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Abstract In our previous paper ([1]), vector analysis on a Sobolev space W*(X) was
investigated and the possibility to give a geometric example of Kerner’s higher gauge
theory ([6],[7]) was discussed. In this paper, we give a simple example of geometric
space on which the exterior derivation is not nilpotent but its #-th power vanishes (#
23), by using suitable subspace of (co-p)-forms. This provides a geometric example of
Kerner’s higher gauge theory. To discuss its algebraic counter part, we also treat
Clifford algebra on W*(X) with infinite degree spinors.

Introduction. Let X be an n-dimensional compact (spin) manifold, D a fixed first
order non-degenrate selfadjoint elliptic (pseudo) differential operator on X (acting on
smooth sections of some hermotian vectro bundle E over X). Fixing a Riemannian
metric on X, the Hilbert space of sections of £ is denoted by LX). Its inner product
(determined by the metric) is denoted by { , ).

On L*X) (the dosed extension of) D allowes spectral decomposition

Dizx( ,64) €.

Since D is non-degenerate, the %-th Sobolev metric on X is determined by the inner
product ( , ). determined by

(ex, en)=sgnA| A|* S

([8]). This metric is same to the metric defined by || ||, = || D*f ||, where || £l is the
norm of 7 in L*X). The Sobolev duality between W *(X) and W*(X) is given by

w, 1> =(G"u, D*F), G is the Green operator of D.

Since a p-form on W*(X) is an element of A"W*(X), the Sobolev — % completion of the
space of alternative functions (sections) of )?pri}\(, and an (co-p)-form should be the
dual of p—-forms, we have defined an (co-p)-form on U, an open set of W*(X) to be a
Frechet differentiable map from U to APW*(X) ([1],[2]).

oo—-forms on U are difined to be scalar functions multiplied by (det D)*. Here det
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D is defined by using spectral zeta and eta functions &pi(s) and 7(s) of |D| and D.
Since we are working in local, there are no essential difference between co-forms and
scalar forms {0-forms). But in the global study, this leads a geometric definition of the
determinant bundle ([2]). We say &p (0) = v to be the virtual dimension of W*(X). v is
used several calculations includng (co-p)-forms and need to be an integer ([1]). Later

we will show introducing Clifford argument, mod. 4 class of v has meanings.

In [1], Grassmann calculations and differential and integral calculuses of (co-p)-
forms are investigated. One of bigg difference between finite forms and (co-p)-forms
is the following fact ([1]).

Theorem. An exierior differentiable (co-p)-form is exact.

Consequently, the exterior derivation operator ¢ is not nilpotent on the space of (co-

p)-forms. Here we give some illustrated examples
Example 1. As an (oo-p)-form, |D|™° is written as
(DI =2 A" zuA=" " dxe,  dID|™5 = &y (s)A™dx,
101 = d{ (214007 aass A= 10 dir),

Example 2. For the volume form A®dx, we have

o

Adx = d(l‘] A dl’) — d2< 1I71x11+1 Aw—(n,n+1}dx>

n=

- dﬁ( 22 T1XnXn+1 Awi(l'”"H” d1'>
n=

— d4< Z} z . Xnn+l TmLm+1 Am_{)ZJH.I")I'7n+1} (/l')

n=1m=n+

Non vanishing of the power of ¢ comes from the fact the equation
dg=1/f, [ an{co-p)-form,

is a system of infinite linear equations which is formally subdeterminant. So to get
good theory of Poincare lemma and so on, we must impose some boundary conditin to
the system dg — f, that is to restrict both g and f some appropriate class of (co—p)-
forms.

In this paper, we discuss the most simple boundary condition, namely, the finite

condition on f. Let f be an (co-p)-form such that

f= 3 fuew AT dy

i< i <ip

Then we say f is finite type if f and df are both expressed as finite sums. df can be

regarded as linear operator valued function with (p-1)-parameters. But finite sum
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condition of df is not equivalent to take df the vlues in the ideal of finite rank
operators on W*(X), and we can show this second condition follows from the first
condition. Since the ortho-normal basis of APW*(X) is a countable discrete set, finite
condition corresponds to the compact support condition. We set CH(U) the space of
finite type (co-p)-forms and

CAU) = %‘.C}’(U), C2(U)= C=(U), the space of (o-p)-forms on U.
Then on Cr(U), d becomes nilpotent. Starting from C/(U), we set
CulU) ={Ff is an (co-p)-form and d™* fe CAU)}, m=3.

Then d™ =0 but d"=0 on Cn(U). Hence Cun(U) gives a geometric example of
Kerner’s higher gauge theory ([6],[7]). Same space is also defined on the mapping
space Map(X, M), where M is a smooth manifold.

Kerner also considered corresponding extended Clifford algebra ([6]). Such model
may be constructed when v is not integral but fractional. But before to do so, we must
discuss Clifford algebra corresponding to the Grassmann algebra with (co-p)-forms.
To do so, we need to consider Clifford algebra with the infinite degree spinor. We
denote the Clifford algebra over W *(X) by C(W~#(X)), and the infinite degree spinor
by e®. Then e” must satisfy

eoo iV, eoo — (_l)u(u+l)/2+uf (d@t |DI)2kr
eavVe*=e"Ve, v=1, mod. 2, e Ve*=—e"Ve, v=0, mod. 2.

Here v- is (v—70(0))/2, es's are the generators of C(W *(X)). The resulting algebra is
denoted by C(W*(X))[e”]. Contrary to the finite degree case, to define Grassmann
product of {co-p)-forms and p—forms by using the Grassmann map and the Clifford
product of C(W*(X))[e™], we need the metric of W*(X). That is, Grassmann algébra
on W*(X) with (co-p)-forms, depends on the metric structure. Acording to [9], we can
define super Poisson structure on the space of Grassmann algebra on W *(X) with (co
-p)-forms. Whose precise meanings will be discussed later.

Most part of this paper is restricted to the local study. The half infinite forms (and
semi infinite forms) ([11]) are not investigated. But by using proper spinors
corresponding to the positive and negative proper values of D, when D is the Dirac
operator, we can define half infinite forms and semi infinite forms on W *(X). In that
study we need the integrities of v and v_. So we introduce two parameters » and » and
replace the original D by

D+ ml + ne,
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where e is the polarization operator [ma..o|D + al|™ (D + al), so that v and v_
defined by this operator both become integers. Since this operator is an elliptic
pseudodifferential operator, such selection of m and # is always possible. But global
definition of half infinite forms on Map(X, M) seems difficult unless M is parallelisable.
Because global existence of the polarization operator implies triviality of the tangent
bundle of Map(X, M) ([3],[4]).

(oo-p)-forms on an infinite dimensional space has been defined by Nikolaishvili
under the assumption of the existence of a filtration of the space ([10]). Contrary to the
definition of Nikolaishvili, our definition (applied to the mapping space Map(X, M),
does not use any filtration of the space. On the other hand, Nikolaishvili does not use
metrical structure of the space, but out difinition crucially depends on the metrical
structure (not only the Sobolev structure, but also to the Sobolev metric). As already
stated in [2], if D is possitive definite, then our local study is naturally extended to the
global case. While if D is the Dirac operator, there arise several topological and
geometric problems related to the global study. These will discussed elsewhere.

1. Finite Type (co-p)-Forms
Let f be an (co-p)-form on U, an open set of W *(X) such that

(1) F= 2 faw AT gy,

i< <ip

If this right hand side is finite sum, then taking N to be
N> maxlipl fi..o 0},

we can write

(2) = NN, AT Vdy = A"V i,

Here fv is an (N-p)-form involving only dxi,...,dxy. Then, since A "dx is a closed

form, we have
df = dfs A" Vdzx.

We divide d as d"+d>", where

av=3"9 dz, a-v=
& ox: Y =

=3
QD

dx;.
+1 al‘j 7

=

By definition, we have
d N AN Ndr = 0.

Hence we get
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(3) df = d"fa A" Ndx.

(3) shows df is divisible by A" dr if f is divisible by A *dx. That is, if f is divisible
by A® ¥dx, then exterior derivation of f is carried on the {x,...,2~}-space. Hence we
can apply finite dimensional space differential and integral calculation to f.Therefore
~ we obtain

Theorem 1. [f an (co-p)-form f on U is expressed as a finite sum, then df is also
expressed as a finite sum and we have

(4) d*f =0.

Definition 1. Awn (co-p)—form f on U is said to be of finite type if it is expressed
as a finite sum.

Let {gu} be the transition function of the tangent bundle of Map(X, M) and {A.}
is a selfadjoint connection of D with respect to {gus,}. Then the orthonormal system
{ew. 1) = {ew 1(p)} of the proper functions of D+ A, = D+ Aup), p € U, is mapped to the
orthonormal system {guueu 1} = {€s,1} of D+ A,, if pe UN V. Hence finite type (o-p)
-form has the global meaning. We set

C?(Map(X, M)): The space of finite type (co-p)-forms on Map(X, M),
Cr(Map(X, M) = 33 CH(Map(X, M)

CHU), CAU), etc., are similarly defined if finite type (co-p)-forms are defined.

It was shown in [1], any exterior differentiable (co~p)-form can be written globally as
(5) f=d"g,

for any m. Since smooth partition of unity subordinate to locally finite open covering
of Map(X, M) exists, provided the regularity of the elements of Map(X, M) to be
Sobolev k-class, this result holds on Map(X, M). Hence to set

ColMap(X, M) = {f|d" % f € Cr(Map(X, M)}, m=3,
we have

(6) d"? Co(Map(X, M)) = Cr(Map(X, M)).
d" CuMap(X, M)) = Cp-r (Map(X, M)), m—r=3.

Therefore Cr(Map(X, M)) is a non-trivial space. Since d*=0 on C;(Map(X, M), we
have
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drf=d¥ d"*f) =0, fe€ CulMap(X, M)),
A" =d(d" 2 f)=0, if d"7°F is not closed,

Hence we get
Theorem 2. We have

(7) d"=0, d"'%0 on CulMap(X, M)), m=3.
Hence we obtain a geometric example of Kerner’s higher gauge theory ([6]).
2. Clifford Algebra with an co-spinor.

In [6], extended Clifford algebra corresponding to the higher gauge theory is also
discussed. We do not discuss this argument. But Clifford argument of (co-p)-forms
(spinors) will be discussed.

Taking {e.} to be he ortho-normal basis of LAX), there Clifford multiplications are
(8) eiVeu= —exVer, AFpu, eVer=1
In this case, the infinite spinor e® should be

(9) e*Ve” = (-1 e*ver =g, Ve®, v=1 mod.?2
e*Ve,=—e,ve™, v=0 mod.?2

According to the mod.4 classification of the virtual dimension v = §pi(0), (9) is

rewritten as follows;

9y e”Ve*=1 e"Vei=—e,Ve”, v=0, mod.4,
e”Ve”=1, e*Ve,—e:Ve®, v=3, wmod.4,
e”Ve”= —1, e"Vei=—eVe”, v=2, mod. 4,
e”Ve*=—1, e*Ve,=e, Ve, v=1, wmod. 4.

Next we move this discussion to the Clifford algebra over W *(X) whose
Grassmann counter part is the algebra of finite degree forms on W*(X). By definition,
we have

(es, e) = A
Hence we modify (8) as follows;
(8Y eaVer=| A%,
e”Ve” is modified by using the zeta determinant
9y e™Ve® = (— 1)V (det | D).

Note. If we want to remain signature contribution, it must be
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erVer= sgnd| A%, e Ve® = (—1)"Wriv- (dof | D|?k.

But in this case, we must consider half infinite spinors corresponding to products of
proper spinors corresponding to positive and negative proper values of D (cf, [11]).
That is, we must consider two elements extension C(W™*(X)) [e™, e*_], where the
commutation relations are

e” Ve o = (—1)"e”.Ve~,,

e Ve, = (— 1)U+(U++1)/2 (det D+)2k’

e* Ve = (— 1)u7(u7+3)/2 (det D_Y**,

e Ver=(—1)"te,ve™,, 4 is positive,
e”sVer=(—1)""e.Ve~ s, 4 is negative,
e”_ Ve, = (—1)"e.Ve~_, A is positive,
e”_ Ve, = (—1)-e;Ve~-, A is negative,

Here D, = (D + |D))/2 and D_ = (D — |D|)/2.

To give a representation of e®, set AW *(X) the (Sobolev-£)-completion of
SIANPWH(X). AW*(X) is similarly defined. Since we have

DZk Wk(X) — W\k(X), Gle ka(X) — Wk(X),
there are isometries between AW™*(X) and AW*(X) which are also denoted by D?* and
G*:
1 D¥*AW*(X) = AW *(X), G¥»AW*X)=AWHX).

By using super Poisson structure induced from the Sobolev -Z-norm, there is an
isomorphism 7 : C(W4(X)) > B(AW™%(X)), the algebra of bounded linear operators on
AW5X) ([9], strictly speaking, the topology of C(W X)) is defined by this
representation, and we consider C(W™%(X)) is complete by this topology). We extend

this representation to a repesentation R : C(W*(X))— BAW *X) ® AW*(X))
as follows;

_(r(ed) 0
{11 R(el)—< 0 (—1)v~! GZ}:V(eA)DZk>'

We also set

0 (det |D|)"D2">

{12) Re™) = <(71)u(u—1)/2 (det IDI)Iz G2 0

Then we get
Rlex)R(e)) = (— 1) Rle)R(ew),
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Rles)R(ew) = (—1)"“ V2 (det | D|)** 1,
where [ is the identity of B(AW*(X) ® AW*(X)). Hence we have a representation R :

CW X)) [e*] - BIAW*(X) ® AW *(X)). By using the distinguished element 1€ AW™*
(X), we difine a map s : CW*X))[e*] » AW *X) ® AWX) by

s(a) = R(a) 1.
Since we have
sleaVe™) = (— 1) (det | D)) r(ex) G,

S(C(W*(X)e™)) is mapped on AW*(X).

We denote Co and C: the subspaces of C(W™*(X)) consisted by even and odd
elements, respectively. The subspace of C. generated the elements expressed at most
multiple of p-elements, p=a mod. 2, is denoted by C”. Since s(C(W™4(X))) = AW *(X),
we may regard C(W *(X)) to be a Sobolev space and Cy and C; are orthogonal each
other. The orthogonal complement of C* in C,, a=p, mod. 2, is denoted by C?*. As

modules, we have

13 crt= 2 ATWHX).

qzp+2,4=p mod.2
Here we identified C** and s(C?*). By the same identifycation, we have

(14) Cre= 2 ATWHX).

qzp+2,9=p mod.2

Hence we get
{15 CP e~ /CPre™ = ATWH(X).

Definition 2. We define the Grassmann map gr : COW X)) [e”] > AW H(X) @ AW*(X) by

gr: CP/CPP < AW H(X),
gr: CPe”/CPe” < ATWHX) = A PWAX), p=1
gar (eoo) - (71)v(v+1)/2 (d@f tDDk c AOWk(X)'

Note. This definition of the Grassmann map depends on the metric. As a module
map, there is an alternative expression of A*W*(X), namely CPe*/C” %>, which is
independent to the metric. But this definition is not appropriate to the definition of the

Grassmann product.

If a is a representative of g»(a) € A°"W*(X), then the highest order term of « has
the meaning mod. C?7% On the other hand, if aVe” is a representative of gr{aVe~)e€
A®"PW~#(X), then the least order term of « has the meaning mod. C**e™. Consequently,
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if @ and bV e™ are the representatives of gr(a) € A"W#X) and AW *(X)=A~"'W*
(X), then only the order (¢-p)-term of aV b has invariant meaning. That is, the
Grassmann product between the elements of APW *(X) and A ‘W *(X) is induced
from the Clifford product of C(W*(X))[e”] by

(18) gr(a)agr(b¥e®)y = (a"b)"e™ mod. Co-P-2L g
Especially, we have
o 2y =0, i zEAPWHX), y e AW HX) and q<p.

This definition of the Grassmann product coincides to our former definition ([1], [2]).

Note. In(6), g-p depends on the order of @ and b¥e™. Since (¢¥b)'e* = * (bYa)'e™,
the Grassmann product defined by (I6) violate the associative law in C(W*(X))[e™],
although resulting Grassmann algebra satisfies associative law (cf. [5], [7]).

We define the modules C[e*]y and C[e”]: of even elements and odd elements of C
(W-*(X)) [e*] by

Cle*lo=Co® Coe™, if v is even,
Co® C1€°°, Zf v is Odd,
Cle“li=Ci® Cie™, if v is even,
Ci®Coe™, if vis odd.

The Hodge * operator on C(W™*(X))[e™] is defined to be
1 fa=a'e” = (=) 9y, a€Cle®]l, ¢=0orl.
As the map on the Grassmann algebra AW *(X) ® AW*(X), this is the map

(18) ¥ = (— 1)V (ot | DY GPRu, w € APWTHX),
*f — (_ 1)p(u—p) (det ‘D‘)k DZkf, f c APW'Z(X).

Except signature convention, this definition of the Hodge * operator coincides to our
former. definition ([2]).

3. Supplementary Remarks

Since the Grassmann map gr: C(W (X)) [e®] > AW H(X) & AW (X),
ATPWH(X) = APWHX), is defined, AW *(X) & A "W*(X) has a super Poisson
strructure ([9]). We give some explicit computation of the Poisson bracket. If « € C,
and v € Cyp, then the commutator of « and vYe”™ in C(W*(X))[e*] is defined to be

Lo, v¥e™] = u¥(pVe™) — (= 1) (Ve u™

— (MVU _ (_l)ab+a2 z)vu)vem.
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Hence we have
[, vVe*] =Tu, v]¥e”, if a=0.

If #=gr(s) and = gr(t’e™), s, { € C(W4(X)), then there Poissn bracket {, f} is
defined to be

19 {u, f1=1s, tYe*] mod. C*PLe®, se€CP, te(Co
By (19, we have

) {dxi, A= dx} = 2sgn(i, AN dx, A={p,....5),
sen(i, A)=1, if i<jh(<p<...<Jp)
sgn(i, Ay= (=" if jpa<i<jum,
sgn(i, A)=(—1)", if i> jn,
sgn(i, Ay=0, if 1€ A.
On the other hand, we define
@D {f, 8} =0, i f, ge APWHX).

We note {dx;, A" dx}=2A"" dr=0 by Q). That is, A" dr is not a central element
of JIAPWA(X) ® A" PW~*(X) by this Poisson structure. Further properties of this super
Poisson structure related to the Clifford and Grassmann algebras with infinite degree
elements together with the Clifford and Grassmann algebras with half infinite degree
elements wil be discussed in future.

To define (co-p)-forms or spinor fields on the mapping space Map(X, M), we need
to add connection term {A.} to the original D so that

@2 (D+ Au) g = 8uo (D+ Av),

where {guw} is the transition function of the tangent bundle of Map(X, M) ((2]). A. is a
smooth map from U into the space order 0 pseudodifferential operators acting on the
same space that acts D. We can take A, taking the values in the space of selfadjpoint
operators. If D is possitive definite, then we can take {A4.} such that D+ A.(p), p € U,
is non-degenerate for any p and U. While if D is the Dirac operator, such selection is
impossible unless Map(X, M) is parallelisable {(providing the structure group of the
tangent bundle is contained in GL,, [3]).

Since gr(e®) = (—1)*¥ 172 (det|D|)* € A"W*(X), and the associated A°W*(X)-bundle
of the tangent bundle of Map(X, M) is the rank 1 trivial bundle, we need the triviality
of the determinant bundle of Map(X, M) to the global definition of e® (or A¥dx) (for the
definition of the determinant bundle, see [2]). If D is possitive definite, the determinant
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bundle of Map(X, M) is trivial. Moreover, selecting {A.} such that D+ A, always
non-degenerate, det|D+ AJl, D+ An and Gau(=(D+ A,)™") are all non-vanishing. R(e”)
given by (12) is globally defined on Map(X, M).

When D is the Dirac operator, we need to use det D =(—1)"" det |D| to the
definition of the determinant bundle. If we select {A.} such that the virtual dimension
(&p+ 4 (0)) of WH(X) to be invariant, then the topological information of the determinant
bundle comes from the discontinuity of &p+4q(0) and it was shown this discontinuity
gives the (complete) obstruction to the reduction of the structure group of the tangent
bundle to its connected component of the identity ([4]). In other word, the determinant
bundle is trivial if and only if there exists a smooth function f on Map(X, M) such that

The divisor of f= Zmip, dim ker (D+ Aup)) = m).
As a cohomology class, this obstruction is expressed as an element of H! (Map(X, M),
R).
For the global definition of e”(A”dx), we also need to consider resolving
singularities comes from G3* or (det|D+ Au)* (D+ A,)*, when D is the Dirac operator.
Appendix. Finite Rank Forms

If /: U—->APW*X) is an (co-p)-form of finite type, then there is a finite
dimensional subspace V such that f maps U into V. There is another condition on (oo
-p)-forms which seems similar to finite type condition. To state the condition, we
review the definition of exterior differential of (co-p)-forms ([1], [2]).

Let d"f be the Frechet differential of f: U— A?W*(X), p=1. Then we may regard
d"f to be a map from U to B(W*(X)), the algebra of bounded linear operators on W*
(X), with the (p-1)-parameters x,...,xp-1. If d"f takes the values in I;, the ideal of
trace class opearators, then we say f is exterior differentiable and define the exterior
differential df of f by

df(xX(xy, ... ,xo-1) = (1P (d M f(x, 2)) (24, . . ., o).

By the same notations, we say f is afinite rank form if 4"f takes the values in Iy, the
ideal of finite rank operators.

Let f = 33/aA”4dx be an (co-p)-form. If the coefficients fa of f satisfies
—a'%ﬁB, it = 0) f07’ Z(l?’g@ Z-, B = {il, .. .,ip—]}, Z1< L < ip—l,

where {B, i} = A (={i,...,ip), 1<... < ip-1), then f is a finite rank form.
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By definition, if f is a finite type form, then we have
Jis.a=0, i i is sufficiently large.

Hence a finite type form is a finite rank form. On the other hand, a finite rank form
is not necessarily a finite form. Example 1 in Introduction gives an example of finite
rank form which is not a finite type form. Forms in example 2 are also finite rank
forms. They give examples of the element in Cs(U), C4«(U) and Cs(U).
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Added in Proof. Considering diagonalization of e, it is shown mod. 8 class of v also
has meanings. This will cliscussed in forthcoming papers.



