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Abstract

(co-p)-forms on a k-th Sobolev space W4X), X a compact (spin) manifold, is
defined by using Sobolev duality. Integrals of (co-p)-forms on a cube in WAX) are
defined without using measure. It is shown that exterior differentiability of an (co-p)
-form is astrong constraint and an exterior differentiable (co-p)-form is always
globally exact. As a consequence, the exterior differential operator & is not nilpotent
when acting on the space of (co-p)-forms. Stokes’ Theorem for the integrals of (co-p)
-forms is also shown.

Introduction

Analysis on infinite dimensional spaces together with its geometric applications,
has been treated mostly by using probabilistic methods (e.g.[3], [6], [7]). But more
classical analysis related to the geometry of infinite dimensional spaces seems not so
well developed. In this paper, we define an (co-p)-form on U, an open set of k-th
Sobolev space WAX) over a compact (spin) manifold X to be a smooth map f from U
to A*WHX), the k-th Sobolev space of alternating functions (spinors) on p-th direct
product Xx.xX of X. Then treat differential and integral calculuses of (co-p)-forms
The outline of the paper is as follows ; In sect. 1, we fix the Sobolev metric of W4(X)
by apointing a non degenerate 1-st order selfadjoint elliptic (pseudo) differential
operator D on X. By using spectral eta and zeta functions of D and |D|, we define
virtual dimension n- of W4X) and volumes of cubes (powers of det |D|) in W*~*(X).
Some calculations related to these quantities are also done. In sect. 2, integrals of a
function f on a cube in W™*"%(X) is defined in the spirit of Riemannian integral. It is
shown some complete continuity of f is necessary (and sufficient) to the existence of
the integral. Then co-forms are introduced. (c0-p)-forms and their exterior differntial
are defined in sect. 3. By the definition of (co-p)-forms, if f is an (co-p)-form, its
Frechét differential ¢ f can be viewed as a map from U to the algebra of bounded
linear operators on W4X) (with parameters). The exterior differentiability condition is
the trace class condition of d f and the exterior differntial df is defined to be tr d f.
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Examples show some renormalized exterior differential may defined and will be useful.
In sect. 4. local and global exactness of exterior differentiable (co-p)-forms are shown.
As a consequernce, the exterior differential operator d is not nilpotent as an operator
acting on the space of (co-p)-forms. So we can expect some spaces of (co-p)-forms
provides geometric examples of Kerner’s higher gauge theory ([5]). In sect. 5, we define
(formal) boundary of a cube and integrals on the boundary. Then in sect. 6, the last
section, we derive some kinds of Stokes’ Theorem.

In this paper, we do not discuss Clifford aspects of {(co-p)-forms. Global problems
related to the analysis and geometry of mapping spaces are alos not discussed. Some
parts of detailed proofs (and definitions) are omitted. These will appeare elsewhere (cf.

[1D).

1. YVirtual dimension of a Sobolev space

Let X be a compact (spin) manifold with a fixed Riemannian metric. E a
Hermitian vector bundle over X and LX) is the Hilbert space of sections of E. We
denote L? -metric of € L¥X) by | 7|. It is fixed by the Riemannian metric of X. We
take a non degenerate 1-st order elfadjoint elliptic (pseudo) differential operator D
acting on the section of E and fix the k-th Sobolev metric | /| of f by

L/ Le=1D"71.
The k-th Sobolev space of sections of E is denoted by W4X). By Sobolev’ imbedding
Theorem, W*X) is contained in the space of continuous section of E if £>d/2, d is the
dimension of X.

Since X is compact, D can be written as

DFf=31A(f,edes, {ei is an 0. N. -basis of LEX).
Then, to set

enr=sgnA| A e,
{e.r} becomes an 0. N. -basis of WHX).

By using spectral decomposition of D, we define operators G, the Green operator

of D, |D|, D: and € by
Gf =24/, edes, |D|=2Z| A[(f, edes,
D:=1/2A|D|£D), e=G|D|.
The spectral eta function 7,(s) of D and £,(s) of |D| are defined by
7o(s)=2sgn Al A7, Go8)=npels/2)=22| 2],
It is know (2], [4], [9] cf. [8])
(i) These functions are continued meromorphically on the whole complex plane with
possible poles at s=d, d-1, ... with the order at most 1.
(il) They are holomorphic at s=0.
Definition 1. We say §,,, (0)=wn" to be the virtual dimension of WHX) (with respect to
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D).

We also define the determinant det|D| of |D| and det D of D by

det | D|=exp(— §in' (0)),

det D=exp(ry—1&,_(0)) det |D|, &, _(0)=1/2(n"—7,(0)),
(cf. [10]). Then we have

det(tD)=1t" det D, t>0,

det| D*|=(det | D))*.

Originally, »~ may not be an integer. But later the necessity of integrity of »~ will

be shown. But this is not restrictive. Because we have

d fg e
oy Giomn) (0)=7n"+ 2 ( =’/ jes,
ci=res np(8), =1 mod.2, ci=res Gp(s), =0 mod.2.

Precisely saying, the right hand side is the analytic continuation of the left hand side
for small |m].

We can also derive continuation formula for {piar (0), which is necessary to the
definition of the determinant bundle of a mapping space.

Virtual dimension is used to the definition of determinant of g € Map(X, G), G acts
on the fibre of E as a subgroup of U{N). In this case, to write g=exp(27ik), we can
define det g by

det gzexp(ZniLtrhdx/(n‘/NvolX)),

because we may regularize f#f=wn", [ is the identity of L%X). This definition of det g
depends on the choice of % But if g is homotopic to an element in Map(X, SU(N)), then
does not depend on the choice of %. In this case, we denote this determinant by detpg.
It is shown

(2) det, gh=detpg detpyh, delpg=11if g€ Map(X, SU(N)).
2. Integrals on a cube in a Sobolev space

In W4X), a>d/2, we set
Q(Z, t):{Zlcn En H Cn |§ | 1An l[},
QUL b, HYy={Zenea|0<en= | 1], t>0.
For simple, we assume #£=0, and set
3) vol QU D))=21)" |det DI, vol(Q(¢,t,+))y=1t"" |det DI’
Let s be in I=[0,1] with the binary expansion 0. s.... s,... Then we define a subset
D(s) of Q(4,¢) by
(4) D(s)={2cnen | —| A 'S cn =20, if $2=0, 0= cu=| A, |¢, if s=1}.
By definition Q(/¢, t)=Use D(s). For a function f(x) on Q(¢, t), we define functions /-
and /- on I by
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f'(S):Ii%g) ), f‘(s):xi’ﬁ{;) f(x).
Then the integrals [ fdsvol(Q(4, 1)) and Ji f_dsvol(Q(4,¢t)) are upper and lower
Riemannian sums of f(x) with respect to the partition {D(s)} of Q(¥, ¢).

We assume for (s',...,s™"") € "7}, the partition D(s',...,s"") of Q(¥, t) has been
defined to be {Xcaen| @n< ca< ba}. Then for s™=0. sPs™... €1, we set
(4)’ D(Sl v Sm):{zcneﬂ | an<Cn=ant 1/2(b11 —an), tf sn=0,

6Z71+1/2(b71*dn)§ Cn= bn, Zf s}’{’:l}
The functions f(s*,...,s™) and f_(s!,...,s™) are defined to be

st s™m= sup flx),

xeD(sl,..., sy
f(st o sM= wmf fla).
xeDb(st,..., Sy
Lemma 1. /™ and [ ave continuous if f is continuous by the topology of W *(X),
a>d/2.
Proof If s=0.s15... and s'=0. s’ s’ ... satisfy |s—s’|<27", then si=s/,..., Sn=

suw'. Therefore, by the definition of D(s), we have
sup ( inf |x—yl o) <20 Z 10l

xeD(s) yveD(s
Hence if a>d/2, we get Ims—si-0 SuDzencs) ((fyensy |2 — yl-e-e?)=0. This
shows the continuities of f7(s) and f.(s). Higher dimensional cases are similarly
proved.
On the other hand, since

lim SUDx,yeb(st,...,5M) ".Z' - .Z/|I—l’~a:Oy if a> d/2,

m-o

.....

we have
lim sup|f(st,...,s™—fAs',...,s™| =0,

if f is continuous by the topology of W %X), @>d/2. Therefore we obtain
Theorem 1 If f(x) is continuous by the topology of W X), a>d/2, then

(5) lim . fd"s=lm| f.d"s

m—oo Mmoo JIm

Definition 2. Let f be a (real valued) function of Q(£,1). Then we say f is integrable
on QU4,t) if (B) is hold and define [ou.y f(x)dx by

©®) fayde—lim [, /=" sv0l@Q(, 1).

()
Integrals on QUL,t, +) are similarly defined.

Note. In the above definition of the integral, we used épecial division of Q{(/, t). But
this is for simplicity and we can define integral by using more arbitrary division of
QUL 1).

Example. Let f(x) be

(7 f2)=23 22 %, a=2 xaen € Q4 1, ).

Then we have
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SASt o ST = D S (@M kA 2m S sl 1)/ 27 A,

nom
f_(Sl e, Sm): ZLz(é—k) 2 2 ((2711 1Sn+ 2m 2 _|_ +Sm)/2m)2/1721(£_k)
n om

Hence we have

frdms =S {1/27 3 (@0 sk e+ i 1)/27 | 2

m
2m
— lLZ(é—k) 2 {1/271121 (]/2”1)} /wz(é’—k)
n Jj=
—_— izw—k) 2 {(Zm + 1)(2m+1+ 1)/6 22771} /I%(B—k)’

f_de: tZ(I—k) %} {(2m_1)(27n+1_1)/6_22m} Ai(l—k)'

m

Therefore we have
(8) L(é , +)f(1‘)dr:1/3. lLZ(é—k) §D(2(/€*Z))(a’ez‘ D)[

(8) shows f(x) is integrable if k-¢>d/2 and not integrable if k-¢=d/2.
There is an alternative way to the computation of fow.. f(x)dr. We set

Qe, tyN):{nchnen| 'Mn|é<6'n |t/1n]t) 1<%<N}

Q(é; t;OO_N):{ 12¥+Icneﬂ!_l l‘/lnleé Cn= | tAn Ié’, 7L>N+1}

By definition Q(¢, £)=Q(¢, t, N)XQ(¥,t,0—N). We denote x=(xn,xw-n~)€ QZ, 1),
where zy € Q(4, 1, N) and Zw-n € Q(£, 1,00~ N). Let f be a function on Q(4, #). Then we
set

S M= _sup Fw,v) Foan)=_ inff(a,y)

yeQ4,t,o0 yEQ(4,¢ 00
Then if f is continuous by the topology of W%~ ”(X), af>d/2, we have
©) [, Jw)dz=lim f Nz dz | a7 | B [ v0lQUE, 1)

For example, for the function (7) fawesy flx)dx is computed as follows:

L. i
Q(e,t,N)

(/\1)" {tAn)*
- / f 2 dVz | ] | G | wol(Q(e, 1)

n—oo n=1

=lim ZI/BH(L‘/h) (1An)? (A1)~ "=+ (8An)~* w0l (QU4, 1))

n—oo =1
=1/3 2 ¢p(2(k— ) det D).
We denote the cylindrical measure (of the domain {£csexl| x| <1}) by d*». Then
by the above discussions, we may define
(10) /}deA:(det D)% 4=y, 1}de,\,k:(det D)"‘z}dea

=(det D) "% d=y.
So we may consider an infinite form to be a scalar function multiplied by (det D)™*
Here we may idetify des. and ei-r. Because to define the function e, on U, an open
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set of W*(X), by

enn(X)=22, x=221082
 we have eus(z+ty) =i+ tyi=ean(x)+ Hewn, y). Hence the Frechét differential ey
(x)(=dear) is equal to er-»€ W *(X).

3. (co-p)-forms on a domain in W4(X)

Let U be an open set of WAX). A p-form on U is a smooth map from U to AYW~-*
(X), the (-k£)-th Sobolev space of alternating functions (sections ) on }TXH)S( Since an
(co—-p)-form should be the dual of p—forms, we define
Definition 3. An (co-p)-form f on U is a smooth map from U to APW-XX), the k-th
Sobolev space of alternating functions (sections) on 5{}”5{

We fix the duality between # € AW #X) and f € A*WHX) by
(11) u, [r=(GixxGE u, DEx-xD%, 1),
where ( , ) means the inner product of L2 ()Txp;X) determined by the product metric.
Definition 4. The wedge product of a p-form u and an (co-q)-form f is defined as
Jfollows:
(12) unf=0, tf ¢>p,

(waf N, ..., Xo-a)=<t(Xp-qs1,. ., Zp)y [(Lzpezrs, oy Tp; Tt,. .., Tpmq) >
if g<p
unf=<u, fPAeu-r if q=p.
fau is defined to be (—1)7@ =9 4, f. Then, since it must be
fru=(=1)F 0D g, f=(— 1P HODP £y,

Zp(n~—g) must be an even integer for any integer p, ¢. Hence we obtain
Proposition 1. The virtual dimension should be an integer when considering (00-p)-
Jorms.

By (12), we may write

(€rr,~ e neerEp, ) Mg, kA A Crp ) = A€ u .
So to set A={m,..., np}m<...<np, we denote
EnihnenCnp s =AM o = ATRe, .

Then an (co-p)-forms f has the coordinate expression

f: 2 fﬂ]“'ﬂp Awi(nl'm’np}dex,k.

ni<oknp
Its formal exterior derivation contain infinite sums.
In coordinate free notation, the Frechet differential ¢”f of f is a map from U to

W HX)®@ WHX), because U is an open set of WAX). Since W HX)®@WH*X) is a
subspace of B(W#(X)), the algebra of bounded linear operators on W#X),we set

d f@)x,...,x0)=d flz, ) (X2, ..., T0)="..

=(—1""d fla, xo) @1, ..., 2p),
d"f(z, 1) is a map from U to B(W*X)).
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Denifinition 4. Awn (co-p)-form s said to be exterior differntiable if d flx,z1) is a
map from U to the ideal of trace class operators. In this case, we define the exterior
diffevential df of f by
(13) df (el ..., o) =(—=1"" tr d f(x,2)21,. .., Zp).
Example. Since the coordinate expression of the (co~1)-form D~* is
D Sx=2tsgn Al Al"%(x, ea-r)des—r=2sgn A A5z, ea-2) A dews,

we get
(14) dD™ =np(s)Adex,n.
Let »(x) be the L?norm of x, then dr™(x) is equal to mr™ ¥ x)3 N x, er_wyder .
So we have

dr™x)D %) =(mr™ Hx)Xlsgn A A5 (x, en-) + ™ () 9o(s)A"d es .
Hence in the sence of analytic continuation, we have
(15) lsipgd(r’”(x)D‘S)=0, if —m=7p(0).

Similar result hold replacing D by |D|. Since I(=|D|% is XleiA” M des, » 7 ()] is the
formal extension of the volume element of the sphere. (15) shows this formal extension
is renormalized closed.

In general, taking s SLlﬁicie11tly large, D7°f becomes exterior differentiable. Since
d(D*)y=D~%dyf) if f is exterior differentiable, there might exist some theory of
renormalized exterior differential. This will be a problem in future.

4. Exactness of exterior differentiable (co-p)-forms

By using absolute values, we arrange the proper values of D as follows:
[l < -eeeee,
We denote dx, instead of de,r, for simple. Then an (co-1)-form f is written

=3} b= i,
If f is extrior differentiable, then we have
a6 ar=(Zors/ax )acdn.
Note. Formally, df is given by the right hand side of (16). Exterior differentiability

(trace class assumption) is its convergence condition.
We want to get local integration of f by the following form (c0-2)-form g: g=
e Gan AT, Then we get

dg:3g1,2/3$2 Aw*mdxn + 22 (agi,i+1/<9$z‘+1_ agi—l,z‘/al'i—l)Amg(i)dxn-
Hence, if dg=/F, we get

gua)= [ i)

gi,i+1(x):£1i+‘(f1(x)+agi~1,i (r)/axi_l)ax,-ﬂ, 1=2.
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Since we have
gz,s(x):£I3<fz+ a/90 xllxzfl(x)dxz>dx3:'/o- 3<fz+A“8f1/ax1dxz>dx3,
we obtain
17) 062s/ ds— [ (0s/ D+ 81/ Bz,
We assume
Tnfn—1
18 dgrra/ oz = [ (S s om )z
Then we have
Ianfn—1
8gn,n+l/axn+1:fn+8gn~1,n/axfz~1:fn+l (Eafz/(?x,)dl‘,
ag;z+1,n+2/a.13n+2:fn+1+ agn,nﬂ/arn
Tn+t X nn—1
ot dfoza [ (St [ 00/ o) s

:fn+1+.£ m(é:lafi/axi)dl‘.
Hence (18) is hold for any n.
Since f is exterior differentiable, X'v,df:/dx: exists. Hence {317, df:/0x:} is
uniformly bounded. Since integrations are done in a neigh-borhood of the origin of
WHX), @i APy, converges as an element of AW*X). Similarly, by using

lexicographic linear order of the index set {ji,...,Js}, 1<...<jp, expressing an (00-2)
~-form f as
(19) =220 fip gAYV dxa,  J is locally minimum,
Joizgp ’ T i .
J _{]1)‘”:]17*1};
we can construct a local integration g of f in the form
(20) g:? i; ﬁ/ i i+1} Am—(J’, i dxn-

Hence we obtain

Lemma 2. An exterior differentiable (co-p)-form is always locally exact. Corvollary 1.
The exterior differential opevator d is not nilpotent as an opervafor on the space of (co
-p)-forms.

Example. Let g be 3X1-1/2)x: 200 AN gy, Then dg is equal to

21/2%x: A dry. Hence d2g is equal to A®dz,=0.

Corollary 2. If an (co-p)-form f is exterior differentiable, then for any natural
number q, locally we can wrile

21) f=d%, g s an (o-p-q)-form.

Proof. By Lemma 2, locally we can write f=dg. This means g Iis exterior
differentiable. Hence we can write gi=dg, locally. Repeating this, we have Corollary.
Note. In the local integration of f, we used exterior differentiability of f only
showing the convergence of formal integration. This is not curious, because taking s
sufficiently large, D™°f becomes exterior differentiable for any (co-p)-form f. So we
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have

D™ f=dg,
For any (oo-p)-form. If g takes the values in the domain of D°, then we have

F=D%lg=d(D*g).
So an (co-p)-form is always formaly locally integrable.

Let u be a smooth function and f an (co-p)-form. Then we have

d(uf)=dunf+ udf.

A ufy=—dunrdf + dundf + ud*f =ud*s.
Repeating this, we get
Lemma 3. Let u be a smooth function and f be an (c0-p)-form, then the followings are
hold
(22) d*"(uf)=ud*"f,

A" N uf)=dund™f + ud™ S,
Note. Similarly, if » is a p-form, we get
22y AP (uf)=ud®"f, d*"(uf)=dud*"f+(— 1 ud”*'f.
Theorem 2. Let | be an exterior differentiable (co-p)-form on an open set U of W*
(X). Then for any q, there is an (co-p-q)-form g on U such that
(23) f=d%, on U
Proof. First we assume ¢=0, mod.2. Then by Lemma 2 and (22), we haveTheorem by
using smooth partition of unity. If g=1, mod.2, f can be written as f=d?"* g, on U.
Hence we have theorem taking g=dg.
Note. Since smooth partition of unity subordinate to any locally finite open covering
exists on any Sobolev manifold, this Theorem is hold on any Sobolev manifold,
especially on amapping space Map(X, M). On the other hand, since we used partition
of unity, it is unclear whether this Theorem is hold in analytic category.
Since d is not nilpotent, it is a problm that can we provide some geometric models

of Kerner’s higher gauge theory ([ 5]) by using (co-p)-forms.

5. Boundary of a cube domain and integration on the boundary

We set Q(4, t; 2=t Y={2cnen| =1 8n* < cr <|Bal’, m¥n, caltl|?}.
Q(4, t; x,=—|tA|") is similarly defined. The volumes of Q(¢, ¢ ; x,=|tA,|*) are defined
to be 279 vol(Q2, t)).

Let /=210, iA" Udx, be an (co-1)-form. we define the integral of f on
QU, t; x,==E[tA:|") to be the integral of f» on Q(¢, ¢ ; x,==1|t|9), which is defined
similarly as the integral on Q(¢, £).
Lemma 4. Let [ be an (co-1)~form such that continuous and Frechét differentiable by
the topology of W "*(X), a>d2. Then we have

m
oo um 3 f- f)=0.
n,m—oo i=n\J QL Tn=|1Anl?) QU4 t; xn=—tAn|?)
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Proof. We assume [|d f|<C on Q(¢, ¢). Then we have
F{ Z maent 1l er) — 1 maea—Itade:)| <224,
because we have

“<,§il‘nen +] t/iil[ei>_ <’§ixne;ﬁ | Mi]"en>\ Y

:2| Mill |/1i|~a:2td l/iiV‘”-
Hence we obtain

5L’ )
I=n\JQL L =] tA:]9) Q(4,t; xi=—11Ai|%) f
m

5\ i 7
i=n{J QU = 1A1E) QT Ti=tkl}

éiZCt"Mil"”“lz‘/ii|"“|t/1f]"’vol(Q(.é, )= zzum “ol(Q(L, 1))

<

Since a > d?2, this last term tends to 0 when #, m tends to infinity. Therefore we obtain
Lemma.

Corollary. Under the same assumption on f,

zz'mwz’;;l(—nf-l( i - f> exists.
Q4,15 xn=|tAn)¢) Q8 t; Tp=—\tAn}?)

Formally, we denote
(25) aQ([y t)zé(_l)kl(Q(é by Xp= \M7l| ﬁ t; xn:¥|t/1n|e))

This is only a formal sum. But by Corollary of Lemma 4, tha following

definition has a meaning.

Definition 5. Let f be an (co-1)-form defined on a neighborhood of Q(4, t). Then we
define the integval of f on 0Q(L, t) by the following limit

i—1 _
(26) -/'S'-Q(é’~t) f ﬁlj/{:g 12( 1) <-[;(1?,t; Tn=|tial¢) f v/Q‘(l’,t: Tn==|an}%) f>

Although 0Q(/, t) is a formal sum, we have
(27 QU H=0Q(L, t, N)XQ{, t,0—N)+(—D"Q(4, )X dQ(L, t,c0—N).
Here Q(4, t,co—N) is defined similarly as Q(¢, t). Corollary of Lemma 4 shows

28) ./;Q(Z.t) /= ’[122’{2 ./:‘Q(M.N)xgu.t,oo—N) f

Example. Since DX sgn Au| x| S2n=A"""dx,, as an (co-1)-form, we have

./.(i t; In*“‘]t/\n\[)

- f 51 Al Aul (2 | Al VA= iz,
4,5 xn=%|tAnl?)

+( )71 Isgn ANMNI‘S “/LIV |2l‘/1n|7ﬂ UOZ(Q(Ky t))
Hence we get

(29) _/;QW)D‘S = np(s)vol(Q(£, 1)) =(21)" pols)(det | D])".

Similarly, we have
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o [, DI =@0" Gn(s)det DI

Note. (29) and (29) show that both I (=212, A" "' dx,) and €
(=2 sgnAnxn A" dxy) are renormalized integrable on dQ(4, t). Their values are given
by

@) [, e=@0" ml0)det DI,

f 1=@20)™ n~(det | D|).
8Q(e.t)

6. Stokes’ Theorem

Let / be an exterior differentiable (co-p)-form with the coordinate expression
2 fsA” " dx,. Then we have

dfzg( 5 senli, K)of, m/axf)Aden, K—={kn .. b
sgnli, KY=1, i<k, sgnli, K}=(—1)%, ky<i< b,
sgn{t, K}=(—=1)p, i>kp-1.

Under these notations, we set

de:z( > sgnli, K)af .0/ 0 )\ ¥z
K N

i€ K, is)]
Then as an element of AP""W4X), we have
(31) Ilvim dVf(xy=df(x) xeQ(¥, t,c0o—p+1), if £>—(k—d/2).
This convergence is uniform if df is continuous by the topology of W* (X), a>0.
Let f be an (co-1)-form. We set
fMo=2_ sup S, y)A A,

yeQ4t 00—

Fonl)=22  inf  filxe, YA dx,, x€ Q4 t, N).

yeQ(f,t,o-N)
By definitions, we have
df N=dVfN, df-v=d"f_w,

I = I
Q(4,t; xi=|14i]9) Q4,5 xi=|1tA:1%)

f f_N:f fowy, I>N+1L
QU4 t; Ti=|tAi}?) Q6,2 xi=|ti}?)

Therefore we obtain
N
(32) V/Ev'.Q(é"t) f

2 . .
:' (_1)1—1</ . f~N_f . f N>
i=1 Q8,8 xi=]tA}) Q&5 Ti=|tA)€)

_ [N -N
/;Q(l.t,N) XQU, t,00=N)f /;(f.t)df

[ Fa= fv= [, dfx.
aQ(e.t) Q(e.t,N)xQ(#,t,00—N) Q4.1
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On the other hand, if # and &f both continuous by the topology of W™ *(X), a>
d/2, we have

Zz'mf = 7
oo J3QL. 1) Q4. t)

i{’ﬁ .Z;(é.t) af N:,/Q‘(é.t) af.
Thereforewe obtain
Theorem 3. Let /' be an exterior differentiable (co-1)-form such that f and df both
continuous by the topology of W4X), a>d/2, and d"f is continuous by the topology
of W 4X), a>d/2. Then we have

(33) ./Q‘(l.t)df: 2Q(e.t) f<:zzzzz/{ol./;Q(é.t,N)xQ(é,t,m~N) f)

Example. Since dD~° is go(s)Adxr and d|D|™*=&p(s)A”dx, by (14), we get
[ D™= nols)vol@e, 1),
Q(e.t)
[..... dIDI*=&n(s)ool @, 1)
Qe.t)

These values coincide to (30).

In general, d”f is not equal to 0 if f is an (co-p)-form and m=p. So we want to
compute fQ (Z t)d "f for an (co-m)-form f on some neighborhood of Q(4, ¢). We assume

the followings:
Q) f, df,...,d"f are all continuous by the topology of W *X), a>d/2.
() d"f, d"df,...,d"d"'f are all continuous by the topology of W~(X), a>d/2.
Then, since we have (formally)

HOQUE, t, NYXQ(e, t, co—N)=(—1)" 1 oQ(4, t, NyX3Q(4, t, ©—N),...,

A(0QUL, £, NI)X X oQ(, t, Nu-)) X Q(L, t, co—(Ny+ -+ Np-1))

=sgn(Vy, ..., Nn-1)0Q(2, t, Ni)x-x0Q(£, t, Nu_1) X

X 0Q(L, t, 0o —(Ni~++++ Nu_1)),

we get

(34) anf=  lim  sgn(s...,Nu1) X

Q(e.t) Nyj=oo,,Nmy—oo

./(?‘Q(é.t,Nx)X"-XHQ(l’.t,Nm)XQ(Z,t,DO~(N1+-'-+Nm))
SN, . . Ny =(—1)+atettima =1 mod. 4,
=(—ViFNet Nl =1 mod. 4,
=(—1)NerNartNmml gy =3 mod. 4,
=(—ViVetetlo = () mod. 4.

Here Q(¢, ¢, Nx) means {Zon' i L caen| = |l < ca<|tAa|‘}. For simple, we set

m  sgn(Ny,...,Np-1) X

Ny—ooNpy—oo
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ﬁQ(t’.t,N1)X6Q(l.i,Nz)Xu-XQ(é.i,Nm)XQ(ﬂ,l,00—(N1+---+Nm))

IMQL,t)
Then by (34), we obtain
Theorem 4. Let f be an (co-m)-form on a neighborvhood of Q(£,t) stisfving the
assumptions (1) and (ii). Then we have

(35) »/Q‘(l',t)d f: amQ(e,t) f

Note. Formally, we may write

n—1

0QUE, 1 2= H )= Z (=D QU 15 2=k, 20+ 22—
—Q(4, ¢ ; xi:“llﬂnv, xn:ill‘/in!é))"“

+ 3N (=D, ¢ 0= E |l =102~

=QU, t; =t R, z:=—tA:]).
Then, formally, we get
P DB ZD Q5 x=lad za=16)

—QU, t; 2= — A", 2=t D) +

SV QU 1 =l 2=l -
—QU, t; 2= =", au=—[t2al )+

+ 3 (DU £ 2=l =l -
=QU, t; xn=|lAn

+ 3 (DUQU £ a= |l =l

i=n+1

d, Xi— — | Z‘/Llﬁ)) +

—QU, t:xn=—lAn|®, 2:= *|l‘/1i|é))}

This expression is formal and we can not change the order of summation, because
they are infinite sums. So we can not conclude 3°Q(¢, t) is equal to 0.

Theorems 2 and 4 show integrals on Q(¢, #) may be reduced to the integrals on
Q(¢, t, ©o—N), N is arbitrary large, but finite.
Note. At this stage, we still lack good theory of infinite dimensional singular chains.
To get such theory and apply above results on integrals of (co-p)-forms will be a future
problem.

Acknoeledgement. This is a part of research on Hodge operators of mapping spaces.
Some parts of this reaearch were talked at Workshops at Thessaroniki, Group 21 at
Goslar and Conference of Differential Geometry at Budapest and will appeare in their
Proceedings.
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