m \iota_{3}}\right)=\Sigma \overline{c m \iota_{3}} \circ \Sigma i \circ\left(a\left(h \circ \Sigma^{3} h\right)+b \Sigma\left(\omega \circ \Sigma^{3} \omega\right)\right) \\
& =\left(c m \iota_{4}\right) \circ\left(a\left(h \circ \Sigma^{3} h\right)+b \Sigma\left(\omega \circ \Sigma^{3} \omega\right)\right) \\
& =c m \iota_{4} \circ a\left(h \circ \Sigma^{3} h\right)+c m \iota_{4} \circ b \Sigma\left(\omega^{\circ} \Sigma^{3} \omega\right) \\
& =a\left(\left(c m \iota_{4} \circ h\right) \circ \Sigma^{3} h\right)+b c m \Sigma\left(\omega^{\circ} \Sigma^{3} \omega\right) \\
& =a\left(\left(c m h+\frac{c m(c m-1)}{2}\left[\iota_{4}, c_{4}\right] H(h)\right) \circ \Sigma^{3} h\right)+b c m \Sigma\left(\omega^{\circ} \circ \Sigma^{3} \omega\right) .
\end{aligned}
$$

Here H is the Hopf invariant and we have used the Hilton formula. Hence we have

$$
\begin{aligned}
(1-b c m) \Sigma\left(\omega \circ \Sigma^{3} \omega\right) & =a\left(\left(c m h+\frac{c m(c m-1)}{2}(2 h \pm \Sigma \omega)\right) \circ \Sigma^{3} h\right) \\
& =a\left(\left((c m)^{2} h \pm \frac{c m(c m-1)}{2} \Sigma \omega\right) \circ \Sigma^{3} h\right) \\
& =a\left(\left((c m)^{2} h\right) \circ \Sigma^{3} h \pm \frac{c m(c m-1)}{2}\left(\Sigma \omega \circ \Sigma^{3} h\right)\right) \\
& =a(c m)^{2}\left(h \circ \Sigma^{3} h\right) \pm \frac{a c m(c m-1)}{2} \Sigma\left(\omega^{\circ} \Sigma^{2} h\right) .
\end{aligned}
$$

Since $\Sigma\left(\omega^{\circ} \Sigma^{2} h\right)$ and $\Sigma\left(\omega^{\circ} \Sigma^{3} \omega\right)$ are elements of the 3-primary component of $\pi_{10}\left(S^{4}\right)$ $\cong \mathbf{Z}_{24} \oplus \mathbf{Z}_{3}$ ([1], [5]), we have $\Sigma\left(\omega \circ \Sigma^{2} h\right)=-2 \Sigma \omega \circ \Sigma^{3} h=-\Sigma \omega^{\circ} 2 \Sigma^{3} h= \pm \Sigma(\omega \circ$ $\Sigma^{3}(\omega)=\mp 2 \Sigma\left(\omega^{\circ} \Sigma^{3} \omega\right)$.
Thus we have

$$
(1-b c m) \Sigma\left(\omega^{\circ} \Sigma^{3} \omega\right)=a(c m)^{2}\left(h \circ \Sigma^{3} h\right)-a c m(c m-1) \Sigma\left(\omega^{\circ} \Sigma^{3} \omega\right)
$$

and

$$
a(c m)^{2}\left(h \circ \Sigma^{3} h\right)-(1-b c m+a c m(c m-1)) \Sigma\left(\omega \circ \Sigma^{3} \omega\right)=0 .
$$

This implies that

$$
\begin{equation*}
a(\mathrm{~cm})^{2} \equiv 0 \bmod 24 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
c m(b-a(c m-1)) \equiv 1 \bmod 3 \tag{2}
\end{equation*}
$$

By hypothesis $n \neq 0 \bmod 3$, we have $(12, n)=1,2$ or 4 , and so $c=12,6$ or 3 which contradicts (2). Hence we conclude that γ^{*} is trivial. This completes the proof.

Finally we have
Corollary. If $n \neq 0 \bmod 3$, then $\left[E_{n}, B S^{3}\right] \neq 0$ and if $(12, n)=1$, then $\left[E_{n}, B S^{3}\right] \cong \pi_{9}\left(S^{3}\right)$.
Proof. Making use of the exact sequence induced from the cofibration $S^{9} \xrightarrow{\gamma} Q_{n} \xrightarrow{i_{n}}$ E_{n} and by Lemma 1. ii), we have

By Theorem, γ^{*} is trivial if $n \neq 0 \bmod 3$, and so q_{n}^{*} is injective. This implies the first half. If $(12, n)=1$, we have $\left[Q_{n}, B S^{3}\right]=0$. This implies that q_{n}^{*} is surjective, so the second half follows.

Remark. Corollary tells us that there exist only $3 S^{3}$-bundles over $E_{1}=\operatorname{Sp}(2), E_{5}, E_{7}$ and E_{11} up to isomorphism of bundles.

Acknowledgment. The result of this note was obtained in the seminar held during the stay of the second author at Unicamp. The authors thank Professor Rigas for proposing the question when the map $i_{n}^{*}:\left[E_{n}, S^{3}\right] \longrightarrow\left[Q_{n}, S^{3}\right]$ is surjective.

References

[1] Hilton, P: A certain triple Whitehead product, Cambridge Phil. Soc. 50 (1954), 189-197.
[2] Hilton, P and Roifberg, J: On principal S^{3}-bundles over spheres, Ann. Math. 90 (1969), 91-107.
[3] James, I. M and Whitehead, J. H. C: The homotopy theory of sphere-bundles over spheres (II), Proc. London Math. Soc. (3) 5 (1955), 148-166.
[4] ToDA, H: Generalized Whitehead products and homotopy groups of spheres, J. Inst. Poly. Osaka City Univ. 3 (1952), 43-82.
[5] Toda, H: Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49, Princeton, 1962.

[^0]: *The research was partially supported by FAPESP grant No. 96/1644-1

