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Abstract

    (oo-p)-forms on a k-th Sobolev space Wk(X), X a compact (spin) manifold, is

defined by using Sobolev duality. Integrals of (oo-p)-forms on a cube in Wk(X) are

defined without using measure. It is shown that exterior differentiability of an (oo-p)

-form is astrong constraint and an exterior differentiable (oo-p)-form is always

globally exact. As a consequence, the exterior differential operator d is not nilpotent

when acting on the space of (oo-p)-forms. Stokes' Theorem for the integrals of (oo-p)

-forms is also shown.

Introduction

   Analysis on infinite dimensional spaces together with its geometric applications,

has been treated mostly by using probabilistic methods (e.g.[3], [6], [7]). But more

classical analysis related to the geometry of infinite dimensional spaces seems not so

well developed. In this paper, we define an (oo-p)-form on U, an open set of k-th

Sobolev space Wk(X) over a compact (spin) manifold X to be a smooth map f from U

to APWh(X), the k-th Sobolev space of alternating functions (spinors) on p-th direct

product Xx...xX of X. Then treat differential and integral calculuses of (oo-p)-forms

The outline of the paper is as follows ; In sect. 1, we fix the Sobolev metric of Wh(X)

by apointing a non degenerate 1-st order selfadjoint elliptic (pseudo) differential

operator D on X. By using spectral eta and zeta functions of D and IDI, we define

virtual dimension n- of Wh(X) and volumes of cubes (powers of det IDI) in W-e-a(X).

Some calculations related to these quantities are also done. In sect. 2, integrals of a

function f on a cube in Wue'a(X) is defined in the spirit of Riemannian integral. It is

shown some complete continuity of f is necessary (and sufllcient) to the existence of

the integral, Then oo-forms are introduced. (oo-p)-forms and their exterior differntial

are defined in sect. 3. By the definition of (oo-p)-forms, if f is an (oo-p)-form, its

                   AFrech6t differential d f can be viewed as a map from U to the algebra of bounded

linear operators on Wk(X) (with parameters). The exterior differentiability condition is

                         AAthe trace class condition of d f and the exterior differntial cif is defined to be tr df.



Examples show some renormalized exterior differential may defined and will be useful.

In sect. 4. Iocal and global exactness of exterior differentiable (oo-p)-forms are shown.

As a consequence, the exterior differential operator d is not njlpotent as an operator

acting on the space of (oo-p)-forms. So we can expect some spaces of (oo-p)-forms

provides geometric examples of Kerner's higher gauge theory ([5]). In sect. 5, we define

(formal) boundary of a cube and integrals on the boundary. Then in sect. 6, the last

section we derive some kinds of Stokes' Theorem.
      ,
    In this paper, we do not discuss Clifford aspects of (oo-p)-forms. Global problems

related to the analysis and geometry of mapping spaces are alos not discussed. Some

parts of detailed proofs (and definitions) are omitted. These will appeare elsewhere (cf.

[1]).

1. VjrtuaJ djmension of a Sobolev space

    Let X be a compact (spin) manifold with a fixed Riemannian metric. E a

Hermitian vector bundle over X and L2(X) is the Hilbert space of sections of E. We

denote L2 -metric of fc L2(X) by 11fll. It is fixed by the Riemannian metric of X. We

take a non degenerate 1-st order elfadjoint elliptic (pseudo) differential operator D

acting on the section of E and fix the k-th Sobolev metric IIfllk of f by

     II f II, ==: Il Dkf ll.

The k-th Sobolev space of sectioRs of E is denoted by Wh(X). By Sobolev' imbedding

Theorem, Wk(X) is contained in the space of continuous section of E if le > d/2, d is the

dimension of X.

    Since X is compact, D can be written as

     Df=:A(f,eDeA, {eA} is an o. N. -basis of L2(X).

Then, to set

     eA,h == sgnA M I-keR,

{eA,k} becomes an o. N. -basis of Wk(X).

    By using spectral decomposition of D, we define operators G, the Green operator

of D, IDI, Pt and E by

      ( if -= :A-'(f, eA)eA, IDI == Z I A 1 (f, eA)eA,

     D±-1/2(IDI±D), c-GIDI.
    The spectral eta function rp.(s) of D and b"i.i(s) of IDI are defined by

      rpD(s) == Zsgn A I A 1-S, g.,(s) == rp.2(s/2) == Z 1 A 1-S.

It is know ([2], [4], [9] cf. [8])

(i) These functions are continued meromorphically on the whole complex plane with

    possible poles at s=d, d-1, ... with the order at most 1.

(ii) They are holomorphic at s==O.

Definition 1. Plle say g.) (O)=::nua to be the virtual dimension of Wh(X) (with respect to
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D).

We also define the determinant detlDI of IDI and det D of D by

     ciet lDl =:= exp(- gDi (O)),

     det D -: exp(nA gb-(O)) det lDI, eb-(O) ::- 1/2(nrm - rpD(O)),

(cf. [10]). Then we have

     det(tD)-:: tn- clet D, t>o,

     det 1 Dk 1 =: (clet lD l)h.

   Originally, n- may not be an integer. But later the necessity of integrity of n" will

be shown. But this is not restrictive. Because we have

                     d(1) glD..,l(O)=n7+:(-1)mjk'c,,
                    j'--1
       cj--:e"s. rpD(s), 7'ua-=1 mod.2, cj={;e.,s. g.i(s), 7[-=O mod.2.

Precisely saying, the right hand side is the analytic continuation of the left hand side

for small lml.

   We can also derive continuation formula for gD+mii' (O), which is necessary to the

definition of the determinant bundle of a mapping space.

   Virtual dimension is used to the definition of determinant of g E Mop(X, G), G acts

on the fibre of E as a subgroup of U(N). In this case, to write g=exp(2rrih), we can

define det g by

     ciet g == exp(2rri.LI trh du/(nL/N volx)), '

because we may regularize t7I=n-, l is the identity of L2(X). This definition of det g

depends on the choice of h. But if g is homotopic to an element in Map(X, SU(N)), then

does not depend on the choice of h. In this case, we denote this determinant by cietDg.

It is shown

(2) det. gl2== dt?t.g det.la, det.g=1 af gG Map(X, SU(N)).

2. Integrals on a cube in a Sobolev space

   In W-euna(X), ev>d/2, we set

     Q(L t) =::: {Z cn en II cn 1S 1 Mn I"},

     Q(-e, t, +)--{Xc. e. Ie< c.$ i Mn le}, t>O.

For simple, we assume Z:t=O, and set

(3) vol(Q(Lt))-(2t)eiirr1detDle, vol(Q(e,t,+))=tenLl,letDle.

   Let s be in I=[O, 1] with the binary expansion O. st. . . s.. . . Then we define a subset

D(s) of Q(L t) by

(4) D(s) ={: cnenlL1 Mn lg :-E{ cn $ O, drC sn =O, O$ cn $1 M. Ie, zllC s:= 1}.

By definition Q(V, t)=UsEi D(s). For a function f(x) on Q(e, t), we define functions fm

and L on I by



     frr(s)-sup f(x), L(s)- z'nf f(x).
           xED(s> XGD(s)
Then the integrals fi f-clsvol(Q(e,t)) and fi .Lcisvol(Q(e,t)) are upper and lower

Riemannian sums of f( :) with respect to the partition {D(s)} of Q(g, t).

   We assume for (si,...,s"i-i)EIM7i, the partition D(s',...,sM2i) of Q(L t) has been

defined to be {Z cnen i an < cn < bn}. Then for sM=O. s,Ms,M. . . E I, we set

(4)' D(si,...,sM)={Zcnen1anScnSan+1/2(bn-an), af s;i"=O,

                          an+1/2(bn-an)$ Cn (- bn, 21/ s,M, == 1}.

The functions f-(si,...,sM) and .L(si,...,sM) are defined to be

     f-(si,...,sM)= sup f(x),
                 xED<si,,..,sm)

     L(si,...,sM)= int f(x).
                 xED(si,,.,,sm)

   Lemma l. fM and L are continuozas of f is continuous by the topolcig)? of We-a(X),

ev>d/2.

   Proof If s==O. sis2... and s'=:=o. si'si.. satisfy ls-s'I<2-M, then si =si',...,sm==

sm'. Therefore, by the definition of D(s), we have

      sup ( int llx-yll-g-cr2)<(2t)e:IAnlJa

     xEED(s} yED(s') n>m
Hence if a>d/2, we get imis-stt-o szcaxED(s) (infZ,ED(so jljv-gyllmif"a2)==O. This

shows the continuities of frm(s) and L(s). Higher dimensional cases are similarly

proved.

   On the other hand, since

     lim supx,yED(si,,",sm) II uun g/II-e-a==O, ij ev>d/2,

     M-+eo

we have

     lim sup 1f-(si,...,sM)-L(si,...,sM) 1 =O,
     M-FOO
if f is continuous by the topology of Wrm""a(X), a>d/2. Therefore we obtain

Theorem 1 if f(x) is continuozas by the topolagy of W-e-a(X), ev>d/2, then

(5) ,ti.-m.YIL fMdMs =ua,-..(], fLdMs

Definition 2. Letf be a (real valued) fatnction of Q(e, t). 71hen we say f is intErgrtzble

on Q(L t) of (5) is hold and dofne fQ(e,t)f(x)clx by

(6) ,(i, ,,,, f(x) du = Y,zL/{z Yl), fn dM svol(Q(if, t)).

intagrals on Q(V, t, +) are similarly defined.

                                              ,Note. In the above definition of the integral, we used special division of Q(e, t). But

this is for simplicity and we can define integral by using more arbitrary division of

Q(e, t).

Example. Let f(x) be

(7) f(x)==::a:it-,2lt, v=::ZxnenEQ(-t9,t,+).

Then we have



                      Vector Analysis on Sobolev Spaces 11

     f-(si , . . . , sm) ... t2(e-k) : : ((2m-i sA +2m-2 sR+ ... + s.m + 1)/2m)2 A?,(e-k),

                      ll ln
     L(si , . . . , sM) == t2(e-h) Z : ((2MLi s,i, -i- 2M-2 sn + ･- ･ +sAn)/2M)2A?,{e-h}

                      nm
Hence we have
                        '
     .lll, f- CI Ms = t2(e-h) ]li;, (1/2M,..X. ,,o ((2M-i s,i,+･･･ +s,",i+ 1)/2M)21 ,a?,{e-h)

             ==: t2(e-k) :ll,] (1/2mtj..'il (j/2m)] AZ(e-k)

             .,, t2(2-h) : {(2m + l)(2M+i+ 1)/6. 22M} A?,(e-h},

                    n
     Yl], .1{- dins= t2(e-k) :ll,] {(2M- 1)(2M+i- 1)/6 ･22m} AZ(e-k).

Therefore we have

(8) J[i,,,,,.,f(x)alc::=1/3･t2`"'k' {;b(2(k-e))(ciet D)e.

(8) shows f(x) is integrable if k-e>d/2 and not integrable if k-e==d/2.

   There is an alternative way to the computation of fQ(t,t) f(;u)du. We set

     Q(e, t, Ai') ==(X..cnen l-l Mn 1e$ cn$ 1 rnn le, 1<n<Nl,

     Q(e, t, oo rv Ar) ==(,, .liil.icnen l-1 Mn le$ c.$ 1 M. Ig, n>IV'+1).

By definition Q(e, t) == Q(e, t, IV) X Q(L t, oo - N). We denote x == (xN, xoo-N) E Q(e, t),

where xN E Q(e, t, AI) and x.-N E Q(e, t, oo -Ar). Let f be a function on Q(g, t). Then we

set

     f-"(ncN)== sup f(vN,y), .llm.(xN)=:= inf f([rcN,Y)
             yEEQ(e,t,co-N) yEQ(e,t,ee-IV)
Then if f is continuous by the topology of Wn"'a(X), ev>d/2, we have

(9) .,C(e,,,f(X)`l`' == kA7{Z.,(Ii(,,,,.,f-"( vN)d"u1 tili1-e l tiiN 1-e vol(Q(e, t))

For example, for the function (7) fQ(e,t,÷) f(x)du is computed as follows:

       A            f(x)du
        (e,t,N)
     = s(/z?.7. ,;i.l1 ta(tA'}e･･･rd{tA")" x?, dNc l ti1 I-e･･･ l blN 1-e vol(Q(.e, t))

           N     =: lim : 1/3 n ( ti,)e(m.)3 (m,)-e･･･(za.)-g vol(Q(.e, t))

       ?z -+ co n==I j4n

     =1/3 t2(g-h) l;.(2(k-e))(det D)e.

   We denote the cylindrical measure (of the domain {:cnen l 1 cn 1Sl}) by doov. Then

by the above discussions, we may define

(10) Adea=(det D)-d'2 dDOv, AdeA,h=(det D)-kAdeA

                                 ==(det D)7k-d'2 dcov.

So we may consider an infinite form to be a scalar function multiplied by (det D)7k.

Here we may idetify ciea,k and ea-k. Because to define the function eA,k on U, an open



set of Wk(X), by

     eA,k(x)==xA, x=:xAeA,

we have eA,h(x'+ ig)=xA+ igA ==ea,k(x)+t(ex-k,y). Hence the Frechet differential d"eA,k

(x)(=:= cieA,k) is equal to eA,unk c W-k(X).

3. (oo-p)-forms on a domain in Wk(X)

    Let U be an open set of Wk(X). A p-form on U is a smooth map from U to APW-h

                                                        rpT(X), the (-k)-th Sobolev space of alternating functions (sections ) on Xx...xX. Since an

(oo-p)-form should be the dual of p-forms, we define

Definition 3. An (oo-p)-fonu f on U is a smooth mmp from U to APW-k(X), the fe-th

                                           rrm P 7Sobolev space of alternating fanctions (sections) on Xx...x                                               X.
   We fix the duality between za E AqW-h(X) and f E APWk(X) by

(11) <U,f> ==(Gxleix'''x Gxk. zt, Dxkix'''xDxk. f),

where ( , ) means the inner product of L2 (Xrx.?.x7X) determined by the product metric.

Definition 4. 7'7ze wedlge Product of a P;fornz u and an (oo-a)-Lform f is dofned as

follows.'

(12) uAf=O, ijq>p,
        (UAf)(Xl ,..., Xp-q)=<U(Xp-q+1,..., Xp), f(Xxpn.."..., Xp j Xl ,..., Xp-q)>

                          ij q<p

        zaAf:=<U,f>Acoep7h, drC q=p.

.Lxu is defined to be (- 1)P("M-q) uAf. Then, since it inust be

       A zt ==(- 1)P(n-"q) za.f ::= (-1)P(n--q)+(,iM- q)P .L, zt ,

.2p(n--q) must be an even integer for any integer p, a. Hence we obtain

Proposition 1. T7ze virlual dimension should be an intager when considen'ng (oo-p)-

forms.

    By (12), we may write

     (etlJ,-hA-･Aenp,-k)A(enl,hA".Aenp,h)=AOOell-h.

So to set A=:{ni,...,np}ni<...<np, we denote

     eni,hA-･Aenp,k=:=AOO-{ni""'nP} e",-h== AcorAe","k.

Then an (oo-p)-forms f has the coordinate expression

     f== : .Lii-n.Aco-{'ii'""'i"}deA,k.
        211<'"<11p

Its formal exterior derivation contain infinite sums.

                                                A    In coordinate free notation, the Frechet differential d f of f is a map from U to

Wrmk(X)opWh(X), because U is an open set of Wh(X). Since Wrmk(X)opWk(X) is a

subspace of B(Wh(X)), the algebra of bounded linear operators on Wk(X),we set

     dAf(x)(x, ,..., x.) = dAf(x, xi)(x2,.･･, Xp) =･･･

                            A                   ==(-1)P"id f(x, x.)(x, ,..., x.-i),

     dAf(x,xi) is a map from U to B(Wk(X)).
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Denifinition 4. An (oo-p)-form is said to be exterior dderntiable ij dAf(x, :i) is a

mmp .bem U to the ideal of trece class operators. .in llzis case, we define the etterior

dipCk?rential cif of f by

(13) alf(x)(xi,...,xp-i)=(-1)P-i tr dAf(x,xp)(xi,...,xp-i).

Example. Since the coordinate expression of the (oo-1)-form DumS is

       D-S v =: : agn Al A lmS(ix, eA,-h) dee le == : sgn Al A inS(ar, e"k) AO"-{A} deA,k,

we get

(14) aL[)-S=rpD(s)AOedeA,h.

Let r(x) be the L2-norm of c, then drM<x) is equal to mrML2(x):(x,eA,-k)cleA,-k.

So we have
     d(rM( v)D7S) ==: (mrM-2( r)]:I] sgn Al A l-S( v, ea,ntk)2 + rM(a:) rpD(s)AOOdeA,-h.

Hence in the sence of analytic continuation, we have

(15) liind(rM(x)D7S)==:O, zllC-m=opD(O).
        s-o
Similar result hold replacing D by IDI. Since I(==IDIO) is :i]eaAeer{i}deA, r-'i-(x)I is the

formal extension of the volume element of the sphere. (15) shows this formal extension

is renormalized closed.

   In general, taking s sufl}ciently Iarge, DTilC becoines exterior differentiable. Since

d(D-glC)=:=D-S(alf) if f is exterior differentiable, there might exist some theory of

renormalizecl exterior dfferential. This will be a problem in future.

4. Exactness of exterior differentiable (oo-p)-forms

   By using absolute values, we arrange the proper values of D as follows:

     IA,1 :$l 1A,l S ･･････.

We denote alcn instead of deA.,h, for simple. Then an (oo-1)-form f is written

        co     f == Z LAcorm"' cl c..

        im-1
If f is extrior differentiable, then we have

(16) diC -(tW.,OA･/0xi)Aco dun.

Note. Formally, cij is given by the right hand side of (16). Exterior differentiability

(trace class assumption) is its convergence condition.

   We want to get local integration of f by the following form (oo-2)-form g : g==

X]:=ig i÷iAOO-{i'i'i}dun. Then we get

                          oo     aig' = 0gi,2/ 0x2 Acont{i}dun -i- Z (Eigi,i+i/0xi+i - Og･-i,i/ Oxi-i)AooL{i} dun.

                         i--2
Hence, if alg==f, we get

     gt,,(x)=.CMZfi(x)(lc,,

     gt,,.,(x) == .(IX"'(A(x) + ag,-,,, (x)/ ox,-,) ax,., , i >= 2.



Since we have

     g2,,(x) == .CXa(.lh + o/ a x,XX2fl (x) du,) du, == ,CX3(f> + .CX2 on /6x, du,) cix,,

we obtain

(17) Og2,3/ Ox2 := rdX3(alZ/Ox2 + aA/0xi) du3.

We assume
(ls) 0gh-i,n/ 0xn-i=AX"( lt.-. ,i dr1･/0xi) den.

Then we have
       0g>i,n+i/ Sxn+i == "z Ti- 0g}i -i,n/ 0x,z ni = .Li + .C X'i( l:].M. ,' afl･/ oxi) dt ,

       Og>z÷i,n+2/ 0Xn+2 ==: .ICh+i + 0g>i,n+i/6Xn

                   =:= h., l o/ s.,, ta"'t+i(ft + Axn l=l.-. ,i of./lin,,) nt

                   == f;, ., + yC X"' i( ttl , orL･/ ox ,) dt .

Hence (18) is hold for any n.

   Since f is exterior differentiable, Z:=,Eif1･/0xi exists. Hence {::=iaL･/0xi} is

uniformly botmded. Since integrations are done in a neigh-borhood of the origin of

Wh(X), Zgi,i+iAcoL{i'i'i}cilxn converges as an element of AOeWh(X). Similarly, by using

lexicographic linear order of the index set {7'i,...,7'p}, 7'i<...<7'p, expressing an (oo"2)

-form f as

(ig) f-:i, ,{,.AJ･,i}Aoo-('`"ciun･ f,l!,{i,O.,,C.9.ILY.,t,}il"iM"M･

we can construct a local integration g of f in the form

(20) g= :li;. il,,. ri,,･, i, i.,} Aoo nv {J: ii iti} du..

Hence we obtain

Lemma 2. An exterior dderentiable (oo-p);form is always locally exact. Corolla7:y 1.

7)V2e exterior dipZirential qPemtor d is not niipotent as an opemtor on the space of (oo

-p)-forms.

Example. Let g be :(1-1/2i)xixi+iAco-{i'`'i}cixn. Then a{gr is equal to

Zl/2ixiAeOT{i} dun. Hence d2g is equal to AOOcinrn ¥O.

Corollary 2. if an (oo-p)-form f is exterior dipierentiable, then for aiay naimrtzl

number q, locally we can write

(21) f=dqg, g is an (oo-p-q)-form.

Proof. By Lemma 2, locally we can write f==aigi. This means gi is exterior

differentiable. Hence we can write gl == aig2, locally. Repeating this, we have Corollary.

Note. In the local integration of f, we used exterior differentiability of f only

showing the convergence of formal integration. This is not curious, because taking s

sufliciently large, DrmEl7C becomes exterior differentiable for any (oo-p)-form f. So we
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have

     DY -= aCg,

For any (oo-p)-form. If g takes the values in the domain of DS, then we have

     f-DScig :== d(DSg).

So an (oo-p)-form is always formaly locally integrable.

   Let u be a smooth function and f an (oo-p)-form. Then we have

     d(ut)== du.f+zadi.

     d2( ut) == - duA di + darA di + ud2f == zad2f.

Repeating this, we get

Lemma 3. Let u be a smooth fatnction andf be an (oo-p)-form, then the followings are

hold

(22) d2M( zijC) == ud2mf,

        d2M+l(zof)= du.d2Mf + zad2m+if.

Note. Similarly, if u is a p-form, we get

(22)' d2M(zof)==ud2Mf, d2M'i(zof)==clbc.d2Mf+(-1)Pud2M+if.

Theorem 2. Letf be an exten'or dderentiable (oo-p)-Lform on an open set U of Wh

(X). 71Pzen for a?apJ q, there is an (oo-p-q)-Lform g on U such that

(23) f=dqg, on U
Proof. First we assume qiO, mod.2. Then by Lemma 2 and (22), we haveTheorem by

using smooth partition of unity. If q"-=1, mod.2, f can be written as f--dq'i gl on U.

Hence we have theorem taking g== aCgl.

Note. Since smooth partition of unity subordinate to any locally finite open covering

exists on any Sobolev manifold, this Theorem is hold on any Sobolev manifold,

especially on amapping space Mcip(X, M). On the other hand, since we used partition

of unity, it is unclear whether this Theorem is hold in analytic category.

   Since d is not nilpotent, it is a problm that can we provide some geometric models

of Kerner's higher gauge theory ([ 5 ]) by using (oo-p)-forms.

5. Boundary of a cube domain and integration on the boundary

   We set Q(L t; tr.:==1tilnie)={Zcnenl-lblnlS<cn<ltilnle, m:iFn, cnlblnle}.

Q(e, t ; x.== -IMnle) is simiiarly defined. The volumes of Q(if, t ; x.±1thnle) are defined

to be (21ba.lrg) vol(Q(e, t)).

   Let f:==Z:..iL･Aco-{'}dun be an (oo-1)-form. we define the integral of f on

Q(if, t; x.= ±lzanl") to be the integral of .Li on Q(L t; x.=::±lrnnle), which is defined

similarly as the integral on Q(g, t).

Lemma 4. Letf be an (oo-1)-Lform szach that continuozas and ,F)teche't d(tfb7enhable euy,

the topolagy of W-e-a(X), ev>d2. CZ'Vten we have

(24) .(/T,mp. ,."i .(y(ile,t, ..=it2.ie) f- XIi(e,t, xn--,tAnie> f) =:: O'



Proo£ We assume lldAAI;!llC on Q(L t). Then we have

       L<.:.ivnen+1ttli1eei)-.L･(,pu.,arne.-iLtli1eei) <2ctelAi1"-a,

because we have

       (,putixnen+ltailtei)-(.:tixnen-IMiieen) -g-.

     =21 Laile lA,1-a=2 te lA,le-a.

   Hence we obtain
       tl/in(yC(e,t, x,=i tA,ie) f- A(e,t, xt=nitAti") f)

     :{ i$n] Y[ile,t, .t,- tta,iE) 'L - Y(i(e,t, ::,-waite) 'L

     $ ]:E]l 2ctelA,le-al t,1,lg-al ba,l-evol(Q(.if, t)) =:= : 2C l ttlAmavol(Q(L t)).

       i-- ll i= ll
Since a> d2, this last term tends to O when n, m tends to infinity. Therefore we obtain

Lemma.
Corollary. Under the same assumption on f,

limn"co ::"L'i(- 1)t-i
( Y[i(e,,, ..=l tA.Je) f un uC(e,t, x..,mltA.ig) f) eXiStS'

   Formally, we denote

                co(25) 0Q(L t) :== ]I ](-1)`-'(Q(L t ; x. =:itinle)-Q(V, t ; x.=-1M.le))

               i--1 ･This is only a formal sum. But by Corollary of Lemma 4, tha following

definition has a meaning.

Definition 5. Letf be an (co-1)-form dofned on a neighborhood of Q(e, t). CZ77zen we

dofne the inlqgrzzl of f on 0Q(V, t) by the following limit

(26) Yg6(,,,} f = <z-'ue tt/,(rl)Z-i(vC{e,t, ....itA.ie) f- A(e,ti xn--t tAni") f)

   Although 0Q(e, t) is a formal sum, we have

(27) 0Q(L t)==0Q(g, t, N)XQ(V, t,oo-Ai)+(-1)NQ(e, t)×6Q(if, t,oo-IV).
Here Q(e, t, oo-N) is defined similarly as Q(e, t). Corollary of Lemma 4 shows

(2s) .Li6(e,t)f=<iMea u46{e.t,N)xQ<e･t･oo-")f'

Example. Since D-S:sgnAnlAnl-Sxn=Aco-{"}clxn, as an (oo-1)-form, we have

       A                D-s
        (e,tixn=±ltAnlg)

     = v(i(e, t, x.-. ±i tA.ie} Sgn An l ilnl-S( ± l ttlnle)Aco-{n} clx.

     == ±(-1)n-'sg'n ANIANI-S IMnl" 12za.1-" vol(Q(e, t)).

Hence we get

(29) IiL,,,,,,D-S ==: rpD(s)vol(Q(-4 t)) === (2 t)""L rpD(s)(det lDl)".

Similarly, we have
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(29)' .116,, ,JDI-s ::=: (2 t)en- g, .,(s)( det lDbe.

Note. (29) and (29)' show that both I ( ==:x.Aeer{X}du.) and e

(=:sg'nAnxnAco"{"}clxn) are renormalized integrabie on 0Q(e, t). Their values are given

by
         /.
(3o) ,(i6,.,, E= (2 t)en- rp.(o)( det lDl)g,

        ,4i6(,,,,i=(2t)""-nL(cietIDI)e.

6. Stokes'Theorem

   Let f be an exterior differentiable (oo-p)-form with the coordinate expression

:,JfJAoo-'dun. Then we have

     alf=¥( ,]i. il. . sgn{i, K} blC{i, K}/0vi)AOOr" cl cn, K={ki, . . . , k.-,},

     sgn{i, K} =::1, i< fe, sgn{i,K} =(rm 1)q, kq< ii< feq+i,

     sg'n{i, K}===(-1)p, i>lep-i.

Under these notations, we set

     d"[f == lil] (,, .Z, ,..-. agn{i, K} of{i,K}/0xi)Aoo-Kdun.

Then as an element of AP-iWk(X), we have

(31) linzdivf(x)-dre(x) xEQ(.e, t, oo-p+1), if e>-(k-d/2).
        N-oo
This convergence is uniform if alf is continuous by the topology of WhLa(X), ev>O.

   Let f be an (oo-1)-form. We set

     frm"(x) =: ]Z] smp .L･(x, gy)AeO-`i' cinr.,
              yE!Qcg,t,co-N}
     fL-N(,x)=: inj .L･(x,gy)Aee-`i'cin., xEQ(.e, t, Al').
             yEiQ(E,t,oo-N)

By definitions, we have

     di-":=d"7rm", cifLN=dAZN,

     Y[i(e,t,xt=!ita,ie} f-N=uC(e,t,.,=itA,:e) f-N

     Y[i(e,t,xt-ltA-t) IN=yC(e,t,x,.,ItA,le} 'LN' i>N+1'

Therefore we obtain

(32) .,(Il,,,.,, f-"

      == tt/i(-1)i-i(vC(e,t, ,,,.,ua,ie) fpt iV M /li(e,t, m,==ltA,)e) fLN)

      :== .41}(e.t,N) × Q(L t' oo 7 A[)fM"= li( ,.,) alf-"

        y(i6(e,,) LN=::: .lgl)(e,t,N).Q(e,t,.rmN) ･LN=y([i{e,t>aiiLN･



   On the other hand, if f and alf both continuous by the topology of Wm"-cr(X), ev>

d/2, we have

     g,zLtzz y16,, ,, fn"=Y16,,,,, f,

     f,ZL/Zg Ii(e.t) `2lfr"=Xli(e,t) di'

Thereforewe obtain

Theorem 3. Letf be an exterior d(fferentiable (oo-1)-form such thatf and of both

                                            Acontinuozas by the topology of W-e-a(X), ev>d/2, and d f is continuous by the topol(rgy

of Wra(X), a>d/2. 7'7zen we have

(33) .(i,,.,,alf==Yll,,,,,) f(= ,l,iMco A)(e,t,N}xQ(e,t,co-N> f)'

Example. Since aLD-S is rpD(s)Acoaltn and dlDl-S=8iDi(s)Acodun by (14), we get

     y(il,.,, aLD"S= ijD(s)orol(Q(e, t)),

     JC,.,, dlDInS=4Di(s)vol(Q(e, t)).

These values coincide to (30).

   In general, dMf is not equal to O if f is an (oo-p)-form and m$p. So we want to

compute Xi(,,,)dMf for an (oo-m)-form f on some neighborhood of Q(e, t). We assume

the followings:

(i) f, alf,...,dMf are all continuous by the topology of W-e-a(X), a>d/2.

      AAA(ii) d f, d alf,...,d dM-if are all continuous by the topology of W-a(X), ev>d/2.

Then, since we have (formally)

     0(0Q(2, t, N)×Q(e, t, oo-IV))=:(-1)Nni 0Q(e, t, Ai)×oQ(e, t, oo-lv),...,

     0(0Q(L t, AJi)x`-`×aQ(L t, M,-i))×Q(e, t, oo-(AJI+･･･+AJ).-i))

     -sgn(IVi,...,IVin"i)0Q(L t, .ZVi)x-x0Q(e, t, .IVin-i)×

      ×0Q(L t, oo-(Ail+''･+Mi-i)),

we get

(34) Y[l,.,,dMf == ., -. ..ip,ti..-.. Sgn(All, ' ' ' ,Al)"ri) ×

                 × .L6(e,t,Af,)x･-xeQ(e.t,Nm)xQ{e,t,oo-(Ni+'H+Nm)) f'

        agn(Ali,...,M,-J)==(-1)N2'N4+"'+Nnirri, m-1, mod. 4,

                     .=(-1)Ni+N3+H'+Nm-i-1, m=-1, mod. 4,

                     =(-1)rv2+N4t"'+Nm-i"i, m=-3, mod. 4,

                     ...("1)Ni+N3+"'+Nm-r, m=-O, neod. 4.

Here Q(e, t, AJ},) means {Zli:Xit:ItX2'-,., cnenl-IMnle< c,i<IMnl"}. For simple, we set

        tim sgn(M,...,AJ)nrmi)×
     Ni-oo･,,Nm-ee
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           × .IC}{e,t,IVi)XOQ(g,t,N2)X･-XQ(at,Nm)XQ(0,t,oo-(N}+-+IVnD) f

     == .]1)nQ(e,t) f'

Then by (34), we obtain

Theorem 4. Let f be an (oo-m)-fo?oaa on a neighborhood of Q(.g,t) sklsy[Ying the

assunlPtions (i) and (ii). 77zen zve have

(3s) .,l[],,,,,dmf=Yl).,,,,,, f･

Note. Formally, we may wrjte

                       n-1
     0Q(e, t ; xn == ±1 itRnle) =:: =(L1)iLi (Q(-4 t ; xi=1Mnie, xn =:= ±1Mnle)-
                        i=1
                                -Q(L t; i:i-- rmlMnie, xn=±irnnl"))+

                            oo
                         + :E] (-1)i(Q(e, t;x.== ±IM.le, xi=izaile)-
                          i--n+1
                                -Q(-g', t ; a;n:- ±IM.Ie, Jvi-- -[bai[e)).

Then, formally, we get

     o2Q(e, t),ll.),(-1)n-i(Ii.-.,i(-1)imi (Q(.g, t ; c,=Im,[e, Jv.==Ita.Ie)-

                                -Q(L t; xi=-1thilg, x.=1M.i"))+

                          n-1                         -l- 2 <-1)i (Q(Y, t ; xi=irnile, xn := -IMnle)-
                          i--1
                                -Q(e, t ; xi -- -IMil", xn=-lrn.I"))+

                            co                         -l- : (-1)i(Q(e, t;xn:==1tinL xi=1thile)-
                          i=n+1
                                -Q(-e, t ; xn =lza.le, xi -- -1Milg))+

                            co                         + : (-1)`'i(Q(e, t; x.=-IM.l", xi=IMiie)-
                          i--n+1
                                'Q(L t ; :n == -1zanie, xi rm- -1tiile))1

   This expression is formal and we can not change the order of summation, because

they are infinite sums. So we can not conclude 02Q(e, t) is equal to O.

   Theorems 2 and 4 show integrals on Q(e, t) may be reduced to the integrals on

Q(e, t, oo-N), N is arbitrary large, but.finite.

Note. Atthis stage, we still lack good theory of infinite dimensional singular chains.

To get such theory and apply above results on integrals of (oo-p)-forms will be a future

problem.
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