On the Temporally Global Existence of the Solution for a Nonlinear System of Mainly Parabolic Equations

Nobutoshi Itaya
Department of Mathematical Sciences, Faculty of Science, Shinshu University (Received 29th July, 1996)

Abstract

A discussion is made on the temporally global problem of a nonlinear mainly parabolic system of partial differential equations which is a model of partial differential equations with factors depending on the time process of unknown functions.

The notation used below is conventional, $H^{2+\alpha}(\bar{\Omega}), H^{2+\alpha, 1+\frac{\alpha}{2}}\left(\bar{\Omega}_{T}\right), C^{1+\alpha, 1+\frac{\alpha}{2}}\left(\bar{\Omega}_{T}\right)$, etc., denoting Hölder spaces.

1 Introduction

We consider the following system of partial differential equations:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \psi(x, t)=\mu \phi^{+m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+b_{0} \psi(x, t)^{2} \tag{1.1}\\
\frac{\partial}{\partial t} \phi(x, t)=\phi \psi,(0 \leq x \leq l(<\infty), t \geq 0 ; \mathrm{I}=[0, l])
\end{array}\right.
$$

$$
\begin{equation*}
\psi(x, 0)=\psi_{0}(x)(\geq 0)\left(\in H^{2+a}(I), \alpha \in(0,1)\right), \phi(x, 0)=1 \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\psi(0, t)=\psi(l, t)=0(t \geq 0) \text {, (accompanied by compatibility conditions), } \tag{1.2}
\end{equation*}
$$

where μ, m and b_{0} are positive constants and $\phi(x, t)$ is obviously expressed as

$$
\begin{equation*}
\phi(x, t)=\exp \left\{\int_{0}^{t} \psi(x, \tau) d \tau\right\} . \tag{1.4}
\end{equation*}
$$

Now, without proof, we give:
Theorem 1 (Temporally local existence) For some $T \in(0, \infty)$, there exists a unique solution $(\phi(x, t), \psi(x, t))$ for (1.1)-(1.2)-(1.3) belonging to $C^{1+a, 1+\frac{\alpha}{2}}\left(I_{T}\right) \times H^{2+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right)\left(I_{T}=\right.$ $I \times[0, T])$. Moreover, $\psi(x, t) \geq 0$.

2 The case of $m>b_{0}$
Let $(\phi, \psi) \in C^{1+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right) \times H^{2+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right)$ satisfy (1.1)-(1.2)-(1.3) $(0 \leq t \leq T)$. First, we
divide both sides of $(1.1)_{1}$ by ϕ^{m} and integrate them in x over I, having

$$
\begin{align*}
\int_{I} \frac{\psi_{t}}{\phi^{m}} d x & =\int_{I}\left[\left(\frac{\psi}{\phi^{m}}\right)_{t}+m \frac{\psi^{2}}{\phi^{m}}\right] d x=\mu \int_{I} \psi_{x x} d x+b_{0} \int_{I} \frac{\psi^{2}}{\phi^{m}} d x \tag{2.1}\\
& =\left.\mu \psi_{x}\right|_{x=0} ^{t}+b_{0} \int_{I} \frac{\psi^{2}}{\phi^{m}} d x,\left(\left.\psi_{x}\right|_{x=0} ^{L} \leq 0\right),
\end{align*}
$$

$$
\begin{equation*}
\int_{I}\left(\frac{\psi}{\phi^{m}}\right)_{t} d x+\left(m-b_{0}\right) \int_{I} \frac{\psi^{2}}{\phi^{m}} d x-\left.\mu \psi_{x}\right|_{x=0} ^{2}=0 . \tag{2.1}
\end{equation*}
$$

Next, by integrating both sides of $(2.1)^{\prime}$ in t over $[0, T]$, we obtain an equality

$$
\begin{gather*}
\int_{I} \frac{\psi}{\phi^{m}} d x+\left(m-b_{0}\right) \int_{0}^{t} \int_{I} \frac{\psi^{2}}{\phi^{m}} d x-\left.\mu \int_{0}^{t} \psi_{x}\right|_{x=0} ^{l} d t=\int_{I} \psi_{0} d x=\left\|\psi_{0}\right\|_{L^{\prime}(I)}, \tag{2.2}\\
\left(\text { i.e., } \int_{I} \frac{\psi}{\phi^{m}} \leq\left\|\psi_{0}\right\|_{L^{\prime}(l)}\right) .
\end{gather*}
$$

Now, multiplying both sides of (1.1) by ϕ^{-m} and noting that, by virtue of $\psi \in H^{2+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right)$,

$$
\begin{equation*}
\int_{0}^{t} \psi_{x x}(x, \tau) d \tau=\frac{\partial}{\partial x^{2}} \int_{0}^{t} \psi(x, \tau) d \tau, \tag{2.3}
\end{equation*}
$$

we have,

$$
\begin{equation*}
\mu \frac{\partial^{2}}{\partial x^{2}}\left[\int_{0}^{t} \psi(x, \tau) d \tau\right]=\frac{\psi}{\phi^{m}}(x, t)-\psi_{0}(x)+\left(m-b_{0}\right) \int_{0}^{t} \frac{\psi^{2}}{\phi^{m}}(x, \tau) d \tau . \tag{2.4}
\end{equation*}
$$

Hence, on the basis of the theory of integral equations in a single independent variable ([8]), follows an equality,

$$
\begin{equation*}
\mu \int_{0}^{t} \psi(x, \tau) d \tau=-\int_{I} G(x, \xi)\left[\frac{\psi}{\phi^{m}}(\xi, t)-\psi_{0}(\xi)+\left(m-b_{0}\right) \int_{0}^{t} \frac{\psi^{2}}{\phi^{m}}(\xi, \tau) d \tau\right] d \xi \tag{2.5}
\end{equation*}
$$

or

$$
\begin{array}{r}
\mu \int_{0}^{t} \psi(x, \tau) d \tau+\int_{I} G(x, \xi)\left[\frac{\psi}{\phi^{m}}(\xi, t)+\left(m-b_{0}\right) \int_{0}^{t} \frac{\psi^{2}}{\phi^{m}}(\xi, \tau) d \tau\right] d \xi, \tag{2.5}\\
=\int_{I} G(x, \xi) \psi_{0}(\xi) d \xi,
\end{array}
$$

where $G(x, \xi)$ is the Green function for the problem

$$
\begin{equation*}
\frac{d^{2} u}{d x^{2}}(x)=-f, u(0)=u(l)=0, \tag{2.6}
\end{equation*}
$$

being defined by

$$
G(x, \xi)=\left\{\begin{array}{l}
(l-x) \frac{\xi}{l}(0 \leq \xi \leq x \leq l) \tag{2.7}\\
\frac{x}{l}(l-\xi)(0 \leq x \leq \xi \leq l) .
\end{array}\right.
$$

From (2.5) are derived the following estimates,

$$
\left\{\begin{array}{l}
0 \leq \mu \int_{0}^{t} \psi(x, \tau) d \tau \leq \int_{I} G(x, \xi) \psi_{0}(\xi) d \xi\left(\leq \frac{l}{4}\left\|\psi_{0}\right\|_{L^{1}(I)} \leq \frac{l}{8}\left|\psi_{0}\right|_{I}^{(0)}\right), \tag{2.8}\\
\phi(x, t)=\exp \left\{\int_{0}^{t} \psi(x, \tau) d \tau\right\} \leq \exp \left\{\mu^{-1} \int_{I} G(x, \xi) \psi_{0}(\xi) d \xi\right\} .
\end{array}\right.
$$

Now, multiplying both sides of (1.1) by $\phi^{-m} \psi$ and integrating them in x over I and in t over [0, T], we have

$$
\begin{equation*}
\int_{0}^{t} \int_{I} \frac{\psi}{\phi^{m}} \psi_{t} d x d t=\mu \int_{0}^{t} \int_{I} \psi_{x x} \psi d x d t+b_{0} \int_{0}^{t} \int_{I} \frac{\psi^{2}}{\phi^{m}} d x d t . \tag{2.9}
\end{equation*}
$$

Next, taking into account the equality,

$$
\begin{equation*}
\frac{\psi}{\phi^{m}} \psi_{t}=\frac{1}{2}\left(\frac{\psi^{2}}{\phi^{m}}\right)_{t}+\frac{m}{2} \frac{\psi^{3}}{\phi^{m}} \tag{2.9}
\end{equation*}
$$

we rewrite (2.9), obtaining

$$
\begin{equation*}
-\frac{1}{2} \int_{I} \frac{\psi^{2}}{\phi^{m}} d x+\mu \int_{0}^{t} \int_{I} \psi_{x}^{2} d x d t=\frac{1}{2} \int_{I} \psi_{0}^{2} d x+\left(b_{0}-\frac{m}{2}\right) \int_{0}^{t} \int_{I} \frac{\psi^{3}}{\phi^{m}} d x d t \tag{2.10}
\end{equation*}
$$

The case of $b_{0}-\frac{m}{2} \leq 0$ is easier to treat than that of $b_{0}-\frac{m}{2}>0$.
(i) Case of $b_{0}-\frac{m}{2} \leq 0$.

We differentiate both sides of $(1.1)_{1}$ in x (which is permissible by the strength of the smoothness of ϕ and ψ), and, moreover, after multiplying them by ψx, integrate them over I.

$$
\begin{align*}
\int_{I} \psi_{x t} \psi_{x} d x & =\mu \int_{I}\left(\phi^{m} \psi_{x x}\right)_{x} \psi_{x} d x+b_{0} \int_{I}\left(\psi^{2}\right)_{x} \psi_{x} d x \tag{2.11}\\
& =\mu\left[\phi^{m} \psi_{x x} \psi_{x}\right]_{x=0}^{t}-\mu \int_{I} \phi^{m} \psi_{x x}^{2} d x+2 b_{0} \int_{I} \psi \psi_{x}^{2} d x
\end{align*}
$$

where we note $\psi_{x x}(0, t)=\psi_{x x}(l, t)=0$ by means of the boundary condition on ψ and (1.1). From (2.11) we have easily an equality,

$$
\begin{equation*}
\frac{1}{2} \int_{I} \psi_{x}(x, t)^{2} d x+\mu \int_{0}^{t} d t \int_{I} \phi^{m} \psi_{x x}^{2} d x=\frac{1}{2} \int_{I} \psi_{0}^{\prime}(x)^{2}+2 b_{0} \int_{0}^{t} d t \int_{I} \psi \psi_{x}^{2} d x \tag{2.12}
\end{equation*}
$$

By virtue of (2.10) and the inequality

$$
\begin{equation*}
\psi(x, t)^{2} \leq l \int_{I} \psi_{x}^{2} d x \text {, i.e., }\left(|\psi(\cdot, t)|_{I}^{(0)}\right)^{2} \leq l \int_{I} \psi_{x}^{2} d x \tag{2.13}
\end{equation*}
$$

from (2.12) we derive,

$$
\begin{align*}
\frac{1}{2 l}\left(|\psi(\cdot, t)|_{I}^{(0)}\right)^{2} & \leq \frac{1}{2} \int_{I} \psi_{0}^{\prime}(x)^{2} d x+2 b_{0}|\psi|_{I_{T}}^{(0)} \int_{0}^{t} \int_{I} \psi_{x}^{2} d x d t \tag{2.14}\\
& \leq \frac{1}{2} \int_{I} \psi_{0}^{\prime}(x)^{2} d x+2 b_{0}|\psi|_{I_{T}}^{(0)} \frac{1}{2 \mu} \int_{I} \psi_{0}^{2} d x,(0 \leq t \leq T)
\end{align*}
$$

Finally, for $|\psi|_{I_{T}}^{(0)}$ it holds that

$$
\begin{gather*}
\left(|\psi|_{I_{T}}^{(0)}\right)^{2} \leq l A_{1}+\frac{b_{0} l}{\mu} A_{0}|\psi|_{I_{T},}^{(0)}, \tag{2.15}\\
\left(A_{0}=\left\|\psi_{0}\right\|_{L^{2}(I)}^{2}, A_{1}=\left\|\psi_{0}^{\prime}\right\|_{L^{2}(I)}^{2}\right) .
\end{gather*}
$$

Hence follows an a priori estimate of $|\psi|_{I_{T}}^{(0)}$,

$$
\begin{equation*}
|\psi|_{I_{T}}^{(0)} \leq \frac{1}{2}\left[\frac{b_{0} l}{\mu} A_{0}+\left\{\left(\frac{b_{0}}{\mu} A_{0}\right)^{2}+4 l A_{1}\right\}^{\frac{1}{2}}\right],(0 \leq T \leq \infty) \tag{2.16}
\end{equation*}
$$

By (2.8), (2.12), and (2.16) the asymptotic property of $|\psi(\cdot, t)|_{I}^{(0)}$, which is shown below, is easily to be proved,

$$
\begin{equation*}
|\psi(\cdot, t)|_{I}^{(0)} \leq C_{0} \exp ^{-C_{1} t}(t \geq 0) \tag{2.17}
\end{equation*}
$$

where C_{0} and C_{1} are constants depending on $\left\|\psi_{0}\right\|_{L^{1(I)}},\left\|\psi_{0}^{\prime}\right\|_{L^{2}(I)}$, etc.
(ii) Case of $m>b_{0}>\frac{m}{2}$.

Our discussion of this case is based upon equalities (2.10) and (2.12), which hold also
for $b_{0} \in\left(\frac{m}{2}, m\right)$. The 2 nd term of the right-hand side of (2.10) is estimated by means of (2.2) as

$$
\begin{equation*}
\left(b_{0}-\frac{m}{2}\right) \int_{0}^{t} \int_{I} \frac{\psi^{3}}{\phi^{m}} d x d t \leq\left(b_{0}-\frac{m}{2}\right) \int_{0}^{t}\left[|\psi|_{J}^{(0)}(\tau) \int_{I} \frac{\psi^{2}}{\phi^{m}}(x, \tau) d x\right] d \tau \tag{2.18}
\end{equation*}
$$

The 2 nd term of the left-hand side of (2.10) is bounded from below in the following way,

$$
\begin{equation*}
\frac{\mu}{l} \int_{0}^{t}\left|\psi^{2}\right|_{I}^{(0)}(\tau) d \tau \leq \mu \int_{0}^{t}\left[\int_{I} \psi_{x}^{2}(x, \tau) d x\right] d \tau \tag{2.19}
\end{equation*}
$$

Thus, by (2.2), (2.10), (2.18), and (2.19), from (2.12) follows an estimate for ψ,

$$
\begin{align*}
\left|\psi^{2}\right|_{I}^{(0)}(t) \leq l\left\|\psi_{0}^{\prime}\right\|_{L^{2}(I)}^{2} & +4 b_{0} l|\psi|_{L_{t}}^{(0)} \cdot \mu^{-1}\left[\frac{1}{2}\left\|\psi_{0}\right\|_{L^{1}(I)}^{2}\right. \tag{2.20}\\
& \left.+\left(b_{0}-\frac{m}{2}\right) \int_{0}^{t}|\psi| l_{I}^{(0)}(\tau)\left(\int_{I} \frac{\psi^{2}}{\phi^{m}} d x\right) d \tau\right]
\end{align*}
$$

i.e.,

$$
\begin{equation*}
f(t)^{2} \leqq B_{1}+f(t)\left[B_{2}+B_{3} \int_{0}^{t} f(\tau) g(\tau) d \tau\right]_{1}(0 \leqq t \leqq T), \tag{2.20}
\end{equation*}
$$

where
(2.20)"

$$
\left\{\begin{array}{l}
B_{1}=l\left\|\psi_{0}^{\prime}\right\|_{L^{2}(I)}^{2}, B_{2}=2 b_{0} l \mu^{-1}\left\|\psi_{0}\right\|_{L^{2}(I)}^{2}, \quad B_{3}=4 b_{0} l \mu^{-1} \\
f(t)=|\psi|_{l}^{(0)}(t), g(t)=\int_{I} \frac{\psi^{2}}{\phi^{m}}(x, t) d x .
\end{array}\right.
$$

From (2.20)' we have easily an a priori estimate for ψ,

$$
\begin{align*}
& |\psi|_{I_{\tau}}^{(0)} \leq \sqrt{B_{1}}+B_{2} e^{\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{Bo}_{0}}\left(\sqrt{B_{1}} B_{3} B_{0}+B_{3}\right), \tag{2.21}\\
& \quad\left(B_{0}=\left(m-b_{0}\right)^{-1}\left\|\psi_{0}\right\|_{L^{\prime}(1)}\left(\geqq \int_{0}^{t} g(\tau) d \tau\right)\right) .
\end{align*}
$$

[Put $[\cdots]_{1}=Q(t)$, and transform (2.20)' into a differential inequality in $\mathrm{Q}(t)$.]
Thus, we have:
Theorem 2 (i) In the case of $\frac{m}{2} \geq b_{0}>0$, there exists a temporally global solution (ϕ, ψ) of (1.1)-(1.2)-(1.3) belonging to $C^{1+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right) \times H^{2+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right)$ for an arbitrary $T \in(0, \infty)$. Moreover, estimates (2.16) and (2.17) hold. (ii) In the case of $m>b_{0}>\frac{m}{2}$ there exists a temporally global solution (ϕ, ψ) of (1.1)-(1.2)-(1.3) belonging to $C^{1+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right) \times H^{2+\alpha, 1+\frac{\alpha}{2}}$ $\left(I_{T}\right)$ for an arbitrary $T \in(0, \infty)$. Moreover, the estimate (2.21) holds.

3 The case of $b_{0} \geq m$

Let $(\phi, \psi) \in C^{1+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right) \times H^{2+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right)$ satisfy (1.1)-(1.2)-(1.3). Now, we define $u(x, t)$ by

$$
\begin{equation*}
u(x, t)=\psi(x, t)+\frac{k}{2}\left(x-\frac{l}{2}\right)^{2}(k, \text { positive constant }) . \tag{3.1}
\end{equation*}
$$

Then, $u(x, t)$ satisfies,

$$
\left\{\begin{array}{l}
u_{t}(x, t)\left(=\psi_{t}\right)=\mu \phi^{m} u_{x x}+b_{0} \psi^{2}-k \mu \phi^{m} \tag{3.2}\\
u(x, 0)=\psi_{0}+\frac{k}{2}\left(x-\frac{l}{2}\right)^{2}\left(\leq\left|\psi_{0}\right|_{I}^{(0)}+\frac{k l^{2}}{8}=p\left(k,\left|\psi_{0}\right|_{I}^{(0)}\right)\right), \\
u(0, t)=u(l, t)=\frac{k l^{2}}{8}(t \geq 0)
\end{array}\right.
$$

Seeing that $b_{0} \psi^{2}-k \mu \phi^{m} \leq b_{0} \psi^{2}-k \mu$, if $b_{0} \psi^{2}-k \mu<0$, then we can estimate $u(x, t)$ and $\psi(x, t)$ by the maximum principle as follows:

$$
\begin{equation*}
0 \leq \psi(x, t) \leq u(x, t) \leq\left|\psi_{0}\right| \|_{I}^{(0)}+\frac{k l^{2}}{8}=p\left(k,\left|\psi_{0}\right|_{I}^{(0)}\right) \tag{3.3}
\end{equation*}
$$

Therefore, by the use of reductio ad absurdum, we conclude that, if $\left|\psi_{0}\right|_{i}^{(0)}\left(=c_{0}\right)$ is such that $b_{0} p\left(k, c_{0}\right)^{2}-k \mu<0$, then

$$
\begin{equation*}
0 \leq \psi(x, t) \leq\left|\psi_{0}\right|_{I}^{(0)}+\frac{k l^{2}}{8}=p\left(k, c_{0}\right),\left(b_{0} \psi^{2}-k \mu \leq b_{0} p\left(k, c_{0}\right)-k \mu\right) \tag{3,4}
\end{equation*}
$$

Here, we express k by p and c_{0}, i.e.,

$$
\begin{equation*}
k=\frac{8}{l^{2}}\left(p-c_{0}\right) \tag{3.5}
\end{equation*}
$$

Then, from $b_{0} p^{2}-k \mu=b_{0} p^{2}-\frac{8 \mu}{l^{2}}\left(p-c_{0}\right)<0$ we have,

$$
\begin{equation*}
0 \leq c_{0}<p-\frac{b_{0} l^{2}}{8 \mu} p^{2}=p\left(1-\frac{b_{0} l^{2}}{8 \mu} p\right) \leq \frac{2 \mu}{b_{0} l^{2}} \tag{3.6}
\end{equation*}
$$

which implies that, if $c_{0}=\left|\psi_{0}\right|_{I}^{(0)}<\frac{2 \mu}{b_{0} l^{2}}$, then exists p_{0} such that

$$
\begin{equation*}
0 \leq c_{0}=\left|\psi_{0}\right|_{I}^{(0)}<p_{0}-\frac{b_{0} l^{2}}{8 \mu} p_{0}^{2} \leq \frac{2 \mu}{b_{0} l^{2}} \tag{3.7}
\end{equation*}
$$

and then, moreover,

$$
\begin{equation*}
0 \leq \psi(x, t) \leq p_{0}(\text { c.f. }(3.3)) \tag{3.8}
\end{equation*}
$$

Thus we have:
Theorem 3 In the case of $b_{0} \geq m$, under the condition (3.6), there exists a temporally global solution (ϕ, ψ) of (1.1)-(1.2)-(1.3) belonging to $C^{1+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right) \times H^{2+\alpha, 1+\frac{\alpha}{2}}\left(I_{T}\right)$ for an arbitrary $T \in(0, \infty)$. Moreover, the estimate (3.8) holds, where p_{0} satisfies (3.7).

In a near future we shall treat partial differential equations of the type

$$
u_{t}(x, t)=\phi\left(u, \int_{0}^{t} u d t\right) u_{x x}+\psi\left(u, \int_{0}^{t} u d t\right)
$$

from a standpoint of the blowup-nonblowup problem.

References

[1] A. Friedmam, Differential Equations of Parabolic Type, Prentice Hall, 1964.
[2] N. Itaya, A note on the blowup-nonblowup problem in nonlinear parabolic equations, Proc. Japan Acad., 55-A(1979), 241-244.
[3] N. Itaya, On some subjects related with the blowup problem in nonlinear parabolic equations, Lecture Notes of Num. and Appl. Anal., 2 (Kinokuniya, 1980), 27-38.
[4] N. Itaya, A report on the blowing-up problem for nonlinear parabolic equations, Publ. 60 -th Anniv. Kôbe Shôdai (1990), 771-786, (in Japanese).
[5] N. Itaya, On the existence of the temporally global solution for a nonlinear system of paratial differential equations, Kôbe shôdai 'Jimmon Ronshâ', 26 (1990), 3•4, 133-137 (in Japanese).
[6] N. Itaya, K. Mukai, A memoir on the spatially spherosymmetric solution for a nonlinear parabolic equation, J. Fac. Sci. Shinshu Univ., 30, No.1, (1995), 1-5.
[7] O. A. Ladyzhenskaya, Linear and Quasi-linear Equations of Parabolic Type, Nauka, 1964, (in Russian).
[8] K. Yoshida, Integral Equations (2nd edition), Iwanami, 1978, (in Japanese).

