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Abstract In our previous paper ([1]), vector analysis on a Sobolev space Wk(X) was

investigated and the possibility to give a geometric example of Kerner's higher gauge

theory ([6],[7]) was discussed. In this paper, we give a simple example of geometric

space on which the exterior derivation is not nilpotent but its n-th power vanishes (n

2-3), by using suitable subspace of (oo-p)-forms. This provides a geometric example of

Kerner's higher gauge theory. To discuss its algebraic counter part, we also treat

Clifford algebra on Wk(X) with infinite degree spinors.

Introduction. Let X be an n-dimensional compact (spin) manifold, D a fixed first

order non-degenrate selfadjoint elliptic (pseudo) differential operator on X (acting on

smooth sections of some hermotian vectro bundle E over X). Fixing a Riemannian

metric on X, the Hilbert space of sections of E is denoted by L2(X). Its inner product

(determined by the, metric) is denoted by ( , ).

   On L2(X) (the closed extension of) D allowes spectral decomposition

         D=:I]a( ,eA)eA.

Since D is non-degenerate, the k-th Sobolev metric on X is determined by the inner

product( , )h determined by

         (eA,e") == sgnA1A 1h 6A.

([8]). This metric is same to the metric defined by 11fUh == IIDkfll, where 11fll is the

norm of f in L2(X). The Sobolev duality between W-k(X) and Wk(X) is given by

         <u,f> --(Gkzt,Dkf), G is tize G7een opemtor of D.

Since a p-form on Wk(X) is an element of APWmh(X), the Sobolev - le completion of the

                                      rmP-x                                       x...xX, and an (oo-p)-form should be thespace of alternative functioRs (sections) of X

dual of p-forms, we have defined an (oo-p)-form on U, an open set of Wh(X) to be a

Frechet differentiable map from U to APW'e(X) ([1],[2]).

    oo-forms on U are difined to be scalar functions multiplied by (ciet D)h. Here det



D is defined by using spectral zeta and eta functions gDE(s) and rpD(s) of IDI and D.

Since we are working in Iocal, there are no essential difference between oo-forms and

scalar forms (O-forms). But in the global study, this leads a geometric definition of the

determinant bundle ([2]). We say glDi(O) = y to be the virtual dimension of Wk(X). u is

used several calculations includng (oo-p)-forms and need to be an integer ([1]). Later

we will show introducing Clifford argument, mod. 4 class of y has meanings.

   In [1], Grassmann calculations and differential and integral calculuses of (oo-p)-

forms are investigated. One of bigg difference between finite forms and (oo-p)-forms

is the following fact ([1]).

Theorem. An exten'or dWierentiable (oo-p)-for7n is exact.

Consequently, the exterior derivation operator d is not nilpotent on the space of (oo-

p)-forms. Here we give some illustrated examples

Example 1. As an (oo-p)-form, IDI-S is written as

         IDIrmS=:IAnlrmSxnAOO-{'i}du, dlDl-S=gDi(s)AOOdu,

         IDI-S= d(,il.)i(,tt/iIAnl-S) xnxn+i Aco-{n'"+i} du).

Example 2. For the volume form AOOdu, we have

         AOOdu = d(xi AOO-{i} clx]) = d2(,$.ixnxn+i AeO-{'i"i'i} cinr)

              i= d3(,1:.l2 xixnxn+i Aco-{i,n,n+i} clx)

              = d4(iil.ili mtlt+i ,xn(xn--i ,xm,x-in+i Aeoun{n,n-'i,m,nt+i} du).

Non vanishing of the power of d comes from the fact the equation

         alg = f, f an (oo -p)-fo rm ,

is a system of infinite Iinear equations which is formally subdeterminant. So to get

good theory of Poincare Iemma and so on, we must impose some boundary conditin to

the system alg =f, that is to restrict both g and f some appropriate class of (oo-p)-

forms.

   In this paper, we discuss the most simple boundary condition, namely, the finite

condition on f. Let f be an (oo-p)-form such that

         f:=i : L･,..,. AOO-{it･'',ip} du
             il<..<iP

Then we say f is finite type if f and aif are both expressed as finite sums. alf can be

regarded as linear operator valued function with (p-1)-parameters. But finite sum
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condition of alf is not equivalent to take of the vlues in the ideal of finite rank

operators on Wk(X), and we can show this second condition follows from the first

condition. Since the ortho-normal basis of APWk(X) is a countable discrete set, finite

condition corresponds to the compact support condition. We set Cfl(U) the space of

finite type (oo-p)-forms and

       Q(U) == Zcr(U), C7(U) == Cco(U), the space of (oo-p)-forms on U.
               p

Then on Cf(U), d becomes nilpotent. Starting from Cf(U), we set

          Cm(U) =:: {fif is an (oo-p)-form and dMm2 fc Q(U)}, 7n2-3.

Then d"i-i i;O but d'" =O on C.(U). Hence Cm(U) gives a geometric example of

Kerner's higher gauge theory ([6],[7]). Same space is also defined on the mapping

space Map(X, M), where M is a smooth manifold

    Kerner also considered corresponding extended Clifford algebra ([6]). Such model

may be constructed when u is not integral but fractional. But before to do so, we must

discuss Clifford algebra corresponding to the Grassmann algebra with (oo-p)-forms.

To do so, we need to consider Clifford algebra with the infinite degree spinor. We

denote the Clifford algebra over W-h(X) by C(W-k(X)), and the infinite degree spinor

by eOO. Then eOO must satisfy

         eOO v eco = (-1)U(V+1)i2+Vrr (det lDl)2k,

         eA V eoo == eco V eA, yi 1, mod. 2, eA V eco== -eOe V eA, y -- O, mod. 2.

Here y- is (u- rpp(O))/2, eA's are the generators of C(W-k(X)). The resulting algebra is

denoted by C(W"k(X))[eOO]. Contrary to the finite degree case, to define Grassmann

product of (oo-p)-forms and p-forms by using the Grassmann map and the Clifford

product of C(Wmh(X))[eco], we need the metric of Wmk(X). That is, Grassmann algebra

on W-k(X) with (oo-p)-forms, depends on the metric structure. Acording to [9], we can

define super Poisson structure on the space of Grassmann algebra on W-h(X) with (oo

-p)-forms. Whose precise meanings will be discussed Iater.

    Most part of this paper is restricted to the local study. The half infinite forms (and

semi infinite forms) ([11]) are not investigated. But by using proper spinors

corresponding to the positive and negative proper values of D, when D is the Dirac

operator, we can define half infinite forms and semi infinite forms on W-k(X). In that

study we need the integrities of y and y-. So we introduce two parameters m and n and

replace the original D by

         D+ ml + nE,



where E is the polarization operator lima-+olD+ all-i (D÷ af), so that v and u-

defined by this operator both become integers. Since this operator is an elliptic

pseudodifferential operator, such selection of m and n is always possible. But global

definition of half infinite forms on Map(X, M) seems difficult unless M is parallelisable.

Because global existence of the polarization operator implies triviality of the tangent

bundle of Map(X, M) ([3],[4]).

    (oo-p)-forms on an infinite dimensional space has been defined by Nikolaishvili

under the assumption of the existence of a filtration of the space ([10]). Contrary to the

definition of Nikolaishvili, our definition (applied to the mapping space Map(X, M),

does not use any filtration of the space. On the other hand, Nikolaishvili does not use

metrical structure of the space, but out difinition crucially depends on the metrical

structure (not only the Sobolev structure, but also to the Sobolev metric). As already

stated in [2], if D is possitive definite, then our local study is naturally extended to the

global case. While if D is the Dirac operator, there arise several topological and

geometric problems related to the global study. These will discussed elsewhere.

1. Finite Type (oo-p)-Forms

    Let f be an (oo-p)-form on U,'an open set of W"k(X) such that

(1) f== : L･,..i. Aco-`ii''"ip} du.
              it<''<ip

If this right hand side is finite sum, then tal<ing IV to be

           Ai>max{iplLi".ip igO},

we can wrlte

   f(2) f=.rtvAAco""clx, Aco""du==Aco-{i''''"}clx.

Here .fiv is an (IV-p)"form involving only clxi,...,duN. Then, since AOO-"clc is a closed

form, we have

           di =:: alf)x AeO-"clc.

We divide d as d"+dco-", where

           dN= tY., oll, clv,, d--N == ,--#., o2, da･.

By definition, we have

           doo-N.L, Aco-"du = O.

Hence we get
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(3) of=d'YLxAco-"du.

(3) shows di is divisible by Aee7" al2 if f is divisible by Aco-"du. That is, if f is divisible

by Aoom"clx, then exterior derivation of f is carried on the {xi,...,xN}-space. Hence we

can apply finite dimensional space differential and integral calculation to f.Therefore

we obtain

   Theorem 1. ff an (oo-p)-fov'm f on U z's pmressed as afinite szam, then cif is also

(zxl)7?ssed as a finite sztm and we have

(4) d2f == O.

   Definition 1. An (oo-p)-LfZ)rm f on U is said to be of finite lyPe ij it is eJepressed

as a finite szam.

   Let {gltv} be the transition function of the tangent bundle of Mmp(X, M) and {Au}

is a selfadjoint connection of D with respect to {guv}. Then the orthonormal system

{eu,A} = {eu,A(p)} of the proper functions of D-YAtt = D+A.(p), p c U, is mapped to the

orthonormal system {gbueu, A} = {ev, a} of D+Av, if p E Un V. Hence finite type (oo-p)

-form has the global meaning. We set

cr(Map(X, M)) : The space of finite type (oo-p)-forms on Map(X, M),

                          ou           Cf(Map(X, M)) = : cr(Mmp(X, M)).
                         p=o

C7(U), Q(U), etc., are similarly defined if finite type (oo-p)-forms are defined.

   It was shown in [1], any exterior differentiable (oo-p)-form can be written globally as

(5) f= dMg,
for any m. Since smooth partition of unity subordinate to locally finite open covering

of Mmp(X,M) exists, provided the regularity of the elements of Map(X,M) to be

Sobolev le-class, this result holds on Map(X, M). Hence to set

           C.(Mmp(X, M)) == {fIdMn2fE Q(Mmp(X, M))}, mm->3,

we have

(6) dM-2 C.(Map(X, M)) =:: Q(Map(X, M)).

           d" Cm(Map (X, M)) = Cm-r (Map (X, M)), m- rl3.

Therefore Cf(Mop(X,M)) is a non-trivial space. Since d2=O on Cf(Map(X, M)), we

have
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           dmf = d2(dm-2f) = O, f E C.(Map (X, M)),

           dm-'f= d(dm-2f) = O, af dM-2f is not closed,

Hence we get

    Theorem 2. I7Vla have

(7) dM=O, dM-i#O on C,,(Map(X, M)), m)3.

         Hence we obtain a geometric example of Kerner's higher gauge theory ([6]).

2. Clifford Algebra with an oo-spinor. .

    In [6], extended Clifford algebra corresponding to the higher gauge theory is also

discussed. We do not discuss this argument. But CIifford argument of (oo-p)-forms

(spinors) will be discussed.

    Taking {eA} to be he ortho-normal basis of L2(X), there Clifford multiplications are

(8) eAVe"= -e"VeA,A=t pt, eAVe"=1.

In this case, the infinite spinor eee should be

(g) eOOveOO=(-1)"(U'i)t2, eooVeee=eAVeOO, uil mod.2

                              eeOVea = - eA VeDO, y iii O mod. 2

According to the mod.4 classification of the virtual dimension u== gDi(O), (9) is

rewritten as follows'
                  '

(9)' ecoVeco=1, eOOVeA==-eaVeOO, y!!O, mocl.4,
           eQ"Veco = 1, eOO VeA = eAVeoo, y =: 3, mod. 4,

           eOOVeoo = -1, eDO VeA -= - ea Veee, y !!! 2, mod. 4,

           eooveeO=i-1, eooVea=eAVeOe, u!1, mod.4.

    Next we move this discusston to the Clifford algebra over W"lt(X) whose

Grassmann counter part is the algebra of finite degree forms on Wh(X). By definition,

we have
                                                 '
           (eA, eA) = I ,a l2k.

Hence we modify (8) as follows;

(8)' eaVeA =I ia 12h.

ecoVeco is modified by using the zeta determinant

(9)" ecoVeco = (-1)"("'i)i2 (cletlDl)2k.

Note. If we want to remain signature contribution, it must be
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          eAVeA i= sgnAIA12k, eOOVeOo=(-1)"{"+Di2+u- (cietIDI)2k.

But in this case, we must consider half infinite spinors corresponding to products of

proper spinors corresponding to positive and negative proper values of D (cf, [11]).

That is, we must consider two elements extension C(Wmk(X)) [eco+, eco-], where the

commutation relations are

          eco+Veco- = (-1)P+VmeeO-veco+,

          eco+VeOa+ = (- 1)V+(Vt+1)t2 (det D+)2k,

          ee"- V eco. = (" 1)U-(U-+3}12 (det D-)2k,

          eOO.veA =:: (-1)"'mieAVeOO+, !l is positive,

          eOO.VeA == (-1)"'eAVeco+, A is negative,

          eeOmveA = (-1)"'eAVeco-, A is positive,

          eco-VeR == (-1)"rreRVecon, 2 is negative,

Here D+ = (D + IDI)/2 and Dr = (D - IDI)/2.

   To give a representation of eea, set AW-k(X) the (Sobolev-k)-completion of

ZAPW-k(X). AWh(X) is similarly defined. Since we have

          D2hWk(X)=W-k(X), G2kW-k(X)=Wlt(X),

there are isometries between AW-h(X) and AWh(X) which are also denoted by D2k and

G2k:

ao) D2kAwk(x)=Aw-k(x), G2kAw-lt(x)=Awk(x).

   By using super Poisson structure induced from the Sobolev -k-norm, there is an

isomorphism r : C(W-k(X)).B(AW-k(X)), the algebra of bounded linear operators on

AW-h(X) ([9], strictly speaking, the topology of C(W-k(X)) is defined by this

representation, and we consider C(Wnk(X)) is complete by this topology). We extend

this representation to a repesentation ,l? : C(Wrmh(X)) --> B(AWrh(X) o AWk(X))

as followsr
        )

al) I?(eA)=(r(8D (nl)u-iOG2kr(e,)D2k)'

We also set

(i2) R(eco) == ((-i).,.-,,,, (!)etlDb, G,, (detlel)kD2h).

Then we get

          R(eo.),l?(eA) = (-1)"2' ,R(eDI?(e.),
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          R(eeo)R(e..) = ( ua 1)"{""i)t2 (clet IDI)2k I,

where I is the identity of B(AWUk(X) e AWk(X)). Hence we have a representation R :

C(W-k(X)) [eco] - B(AWk(X) @ AW-k(X)). By using the distinguished element 1 c AW-k

(X), we difine a map s : C(W-k(X)) [eeO] -> AW-k(X) o AWk(X) by

          s(a) :=: R(a) 1.

Since we have

          s(ea Veco) = (- 1)V("'Di2'i (det IDI)2k r(eA) G2k,

s(C(W-h(X)eco)) is mapped on AWk(X).

   We denote Co and Ci the subspaces of C(W-k(X)) consisted by even and odd

elements, respectively. The subspace of Ca generated the elements expressed at most

multiple of p-elements, p=-a 7nod. 2, is denoted by C". Since s(C(Wmh(X))) = AWuah(X),

we may regard C(W-k(X)) to be a Sobolev space and Co and Ci are orthogonal each

other. The orthogonal complement of CP in Ca, a=-p, mod. 2, is denoted by CPt. As

modules, we have

(13) CP-= ]IEI] AqW-k(X).
                qlp+2,q=P mod,2

Here we identified CPi and s(CP±). By the same identifycation, we have

(14) CPieco =:: : AqWk(X).
                 qlp+2,q=-Pmod,2

Hence we get

(l5) CPL2theco/CP'eco=AqWk(X).

   Definition 2. Irp'iz ddine the Giussmann map gr : C(W-h(X))[eP]--)AW7lt(X) e AWh(X) by

gr : CP/C""2 s AqWnk(X),

gr : CP-2-eoo/C"±eco $ AqWk(X) = Aco7PW-k(X),

gr (eOO) = (-1)V(V'i)'2(de4Dl)k G AOWh(X).

p)1

   Note. This definition of the Grassmann map depends on the metric. As a module

map, there is an alternative expression of APWh(X), namely C"eco/CP-2e"O, which is

independent to the metric. But this definition is not appropriate to the definition of the

Grassmann product.

   If a is a representative of gr(a) E APW-k(X), then the highest order term of a has

the meaning mod. CPrm2. 0n the other hand, if aVeco is a representative of gr(aVeOe) E

AOO-PWunk(X), then the least order term of a has the meaning mod. CP±eOO. Consequently,
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if a and bVeeO are the representatives of gr(a) E APW-k(X) and AqW-k(X) = AcomqW-k

(X), then only the order (q-p)-term of aVb has invariant meaning. That is, the

Grassmann product between the elements of APW-k(X) and AOO-qW-h(X) is induced

from the Clifford product of C(W-h(X)) [eco] by

(16) gr(a)Agr(bVeee)=(aVb)VeOO mod. Cq-P-2±eco.

Especially, we have

(16)' [:Ay=O, af :EA"Wrmh(X), yEAqW-k(X) andq<p.

This definition of the Grassmann product coincides to our former definition ([1], [2]).

   Note. In (l6), q-p depends on the order of a and bVeOO. Since (aVb)Veco = ± (bVa)Veco,

the Grassmann product defined by (l6) violate the associative law in C(W-h(X))[eOO],

although resulting Grassmann algebra satisfies associative law (cf. [5], [7]).

   We define the modules C[eOO]o and C[eeO]i of even elements and odd elements of C

(Wnh(X))Ieco] by

          C[eOO]o -- Co o CoeOe, ij v is even,

                  CoOCieOO, of y is odd,

           C[eco]i=CieCieOO, ij y is even,

                  CiOCoeco, of y is odd.

The Hodge * operator on C(Wunk(X))[eco] is defined to be

(l7) *a=aVeeO == (-1)C("-C)eeOVa, acC[eOO],, c==O or l.

As the map on the Grassmann algebra AW-k(X) O AWk(X), this is the map

(ls) *zt == (-1)"("+i)i2+P(""P)(cietlDl)h G2kzt, zt c APw-k(x),

           *f -r <- 1)p(v-p) (det IDI)k D2hf, f E Apwh(x).

Except signature convention, this definition of the Hodge * operator coincides to our

former, definition ([2]).

3. Supplementary Remarks

    Since the Grassmann map gr: C(W-h(X))[eco]->:APW-k(X)e:Aeo-pw-h(x),

AoonpW-k(X) == APWh(X), is defined, :APWmk(X) e ZAee-"Wrmk(X) has a super Poisson

strructure ([9]). We give some explicit computation of the Poisson bracket. If za E Ca

and vE Cb, then the commutator of zt and vVeOO in C(W-k(X))[eOO] is defined to be

           [zt, vVeco] :=: ztV(vVeco) - (-1>a(b+U}(vVeco)v zaoo

                  =: (uVv - (-1)ab+aZ vV za)Veco.



Hence we have

           [za, vVeOO] == [u, v]Veco, af a =O.

If u =: gr(s) and f= gr(tVeOO), s, tc C(W-k(X)), then there Poissn bracket {bl,f} is

defined to be

(19) {u,f}=[s, tVeOO] mod. Cq-P±eOO, sE CP, tECq.

By (19), we have

(2ol {dui, Aco7" du}= ,2sgn(i, A)Aco-`i'"' cli:, A={tii,...,1'p},

           sgn (i, A) = 1, if i< ii (< 7'2< ･-･ < 7'p),

           sgn (i, A) = (- 1)h, af 7'k< i< 2'k+i,

           sgn(i,A)=(-1)P, af i>7'p,

           sgn (i, A) = O, ijC iE A.

On the other hand, we define

(2D {f,g}=O, af f, gEA"W"(X).

   We note {dui, AeO cin]} =:: 2AOO-{ '} dltr =¥O by (2ot. That is, Aco du is not a central element

of :APWk(X) o AOO-"W-h(X) by this Poisson structure. Further properties of this super

Poisson structure related to the Clifford and Grassmann algebras with infinite degree

elements together with the Clifford and Grassmann algebras with half infinite degree

elements wil be discussed in future.

   To define (oo-p)-forms or spinor fields on the mapping space Mop(X, M), we need

to add connection term {Au} to the original D so that

(22) (D+Au) gbev= guv(D+A.),

where {guv} is the transition function of the tangent bundle of Mmp(X, M) ([2]). A. is a

smooth map from U into the space order O pseudodifferential operators acting on the

same space that acts D. We can take Au taking the values in the space of selfadjpoint

operators. If D is possitive definite, then we can take {Au} such that D+Au(p), p E U,

is non-degenerate for any p and U. While if D is the Dirac operator, such selection is

impossible unless Map(X, M) is parallelisable (providing the structure group of the

tangent bundle is contained in GLp, [3]).

   Since gr(eco) = (-1)"("-i}'2 (detlDl)k c AOWh(X), and the associated AOWh(X)-bundle

of the tangent bundle of Mmp(X, M) is the rank 1 trivial bundle, we need the triviality

of the determinant bundle of Mmp(X, M) to the global definition of e"" (or Aoodu) (for the

definition of the determinant bundle, see [2]). If D is possitive definite, the determinant
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bundle of Map(X,M) is trivial. Moreover, selecting {A.} such that D+Au always

non-degenerate, detlD+Aul, D÷Au and GAu(=(D+A.)-') are all non-vanishing. I?(eOO)

given by (12) is globally defined on Map(X, M),

    When D is the Dirac operator, we need to use det D=(-1)"u det IDI to the

definition of the determinant bundle. If we select {Au} such that the virtual dimension

(gD+A.i (O)) of Wk(X) to be invariant, then the topological infori:nation of the determinant

bundle comes from the discontinuity of gD+A,,t(O) and it was shown this discontinuity

gives the (complete) obstruction to the reduction of the structure group of the tangent

bundle to its connected component of the identity ([4]). In other word, the determinant

bundle is trivial if and only if there exists a smooth function f on Map(X, M) such that

           7]lze divisor of f ::m{p, ctim leer(D+A.(p))= m}.

As a cohomology class, this obstruction is expressed as an element of Hi(Map(X, M),

R).

    For the global definition of eco(AOOcZnc), we also need to consider resolving

singularities comes from GAB, or (detID+Aul)h (D+A.)2h, when D is the Dirac operator.

Appendix. FiRite Rank Forms

    If f: U.A"Wh(X) is an (oo-p)-form of finite type, then there is a finite

dimensional subspace V such that f maps U into V. There is another condition on (oo

-p)-forms which seems similar to finite type condition. To state the condition, we

review the definition of exterior differential of (oo-p)-forms ([1], [2]).

    Let d"f be the Frechet differential of f : U-> A"Wlt(X), p Z1. Then we may regard

d"f to be a map from U to B(Wh(X)), the algebra of bounded linear operators on Wk

(X), with the (p-1)-parameters xi,...,xp-i. If d"f takes the values in Ii, the ideal of

trace class opearators, then we say f is exterior differentiable and define the exterior

differential of of f by

           of(x)(xi,...,xp-i) ::= (-1)Pmi tr(d"f(x, xp))(xi,...,xp-i).

By the same notations, we say f is afinite rank form if d"f takes the values in Io, the

ideal of finite rank operators.

    Let f = :.L4Aco-"cin: be an (oo-p)-forin. If the coefficients ]7L of f satisfies

           o2, fiB,i} == O, for ltirge i, B == {ii,...,ip-i}, ii<...< ip-i,

where {B, i} =:: A (={ii,...,i.}, ii< ...< ipmi), then f is a finite rank form.



   By definition, if f is a finite type form, then we have

           IB,i} == O, of i is sufiiciently la7ge.

Hence a finite type form is a finite rank form. On the other hand, a finite rank form

is not necessarily a finite form. Example 1 in Introduction gives an example of finite

rank form which is not a finite type form. Forms in example 2 are also finite rank

forms. They give examples of the element in C3(U), C4(U) and Cs(U).
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Added in Proof. Considering diagonalization of eee, it is shown mod. 8 class of u also

   has meanings. This will cliscussed in forthcoming papers.


