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                               Abstract

   This is the extended exposition of the previous paper [2]. Given an infinitely

divisible (or ID) random measure A on a measurable space T, we provide a certain

method to construct a version of A based on a Poisson random measure on the product

space S==TX(RX{O}). In particular, the present paper contains a new result about a

class of ID random measures on T which are realized by R-valued signed measures on

T. As an application we discuss the law equivalence of ID random measures on T by

using our constructive method with Kal<utani's theorem on the equivalence of infinite

product probability measures.

   Mathematics Sztbject Classijication (1991) : 60E07, 60G30, 60G57.

   gl. Introduction.

   In this paper we are concerned with our method to construct an infinitely divisible

random measure on a measurable space T based on a Poisson random measure on S=

T×Ro, where we put Ro=RX{O}. First we recall some basic definitions and notations.

Let T be an arbitrary nonempty set and g..i." be a 6-ring of subsets of T. We assume that

there exists an increasing sequence {Tn ; n 2r 1} CIS$J with T = Uge,=iTn and {t} E fl for each

t E T. Let A={A(A) ; A E C.3v"} be an intnitely divisible (or ID) vandom measure on T with

no Gaussian component, which is defined on a basic probability space (st, g, P) (see [8]).

Precisely speaking, A is a real stochastic process with the following two properties.

(A.1) Each A(A) is an infinitely divisible random variable with no Gaussian

     component l
(A.2) For every sequence of disjoint sets An (n}i:1) in M, the sequence {A(An) ; n}}:1}

      is independent and, whenever U:.iAnEC.3..", we have

                A(Uge,-iAn)=Z:=iA(An) P-almostsurely.

Then the characteristic function of A(A) can be written in the Levy's canonical form

(1.1) E[exp(izA(A))]=:exp[izv(A)+.LC,,,,g(z, x)M(dlclx)] (zER, AE%),
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                  g(2, x)=exp(izx)-1-izxlJ(x), f:=(-1, 1),

where v : C.Sv"->R is an R-valued signed measure on T and M is a measure on S satisfying

(1-2) ll[i .., (IAx2) M(dtdu)< oo (AES).

We denote by PA the probability measure on a measurable space (Rtz, g(RS)) induced

by the map A : 9 ) w-, A(･, w) c R"; where Rt is the set of all R-valued functions on

gAr; and X(R7v) is the o-algebra oii RS generated by all coordinate functions. We mean by

A=dlv, M] that the probability measure Pn is determined by parameters v and M. Let

(S, e) be the product measurable space given by S=o(S)(g)as(Ro), where o(M) is the d

-algebra on T generated by M and SIii(Ro) is the Borel o-algebra on Ro. Let .fC/==yk'(S) be

the totality of nonnegative (possibly infinite) integer-valued ineasures on (S, (i5). Let

8(y(/) be the o-algebra on ,f(/ generated by all functions f* on .li' given by

             f*(v)= <v,f>=./1 ldv for fc,f7+(s) and vE ,//,

where ,.SIU' (S) is the set of all nonnegative measurable functions on (S, S). An ylf'-valued

random element 8 is called a .Floisson 7undom measzaie on S with intensity M if it is

defined on (n, g, P) and its Laplace transform is given by

(1.3) E[exp(-< 6,f>)] == exp[-fYI{1-exp(-f(t,x))}M(dtdu)] for fE,9P'(S).

    The purpose of this paper is to construct a version of A=d[v,M] based on a

Poisson random measure on S with intensity M. Our construction will be applied to the

problem of law equivalence for ID random measures on T. In Section 2 we introduce

the notion of canonical probability space (fi, 3, P) corresponding to the measure space

(S, e, M). Then we have a probability space (yl", X(yli Q") such that the identity map

I on .V is a Poisson random measure on S with intensity M. In this connection, we

obtain a criterion for the integrability of f(l',x) with respect to a Poisson random

measure on S when we impose on K a certain additional condition (Theorem 3).

Furthermore we obtain a class of ID random measures on T which are realized by R

-valued signed measures defined on S (Theorem 4). In particular, when M satisfies the

condition

(1.4) yZ.,lxaM(dtctc)---m(A)<oo (AccN31),

we see that sample functions of A are realized by R-valued signed measures on T and

also that A is expressed as a difference of indepenclent nonnegative ID random

measures on T (Theorem 5).

    In order to discuss the problem of law equivalence, we shall introduce some

notations. Given o-finite measures pt and y on a measurable space (E, S), we mean by

pt<y that pt is absolutely continuous with respect to u. We mean by pt-vy that " and

y are equivalent, i.e., mutually absolutely continuous. The Hellinger-Kakutani

distance and inner product are defined respectively by
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           dist(pt, y) = [A(VZZLET - VZhJ )2] i'2 and p( pt, y) =A mt .

    Now given ID random measures Ai and A2 on T, we establish a sufficient condition

for PA,--Pzi, in terms of the parameters associated with Ai and A2.

  Theorem 1. Asszcme Aj -- d[vj,M(j)] (7' -rm 1,2). CZ7zen Pn,NPA, of thefollowing three

conditions hold simztlt'aneously:

(E.1) M(i)txyM{2},

(E.2) dist(M(i}, M(2}) < oo,

(E.3) vi (A) ua v2 (A) = YX ., x{M`i' - M`2'} (dim) (A c or-.).

   This theorem is closely related to the previous results stated in [1], [21, [3] and [4].

We shall prove Theorem 1 in Section 4. For this purpose we construct the versions of

Aj U = 1, 2) along the procedure stated in Section 2. They are defined on the canonical

probability spaces corresponding to (S, e, M{")) (7' = 1, 2) respectively. The proof is then

reduced to the Kakutani's theorem on the equivalence of infinite product probability

measures. We note that (E.1) and (E.2) guarantee the law equivalence of Poisson

random measures & and & on S with intensities M(i) and M(2} respectively (see [91).

    S2. A Construction of Infinitely Divisible Random Measures.

   Let A=d[v, M] be an ID random measure on T stated in Section 1. The aim of this

section is to construct a version of A based on a Poisson random measure on S with

intensity M. For simplicity we may assume M(S) > O. We begin with the case that M

is a finite measure on (S, e).

    Case (I): M(S)< oo. For each k ).}).. 1, Iet (Slt, Sk, Pk) be a probability space given

by Pk = M(S)-kMk, where we mean by (Sk, ek, Mk) the k-fo}d product measure space

of (S, S, jT4). Then we consider a probabiljty space (n", g', P*) defined by

(2.1) 9*= ,Uco..,Sk, g*=(A*= ,UO.O.,A,; AkEgk (k 2) o)),

                         oo es      P*(A")=exp(-M(S)):(k!)"iM(S)kPk(Ak) for A"==UAkEg',
                         k=e k==o
where (SO, eO, Pe) is the trivial probability space given by SO == {O} and SO = {¢, SO}. We

call (st*, g', P") the basic canonical Probabilitv space associated with (S, e', M). Let

¢ : st'-yl/ be an g*/%(,fV)-measurable map given by ¢(O) = O and

                                 k
(2.2) <O(cv*),f> [= :II] f(pi(co*)) for fE,.ET'(S)
                                i=I
when (v"= (pi(co'),'･･,pk(cv')) E Sk (k 2i 1). Then we obtain a Poisson random measure ¢

on S with intensity M, which is defined on (9", g", P*>. We define

(2.3) V(A,w*)-.LL..,x¢(dtaLe,to*) (AEXN, tu'c s)'),
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                                                                  '(2.4) /1'(A, to") = v(A)+ .LC .., x¢(dnh, w") - .LC ., xM(dtclx) (A c k, to* E n*),

where we put ¢(U, a)') := [¢(cv")](U) for UE (i5 and (v"c Slt*. Then we easily see

(2.5) E'[exp(zzr(A))] = exp[Y[ZI.,,{exp(zzx)- 1}M(dmb)] (zE R, AE EI ),

where E'[e] stands for the expectation with respect to P*. Further we have

   Proposition 1. 7'Vze Process A*={A'(A); AE %} is an ID mndo7n measure on T

zvhich is defined on (9*, g", P*) and claartzcterized by A'=d[v,M].

   Case (II): M(S) = oo. On account of (1.2) we can choose a sequence {Sn; n l}r 1} Ce

of disjoint subsets of S satisfying S = UY,..iSn and O < M(Sn) < oo (n l}i 1). Let {Mn; n >

1} be a sequence of finite measures on (S, S) defined by Mn(U) = M(Un Sn) for U E S.

Let us introduce an infinite product probability space

                                    oo(2.6) (ft, g, P)- fi (fl*, &*, PY,),
                                   n=1
where (st", g*, P,*,) is the basic canonical probability space associated with (S,e, Mn).

We call (ft, g, P) the canonical Probabildy space associated with decomposition M==

]X]:=i Mn on (S,g). Let W and Wn be ilf-valued random elements defined on (ft, 3, P)

which are given by

                    oo tl(2.7) il[n==:(¢om,) and ilV.=:(¢orri) (n2}tl).                    n=I i--1
Here n}i denotes the n-th projection map from a=(a*)OO onto st'. Then we have

Poisson random measures W and Wn on S with intensities M and Mkn) =:i--iMi

respectively. Inspired by (2.4), we define, for each n l}: 1,

(2･8) An(A, di)= v(A)+f)C..,xWn(dmb, di) rm f)C., xMkn)(dha) (A E ℃, di C d)･

Then we have an ID random measure An == {An (A); A c [.]v"} on T, which is defined on

(ft, g, P) and characterized by x[in=d[v, Mln)]. Further we see the sequence {An(A); n2)

1} converges in law to A(A) for each fixed A E S. On account of the Levy's equivalence

theorem on the convergence of series with independent summands, we can find a

random variable A..(A) defined on (ft, g, P) to which {An(A)} converges almost surely

as n-oo. Thus we have

   Proposition 2. 7'7ze Process A..={fi..(A); AE S} is an ID 7undom measzt7'e on T

which is dofned on (ft, g, P) and characteri2ed by A.=dlv,M].

   Furthermore we shall provide an explicit representation of A.(A). For this

purpose we replace (2.8) by the expression
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(2･9) Aln(A, di) = V(A) +01. ., ,,.. X{W(dt`lV, di) 7 M(dtdu)}

                                     ÷.(](IA.J,),.,, i:W(dtalx, cZi), (A c Es, (zj E ft),

where we put Rn = U:･i=iSi (n l}i 1). Noting that E[il[t(AxfC)] == M(A×IC) < oo, we see

the second integral of (2.9) converges almost surely as n-oo. Therefore taking the

Iimit of (2.9) in probability, we immediately obtain

(2.lo) A.(A, di) == v(A) ÷ .11C ., x{w(dtctx, di) - M(dtdu)} + YIC .,, xw(dtclx, di)

P-almost surely for each A E M.

   In the rest of this section we are concerned with a realization of A based on the

space th=yt/(S) of nonnegative integer-valued measures on (S,S). We mean by

(it/, %(yif), Q") a probability space given by

(2.11) Qld=[P*]o in Case (I) and Q"=[Plur in Case (II),
where [P"]o and [P]v stand for the images of P' and P induced by O and W

respectively. Then the identity map I on (yif, ve(yl/), QM) is considered as a Poisson

random measure on S with intensity M. Consequently we introduce a process G=

{G(A); A c M which is defined on (yL 8(ul/), Q") and expressed in the form

(2.12) G(A, u) :- v(A)+ Y[]C.,x{y(dtclx)- M(dtth:)} + .LC.,.xy(dtdZc) (A E C.vr", uE y(/).

Precisely speaking, for each AE M, the first integral of (2.12) is defined as the limit in

probability of the sequence (01..,,,..x{u(dtdu)-M(dtdu)}; n 2}i 1) in Case (II). We

note that the random variable G(A) is well defined by the above discussion. Then

Propositions 1 and 2 yield immediately the following

   Theorem 2. 7'7ze P7vcess G = {G(A); A E S} is an ID 7tzndom measztre on T which

is dqfined on (M,X(yif), Q") and cha7ucteri2ed by G=d[v,M].

   g3. A Subclass of lnfinitely Divisible Random Measures.

   The purpose of this section is to provide a class of ID random measures on T

which are realized by R-valued signed measures on T. First we consider the

integrability of measurable functions with respect to the Poisson random measure on

S which is associated with A = d[v, M]. Let (nt, as(,//), Q") be the probability space given

by (2.11). Let if(t, x) be an R-valued measurable function on (S, (i5). We put

(3.1) me(A)=,()(I ., IV(t, x)iM(dta(u) (AE M),

(3･2) Vlb(A, y) = ,(](I.,,IV(t, x)lu(dtaLc) (Ac K, yE ,il/).

   Proposition 3. Sumpose mdi(A)<oo. CLezen there exists a set yl6E %(v'I/) satisy3,ing
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(3.3) Q"(/6)=1 and Vlfr(A,y)<oo (uEylfo).

   P7'oof. By applying (l.3) to f(t, x) J= IA(t)1 1th(t, c)1, we have

(3.4) EQnf[exp(- Vl,(A,･ ))] = exp[-,(Zl..,{1-exp(rm iv(l, x)l)} M(dklv)],

where EQ"[o] stands for the expectation with respect to Q". Putting

             mj (A) = Yl]II .,,,, {i - exp (- l th(t, x) 1)}M( (itdu) (i -- i, 2)

with f(1) =1 and I(2)=fC, we have mi(A)gmut(A), O :{: m2(A)<oo and

         -logEQAf [exp (- Vlb(A, ･ ))] == mi(A) -F m2(A) sg me(A)+ ma2(A) < oo.

Then we have EQnf [exp(- Vle(A,･ ))] >O. Further putting /f6 -- {y ql/; Vlth(A, y)< oo}, we

see this implies Q"C7t6) >O, On the other hand we can apply the Kolmogorov's O-1 law

to the expression

(3･5) Vle(A, y) i=: ,X.,,(L,..1zth(t, v)ly(dtcinr) (yGyO,

where Bn : {x E Ro; l/n S; lxl < 1/(n-1)} (n 2) 1) with 1/O = oo. Thus we obtain

QM (itf6) = 1.

   Remark. Whenever if(t, x) is bounded on AXJ, we can show the condition me(A)

< oo is necessary in order to obtain .i% e 8(il/) satisfying (3.3).

For further investigation we need to introduce the following condition on K.

(3.6) For each Ac M, there exists n l}) 1 such that ACTn.

   Theorem 3. Assztme (3.6) and

(3.7) mut(A)<oo for eachAE`A3.".
7'lhen the7'e exists a set .f(i6 E 8(.i(/) satMing

(3.8) Q"(k)=1 and Vle(A,u)<oo for eachAEEIJ andvEi;X6.

   Proof. It follows from (3.7) that Proposition 3 yields ./fr'n E EX}(./I/) (n 2}i 1) satisfying

(3.9) Q"(iLi)=1 and lt(Tn, v)<oo (yEyLt).
Now putting //o -- nge,=i v'l4i, we obtain (3.8) by (3.6) and (3.9).

   We now provide here a class of ID random measures on T which are realized by

R-valued signed measures on T. Given an R-valued measurable function if(t, x) on S,

we introduce a measure Mut on (S, S) defined by

(3.10) Mut( U)=M({(t, x)E S; (t, V(t, x))E U}) for UE (i5.

For AcM and ycM, we put
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                '
(3.11) ]Ule(A, v) = v(A)+IZi.,,, ut(t, x)y(ntdu)-YJC., di(t, x)M(dta{x)

provided the integrals in the right hand side are finite. Otherwise we put He(A, u)=O.

Furthermore, if we assume (3.7) and also

(3･12) Y[ill..,IV(t,x)llJ(if(t,x))M(dtdu)<oo (AEfi!),

we have an R-valued signed measure nte on T defined by

(3.13) n-i"e(A)=Y[L..,if(t,x){IJ(if(t,x))unIJ(x)}M(didx) (AcK).

   Theorem 4. Assztme (3.6), (3.7) and also

(3･14) YZi..,(IAIV(t,x)1)M(dha)<oo (AEgnr.").

CZnVzen the Process He = {Hut(A); A E M} is an ID random measzt7e on T which is dofned

on (yif,%(M), Q") and chartzcteri2ed by He=d[v+ 7a-zdi, Mut].

   P7oof. First we introduce a map le : yti-->ylf given by Iut(y) = ydi, where we put

(3.15) ue( U)= y({(t, x)ES; (t, if(t, x))c U}) (UE g, yc M).

Then we see that le is a Poisson ranclom measure on S with intensity Me which is

defined on ("/, 8(vt/), Q"). On the other hand, Theorem 3 guarantees the existence of a

set itf6 G 8(ili[) wlth Q"Q4G) = 1 such that Hle(A, y) is expressed by (3.11) for each A E EigJ

and v c ik. On account of (3.14), Hut(A, y) can be expressed as follows: For each A c

CA3; and uEy%, we have

  Uo(A, u) = v(A) + nte(A) + .L]C.., if(t, x)u(dtaL2 ) - Yl/l.,, V(t, x)IJ(if(t, x))M(dim)

          == v(A) + n-ze(A) + Y[L.., xypt(dtaLv) m IZI ., xMut(dim)D

Therefore we immediately obtain the conclusion by Theorem 2.

   By applying Theorem 4 to if(t, x) : x, we can realize A=d[v, M] in the space of

R-valued signed measures on T whenever both (3.6) and

(3･16) ,(Zl.,lxlM(dtclc)!!im(A)<oo (AEM)

are satisfied. In detail, Iet H'= {H'(A); AE M, ff-= {Hn(A); AE S} and H =: {H(A);

A c M} be ID random measures on T, which are defined on (Jif, %(//), Q") and expressed

as follows:

(3.17) H'(A, y) == v±(A) + m(A) + .LI[ .,, x± u( dmb) -.IZI ., x±M(dmb),

(3.ls) fll(A, y) =: v(A) + y(Z[l .., xu(dtdu) m .(](I ., xM(dtcZc)･

Here v -- v'-v- stands for the Jordan decomposition of v. We put R± = {±x>O} and
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M±(U)=M(Un(T×R±)) for UE S respectively. Then we have

   Theorem 5. Assume (3.6) and (3.16), CZIPzen H' and H are chartzcteri2ed by H±= d

[v±+m, M±] and H=d[v,M] respectively. thcrtherva2ore H" and HM a7e indopendent
and also there exists a set i(6 c SEI(iif) zvith QM(il6) = 1 satiEy5,ing

(3.19) H(A, y) ::= H'(A, u)-U-(A, y) and Os;U±(A, u)<oo (AE CN3', yEX6).

   g4. The Proof of Theorem 1.

   On account of (E.1) and (E.2) we may assume that M(i}(S) and M(2)(S) are

simultaneously finite or infinite. Indeed, (E.1) yields

    M(D(S) = X, .,,} didM(2)+L.,,} di dM(2} E{ 2Jk (fo-1)2clM(2) +16M(2) ({ ip < 16}),

where ip ::= dM(i)/dM(2). This implies that

              M(')(S) s{ 2dist(M{i), M(j))2 + 16M(j)(S) (i, 7' -- 1, 2).

Therefore combining (E.2) with these inequalities yields the assertion.

   ([]kese (I): M(j)(S)< oo ( 7' = 1, 2). We construct the basic canonical probability space

(fl', g", P'(')) associated with (S,e,M(')) for each i--1,2. It is obvious by the

construction that M(i)NM{2) implies P*{i)'"-P"(2). Let us consider a family of random

variables =' (A, w') (A E sc.v) defined by

(4.1) =. (A, no *) = v,(A) + YX .,, x¢( dtclx, w*)- ,()C ., xM (i)(dtdu) (A E EI , to* E s) *).

Then we see by (E.3) an alternative expression

(4.2) -M' (A, to") = v2(A) + y(L .,, xO( dim, w*)- .LI[ ., xM(2)( dtclx) (A E Eg, to* E 9*).

Therefore we see by Proposition 1 that ew = {:' (A); A E M) is an ID random measure

on T, which is defined on (S)", g', P*(j>) and characterized by

(4.3) .xe., -uad[vj,M('}] with respect to P*O') (i -- 1, 2).

This implies that

(4.4) PA,=[P'`"']=. on (RT-, 8;(RZ)) (7'=1,2),
where [P"(j)]-T stands for the image of P*(j) induced by the map :. : S}' ) to* ----. :. (･, w*)

c RZ. Thus combining (4.4) with P*(i)n-P*(2) yields the relation PniA"PA2.

   Remark. In Case (I), we have the identity

(4.5) p(P"{i), P'(2)) == exp[-(1/2)dist(M(i}, M(2))2].

Indeed, putting M=M(')+M(2), we construct the basic canonical probability space

(st', g*, P") associated with (S, S, M). Then we have P*{')<P' (7' =1, 2) and

   otp*(i),p*(2>)=:A. dp*(i)/dp* dp*(2)/dp*dp*
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     =,:e=O,Jk, exp(M{2)(s))dM(i)k/dMk exp(M(i)(s))dM{2}k/dMk dp*

     =exp[(1/2)A4(S)],:oo..,exp[-M(S)](k!)-i./i, dM(i)k/dMk dM(2)k/dMkduak

     =exp[-(1/2)M(S)],ZO=O,(k!)ni[./k dM{i)/dM dM(2)/dM dM]k

     =exp[-(1/2){M`i'(S)+M`2'(S)}+/k dM`i'/dM dM`2'/dM dM]

     =exp[-(1/2)/i{ dM"'/dva - dM{2'/dM}2due]

     = exp[ - (1/2)dist(M(i), M(2))2].

Ctzse (II): M(')(S) = oo (7' -- 1, 2). First we note that the existence of the integral in

is guaranteed by (E.2). Indeed, putting M=M(i) + M(2), we have

Here 11wI1

the procedure stated

Poisson random measures on S. We can f

of S in (ii5 satisfying

we construct

associated

M("(Un Sn)

n }i1. Further

(4.7)

Therefore we obtain P(i)--P

product probability measures (see [5])

processes A

 .(]1 ., 1xI'11M`i'-M`2'Y(dtclx)= YX ., 1x1 ･IdM`"/ dM- dM(2'/dM1dM

    =YJC.,1 dM(i)/dM- dM(2)/dMl･lxl{ dM(i)/dM+ dM(2}/dM}dM

    K[Yl4 ., { dM(i}/ dM - dM (2}/ dM }2 dM]ii2.

                         [.L)C.,lxl2{ dM(i)/dM + dM(2)/dM}2dM]i'2

    Sg dist(M{i), M(2))[2.LZI .J lx12{ dM('}/ dM + dM{2)/clM}dM]i'2

    =dist(M(i), M(2))[2Y[L ,J lxl2 dM]i'2< oo.

stands for the total variation measure of a signed measure w. According to

         in Section 2, we shall construct versions of Ai and A2 based on

                          ind a sequence {Sn; n21} of disjoint subsets

        S=Uge, =iSn and O<M(j)(Sn)<oo (nl}r 1, 7' = 1, 2). For each 1' = 1, 2,

   the canonical probability space

                          co              (fi, {il, P{j'>) = fi (Sll*, 8;*, P,*,{j))

                         n=1
 with decomposition M(j)=:?,=oM,S"') on (S, S), where we put M,S"')(U) =

  for UE e. Now (E,1) implies M,ii)nvMiS2} and also Pt',(i>--P,*,(2) for each

   (E.2) with (4.5) iix}plies

        tW., p(P:`i', P,', (2') = exp[-(1/2),$., dist (M,Si), M,S2))2]

             == exp[-(1/2) dist (M(i), M(2))2] >o.

         "' N{2) by the Kakutani's theorem on the equivalence of infinite

                      . By applying Proposition 2, we obtain stochastic

 S"> = {AS" (A); A E Cn3."} (?' =:: 1, 2) satisfying the following two conditions.
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(4.8) AS') is defined on (d, g, P(")) and characterized by ISj>=d[vj, M{')];

                                - --i(4.9) For each A E Z, the sequence {ASf}(A); n>1} converges almost surely to AS"'(A)

     with respect to P{j) as n-oo, where we put M((//)} = :}'.,iMi") and

(4.10) ASI" (A, di) == v,･(A)+flZl.,,,xeP;,(didx, di)- flZl,,x"`//}'(cltdu) (A E S, di E ft).

On account of (E.2) and (4.10) we have the following equations:

(4･1i) IJLi .fL ., x{A(4`,B - A41`,?l} (didx) - fL ., x{M(i'-M(2'} (ntdu),

(4.12) ASt) (A, di) - AS?) (A, di) = v,(A)- v,(A)-f)C ., x{Ml(B -A4i`31}(dtdu)

for AE`n3.", dicft and n->1. Therefore combining (E.3) with P(')'vP(2) yields that

Ats"(A)=AS2)<A) almost surely with respect to P{i} and P(2). Now putting e(A, di)un-

lki)(A, di) for AECA3." and diE{i, we have a process O={e(A);AcM defined on

(ft, X, P{j)) for each 7' = 1, 2 and characterized by

(4.13) e=d[vj,M(j)] with respect to P("' (1' -- 1, 2).
This implies the equalities PA, = [P('>]o (1' = 1, 2), where [P(')]o stands for the image of

PO induced by the map e : ft ) di--) e(･, di)c RZ. Thus we obtain the desired relation

PAibvPn, from P(i)--P(2).
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