# Magnetic Phase Diagram of $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ 

Hideo Hashimoto*, Atsushi Katsuki and Kazuko Motizuki**

Department of Physics, Faculty of Science, Shinshu University (Received December 26, 1995)


#### Abstract

The ground state spin configuration in $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$-type crystal having two magnetic ions in the unit cell is studied on the basis of the Heisenberg model with four kinds of superexchange interaction. The magnetic phase diagram is found to be composed of five regions : four of wich are collinear spin arrangement and one is of double helical spin arrangement. The values of exchange integrals of $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ estimated by Ain et al from their own neutron scattering data are in the region where the observed collinear spin arrangement is stabilized.


## 1 Introduction

The discovery of the high temperature oxide superconductors has led to increasing interest in studies of the physical properties of CuO -based materials. Among the vast group of CuO -based materials, $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ attracts special attention because of its interesting crystal structure and magnetic properties, though $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ itself is not superconducting. The crystal structure of $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ belongs to the tetragonal space group $\mathrm{P} 4 / \mathrm{ncc}$. In this compound $\mathrm{CuO}_{4}$ units, one of which consists of a square of four $O$ ions and a $\mathrm{Cu}^{2+}$ ion at the centre, are stacked along the $c$-axis in a staggered manner, and two adjacent $\mathrm{CuO}_{4}$ units are separated with each other by an intervening Bi cation.

The crystal structure of $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ has been determined by Attfield ${ }^{11}$, by Ong et al ${ }^{2)}$ and by Yamada et $\mathrm{al}^{3 \text { 3 }}$ from neutron and/or X-ray diffraction experiments. Also, the magnetic properties of this compound have been extensively studied ${ }^{1-5)}$. Aïn et al ${ }^{4)}$ have studied the magnon dispersion relation by neutron-scattering. Furthermore, by analyzing the result on the basis of two sublattice model with four kinds of superexchange interaction, they have estimated the values of the superexchange parameters.

[^0]The purpose of the present paper is to study theoretically what sort of spin ordering is realized in the compounds having $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$-type crystal structure, on the basis of the Heisenberg model. Four kinds of isotropic superexchange interactions are assumed. We construct magnetic phase diagram as a function of the superexchange parameters and examine if the result of Ain et al is consistent with the obtained phase diagram. In $\$ 2$ the crystal structure and the sites of ions are shown. As for four kinds of superexchange interaction via $-\mathrm{O}-\mathrm{Bi}-\mathrm{O}-$ bond, each length of $\mathrm{Cu}-\mathrm{O}, \mathrm{O}-\mathrm{Bi}, \mathrm{Bi}-\mathrm{O}$, $\mathrm{O}-\mathrm{Cu}$ bond, and each bond-angle of $\mathrm{Cu}-\mathrm{O}-\mathrm{Bi}, \mathrm{O}-\mathrm{Bi}-\mathrm{O}, \mathrm{Bi}-\mathrm{O}-\mathrm{Cu}$ are given in $\S 2$. The formulation is described in $\S 3$, and the phase diagram is shown in $\S 4$. The results are discussed and compared with the spin ordering observed in $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$.

## 2 Crystal structure and superexchange interactions

The crystal structure and the sites of ions have been given, for example, by

Table 1. Coordinates of ions in a unit cell of $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$

| cation | $x / a$ | $y / a$ | $z / c$ | O ion | $x / a$ | $y / a$ | 2/c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cu I | 0.5000 | 0.5000 | 0.8420 | $\begin{aligned} & O(I-1) \\ & O(I-2) \\ & O(I-3) \\ & O(I-4) \end{aligned}$ | $\begin{aligned} & 0.7005 \\ & 0.3920 \\ & 0.2995 \\ & 0.6080 \end{aligned}$ | $\begin{aligned} & 0.6080 \\ & 0.7005 \\ & 0.3920 \\ & 0.2995 \end{aligned}$ | $\begin{aligned} & 0.8301 \\ & 0.8301 \\ & 0.8301 \\ & 0.8301 \end{aligned}$ |
| Bi(I1II3) <br> Bi(I 4 II2) <br> Bi( I 3II1) <br> Bi( I 2 II 4) | $\begin{aligned} & 0.6686 \\ & 0.8314 \\ & 0.3314 \\ & 0.1686 \end{aligned}$ | $\begin{aligned} & 0.8314 \\ & 0.3314 \\ & 0.1686 \\ & 0.6686 \end{aligned}$ | $\begin{aligned} & 0.6710 \\ & 0.6710 \\ & 0.6710 \\ & 0.6710 \end{aligned}$ |  |  |  |  |
| Cu II | 0.0000 | 0.0000 | 0.5000 | $\begin{aligned} & \mathrm{O}(\mathrm{II}-1) \\ & \mathrm{O}(\mathrm{II}-2) \\ & \mathrm{O}(\mathrm{II}-3) \\ & \mathrm{O}(\mathrm{II}-4) \end{aligned}$ | $\begin{array}{r} 0.1080 \\ -0.2005 \\ -0.1080 \\ 0.2005 \end{array}$ | $\begin{array}{r} 0.2005 \\ 0.1080 \\ -0.2005 \\ -0.1080 \end{array}$ | $\begin{aligned} & 0.5119 \\ & 0.5119 \\ & 0.5119 \\ & 0.5119 \end{aligned}$ |
| Cu III | 0.5000 | 0.5000 | 0.3420 | $\begin{aligned} & O(\text { III }-1) \\ & O(\text { III }-2) \\ & O(\text { II }-3) \\ & O(\text { III }-4) \end{aligned}$ | $\begin{aligned} & 0.6080 \\ & 0.2995 \\ & 0.3920 \\ & 0.7005 \end{aligned}$ | $\begin{aligned} & 0.7005 \\ & 0.6080 \\ & 0.2995 \\ & 0.3920 \end{aligned}$ | $\begin{aligned} & 0.3301 \\ & 0.3301 \\ & 0.3301 \\ & 0.3301 \end{aligned}$ |
| $\begin{aligned} & \mathrm{Bi}(\mathrm{III} 1 \mathrm{IV} 3) \\ & \mathrm{Bi}(\mathrm{III} 4 \mathrm{IV} 2) \\ & \mathrm{Bi}(\mathrm{III} 3 \mathrm{~N} 1) \\ & \mathrm{Bi}(\mathrm{III} 2 \mathrm{IV} 4) \end{aligned}$ | $\begin{aligned} & 0.8314 \\ & 0.6686 \\ & 0.1686 \\ & 0.3314 \end{aligned}$ | $\begin{aligned} & 0.6686 \\ & 0.1686 \\ & 0.3314 \\ & 0.8314 \end{aligned}$ | $\begin{aligned} & 0.1710 \\ & 0.1710 \\ & 0.1710 \\ & 0.1710 \end{aligned}$ |  |  |  |  |
| Cu IV | 0.0000 | 0.0000 | 0.0000 | $\begin{aligned} & O(\mathbb{V}-1) \\ & O(\mathbb{V}-2) \\ & O(\mathbb{V}-3) \\ & O(\mathbb{N}-4) \end{aligned}$ | $\begin{array}{r} 0.2005 \\ -0.1080 \\ -0.2005 \\ 0.1080 \end{array}$ | $\begin{array}{r} 0.1080 \\ 0.2005 \\ -0.1080 \\ -0.2005 \end{array}$ | $\begin{aligned} & 0.0119 \\ & 0.0119 \\ & 0.0119 \\ & 0.0119 \end{aligned}$ |

(According to Yamada et $\mathrm{al},{ }^{3)} \quad a=0.8502 \mathrm{~nm}$ and $c=0.5820 \mathrm{~nm}$ )



Fig. 1. Crystal structure of $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$. $\mathrm{Cu} ; \mathrm{O}: \mathrm{O} ; \mathrm{O}$, Bi
(a) Projection on $x y$-plane .
(b) Projection on $x z$-plane

Yamada et $\mathrm{al}^{3}$ ). A unit cell includes four Cu ions, named as $\mathrm{Cu} \mathrm{I}, \mathrm{CuII}, \mathrm{CuIII}$ and CuV , sixteen O ions, nemed as O (II-3), and eight Bi ions named as $\mathrm{Bi}(\mathrm{III} 3 \mathrm{~V} 1)$. O(II-3) represents the O ion located in the third quadrant among the four O ions surrounding the CuII . Bi(III3N1) means Bi ion whose nearest neighbouring oxygen ions are $\mathrm{O}(\mathrm{III}-3)$ and $\mathrm{O}(\mathbb{V}-1)$.

Taking the position of CuIV to be the origin and $a$ and $c$ to be the lattice constants of the tetragonal lattice, we have specified the positions of ions as shown in Table 1 based on the data given by Yamada et $\mathrm{a}^{33}$. The projections on the $x y$ and $x z$ planes are shown in Fig. 1.

The sublattice consisting of the Cu ions is pseud-body centred tetragonal, CuV and CuII being at coners ( $z=0$ and $c / 2$ ), and CuIII and Cu I being at positions slightly deviating from the centres along the $c$-axis $(z=(c / 4)+\delta c$ and $(3 c / 4)+\delta c$, with $\delta=0.092$ ).

As seen from the crystal structure, of which the sublattice of Cu ions is shown in Fig. 2, there are four main types of superexchange interaction:
$J_{I}$ between $\mathrm{CuI}(z / c=-0.158)$ and CuIII, CuIV and $\mathrm{CuII}, \mathrm{CuIII}$ and CuI , and CuII and CuIV ( $z / c=1.000$ ),
$J_{2}$ between $\mathrm{CuI}(z / c=-0.158)$ and CuV , and CuIII and CuII , $J_{3}$ between CuIV and CuIII, and CuII and CuI , and
$J_{4}$ between $\mathrm{CuI}(z / c=-0.158)$ and CuII , and CuIII and $\mathrm{CuIV}(z / c=1.000)$.
Typical paths connecting two Cu ions, between which the direct distance is shown in the spuare brackets, of these superexchange interactions are as follows:

$$
\begin{array}{ll}
J_{1}: \mathrm{CuIV}-\mathrm{O}(\mathrm{IV}-1)-\mathrm{Bi}(\text { III 3IV } 1)-\mathrm{O}(\mathrm{II}-1)-\mathrm{CuII} & {[0.291 \mathrm{~nm}]} \\
J_{2}: \mathrm{CuI}-\mathrm{O}(\mathrm{I}-3)-\mathrm{Bi}(\text { III } 3 \mathrm{~V} 1)-\mathrm{O}(\mathrm{IV}-1)-\mathrm{CuIV} & {[0.608 \mathrm{~nm}]} \\
J_{3}: \mathrm{CuIV}-\mathrm{O}(\mathrm{IV}-1)-\mathrm{Bi}(\text { III } 3 \mathrm{IV} 1)-\mathrm{O}(\mathrm{III}-3)-\mathrm{CuIII} & {[0.664 \mathrm{~nm}]} \\
J_{1}: \mathrm{CuI}-\mathrm{O}(\mathrm{I}-3)-\mathrm{Bi}(\text { III } 3 \mathrm{VV} 1)-\mathrm{O}(\mathrm{II}-1)-\mathrm{CuII} & {[0.713 \mathrm{~nm}]}
\end{array}
$$

Table 2. Bond-length and bond-angles in the paths of four types of superexchange interaction

| $J_{1}$ | ```ion bond-length (in nm) bond-angle (Cu-O-Bi) bond-angle (O-Bi-O)``` | CuIV |  |
| :---: | :---: | :---: | :---: |
| $J_{2}$ | ion <br> bond-length (in nm) <br> bond-angle ( $\mathrm{Cu}-\mathrm{O}-\mathrm{Bi}$ ) <br> bond-angle ( $\mathrm{O}-\mathrm{Bi}-\mathrm{O}$ ) | Cu I |  |
| $J_{3}$ | ion <br> bond-length (in nm) <br> bond-angle ( $\mathrm{Cu}-\mathrm{O}-\mathrm{Bi}$ ) <br> bond-angle ( $\mathrm{O}-\mathrm{Bi}-\mathrm{O}$ ) | $\mathrm{CuIV}$ |  |
| $J_{4}$ | ion <br> bond-length (in nm) <br> bond-angle ( $\mathrm{Cu}-\mathrm{O}-\mathrm{Bi}$ ) <br> bond-angle ( $\mathrm{O}-\mathrm{Bi}-\mathrm{O}$ ) | $\mathrm{CuI}$ |  |

From the data given in Table 1, we have estimated the bond-length and bondangles of the four paths above as shown in Table 2.

It should be noticed that the $\mathrm{O}-\mathrm{Bi}-\mathrm{O}$ angle in $J_{4}$ is near $180^{\circ}$ and ones in other $J$ 's are near $90^{\circ}$ as already pointed out by Ain et $\mathrm{al}^{4}$. So, we expect for $J_{4}$ to be most essential.

## 3 Formulation



Fig. 2. Arrangement of $\mathrm{Cu}^{2+}$ ions and exchange interactions between them.

The exchange energy $E$ of a crystal lattice, whose unit cell contains several magnetic ions, can be written as

$$
\begin{equation*}
E=-\sum_{m n} \sum_{\alpha \beta} 2 J\left(R_{m \alpha, n \beta}\right) S_{m \alpha} \cdot S_{n \beta}, \tag{1}
\end{equation*}
$$

where $R_{m \alpha, n \beta} \equiv R_{m \alpha}-R_{n \beta}, S_{m \alpha}$ is the classical spin vector of the $\alpha$-th magnetic ion in the unit cell and $R_{m \alpha}$ its position. We assume the same magnitude $S$ for the spin vectors of all magnetic ions in the unit cell. Using the Fourier transformation of $J\left(R_{m \alpha, n \beta}\right)$ and $S_{m \alpha}$

$$
\begin{align*}
& C_{\alpha \beta}(q)=-\sum_{m} J\left(R_{m \alpha, n \beta}\right) \exp \left(\mathrm{i} q \cdot R_{m \alpha, n \beta}\right)  \tag{2}\\
& \sigma_{q \alpha}=\frac{1}{N S} \sum_{m} S_{m \alpha} \exp \left(-\mathrm{i} q \cdot R_{m \alpha}\right), \tag{3}
\end{align*}
$$

where $N$ is the number of unit cells, eq. (1) becomes

$$
\begin{equation*}
\frac{E}{N S^{2}}=\sum_{q} \sum_{\alpha} \sum_{\beta} C_{\alpha \beta}(q) \sigma_{q \alpha} \cdot \sigma_{-q \beta} \tag{4}
\end{equation*}
$$

Our problem is to look for the lowest minimum of the exchange energy given by (4) subject to the condition

$$
\begin{equation*}
S_{m \alpha}^{2}=S^{2} \text { for all } m \text { and } \alpha \tag{5}
\end{equation*}
$$

This condition can be written as

$$
\begin{align*}
& \sum_{q} \sigma_{q, \alpha} \cdot \sigma_{-q, \alpha}=1  \tag{6a}\\
& \sum_{q} \sigma_{q, \alpha} \cdot \sigma_{q^{\prime}-q, \alpha}=0 \quad \text { for all } q^{\prime} \neq 0 \tag{6b}
\end{align*}
$$

Minimizing $E / N S^{2}$ of eq. (4) under the condition (6a), we have the eigenvalue equaiton:

$$
\begin{equation*}
\sum_{\alpha} C_{\alpha \beta}(q) \sigma_{q \alpha}=\lambda \sigma_{q \beta}, \tag{7}
\end{equation*}
$$

where $\lambda$ represents the Lagrange multiplier.
If we take a spin configuration represented by a pair of inequivalent wave vectors $q$ and $-q$, namely $q \neq 0$ or $q \neq K / 2$ ( $K$ being a reciprocal lattice vector), and take
account of condition (6b), then we have

$$
\begin{equation*}
\sigma_{q \alpha}=\frac{1}{2}(\vec{i}-\mathrm{i} \vec{j}) u_{q \alpha} \tag{8}
\end{equation*}
$$

where $\vec{i}$ and $\vec{j}$ are orthogonal unit vectors which are independent of $\alpha$, and from eq. (6a) $\left|u_{q, \alpha}\right|=1$. When $q$ and $-q$ are equivalent to each other, $q=0$ or $q=K / 2, \sigma_{q \alpha}$ takes the form

$$
\begin{equation*}
\sigma_{q a}=\vec{k} u_{q a} \tag{9}
\end{equation*}
$$

where $\vec{k}$ is unit vector and $\left|u_{q, \alpha}\right|=1$. The ratio of $u_{q \alpha}$ and $u_{q \beta}$ is determined from the equation similar to (7), i.e. from

$$
\begin{equation*}
\sum_{\alpha} C_{\alpha \beta}(q) u_{q \alpha}=\lambda u_{q \beta} . \tag{10}
\end{equation*}
$$

Now, we apply the above method to the case of $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ and discuss the spin arrangement of this compound. Two kinds of magnetic ions are contained in the unit cell and they are noted as 1 and 2 . 1 represents ion at the corner corresponding to $\mathrm{Cu}_{\mathbb{W}}$ and $\mathrm{Cu}_{\text {II }}$ in Fig .2 and 2 that at the deviated centre corresponding to $\mathrm{Cu}_{\text {III }}$ and $\mathrm{Cu}_{\text {I }}$. If we take into account the four types of superexchange interaction, $J_{1}, J_{2}, J_{3}$ and $J_{4}$ as shown in Fig.2, the matrix $\left\{C_{\alpha \beta}(q)\right\}$ becomes

$$
\left.\begin{array}{rl}
C_{11}(q)=C_{22}(q)= & -2 J_{1} \cos \frac{c}{2} q_{z} \\
C_{12}(q)=C_{21}{ }^{*}(q)= & -4 \exp \left(-\mathrm{i} \delta c q_{z}\right) \cos \frac{a}{2} q_{x} \cos \frac{a}{2} q_{\nu} \times  \tag{11}\\
& \times\left[J_{2} \exp \left(\mathrm{i} \frac{1}{4} c q_{z}\right)+J_{3} \exp \left(-\mathrm{i} \frac{1}{4} c q_{z}\right)+J_{4} \exp \left(\mathrm{i} \frac{3}{4} c q_{z}\right)\right]
\end{array}\right\}
$$

where $\delta=0.092$ and $\delta c$ denotes the deviation of the position of $\mathrm{Cu}_{\text {III }}$ or $\mathrm{Cu}_{\mathrm{I}}$ from the body centre position. In this case, the eigenvalue equation (10) is given by

$$
\left|\begin{array}{cc}
C_{11}(q)-\lambda & C_{21}(q)  \tag{12}\\
C_{12}(q) & C_{22}(q)-\lambda
\end{array}\right|=0 .
$$

By solving this equation the lower value of $\lambda$ is obtained as

$$
\begin{align*}
\lambda= & C_{11}(q)-\left|C_{12}(q)\right| \\
=- & 2 J_{I} \cos \frac{c}{2} q_{z} \mp 4 \cos \frac{a}{2} q_{x} \cos \frac{a}{2} q_{y} \times \\
& \times \sqrt{J_{2}^{2}+J_{3}^{2}+J_{4}^{2}+2 J_{2} J_{3} \cos \frac{c}{2} q_{z}+2 J_{2} J_{4} \cos \frac{c}{2} q_{z}+2 J_{3} J_{4} \cos \left(c q_{z}\right)} \tag{13}
\end{align*}
$$

As for the double sign of eq. (13) we must take $-\operatorname{sign}$ in the case of $\cos \frac{a}{2} q_{x} \cos \frac{a}{2} q_{y}$ $>0$, and $+\operatorname{sign}$ in the case of $\cos \frac{a}{2} q_{x} \cos \frac{a}{2} q_{y}<0$.

The ratio of $u_{q 1}$ and $u_{q 2}$ is determined by

$$
\begin{equation*}
\frac{u_{q 1}}{u_{q 2}}=\frac{C_{21}(q)}{C_{1 I}(q)-\lambda} . \tag{14}
\end{equation*}
$$

If we consider the case $q_{x}=q_{y}=0$, the ratio is given by

$$
\begin{equation*}
\frac{u_{q 1}}{u_{q 2}}=-\frac{\exp (\mathrm{i} \delta c q)\left\{J_{2} \exp (-\mathrm{i} c q / 4)+J_{3} \exp (\mathrm{i} c q / 4)+J_{4} \exp (-\mathrm{i} 3 c q / 4)\right\}}{\sqrt{J_{2}{ }^{2}+J_{3}{ }^{2}+J_{4}{ }^{2}+2 J_{2} J_{3} \cos (c q / 2)+2 J_{2} J_{4} \cos (c q / 2)+2 J_{3} J_{4} \cos (c q)} . . . . ~ . ~} \tag{15}
\end{equation*}
$$

The spin vector of the 1 st ion ( $\mathrm{Cu}_{\text {II }}$ ion) and that of the 2 nd ion ( $\mathrm{Cu}_{\mathrm{III}}$ ion) are respectively given by

$$
\begin{align*}
& S_{\mathrm{II}}=S \sigma_{q 1} \exp \left(\mathrm{i} q \cdot R_{\mathrm{II}}\right)=\frac{S}{2} u_{q 1} \exp \left(\mathrm{i} q \cdot R_{\mathrm{II}}\right)  \tag{16}\\
& S_{\mathrm{III}}=S \sigma_{q_{2}} \exp \left(\mathrm{i} q \cdot R_{\mathrm{II}}\right)=\frac{S}{2} u_{q 2} \exp \left(\mathrm{i} q \cdot R_{\mathrm{III}}\right)
\end{align*}
$$

Then, the relative angle $\theta$ of $S_{\text {II }}$ and $S_{\text {III }}$ is expressed as

$$
\begin{align*}
& \exp (\mathrm{i} \theta)=\frac{S_{\mathrm{II}}}{S_{\mathrm{III}}}=\frac{u_{q 1}}{u_{q 2}} \exp \left\{\mathrm{i} q\left(R_{\mathrm{II}}-R_{\mathrm{II}}\right)\right\}=\frac{u_{q 1}}{u_{q 2}} \exp \left\{\mathrm{i} q\left(\frac{1}{4}-\delta\right) c\right\} \\
& \quad=\frac{J_{2}+J_{3} \exp (\mathrm{i} c q / 2)+J_{4} \exp (-\mathrm{i} c q / 2)}{\sqrt{J_{2}{ }^{2}+J_{3}{ }^{2}+J_{4}{ }^{2}+2 J_{2} J_{3} \cos (c q / 2)+2 J_{2} J_{4} \cos (c q / 2)+2 J_{3} J_{4} \cos (c q)}} . \tag{17}
\end{align*}
$$

Judging from the superexchange path (see $\S 2$ ), we assume that $J_{t}$ is most important and negative. Then, we introduce reduced energy and reduced parameters as follows:

$$
\begin{equation*}
\frac{\lambda}{4\left|J_{4}\right|}=\varepsilon, \quad \frac{J_{1}}{\left|J_{4}\right|}=j_{t}, \quad \frac{J_{2}}{\left|J_{4}\right|}=j_{2}, \quad \frac{J_{3}}{\left|J_{4}\right|}=j_{3} \tag{18}
\end{equation*}
$$

The reduced energy is written as

$$
\begin{align*}
& \varepsilon=-\frac{1}{2} j_{1} \cos \frac{c}{2} q_{z} \mp \cos \frac{a}{2} q_{x} \cos \frac{a}{2} q_{y} \times \\
& \times \sqrt{1+j_{2}{ }^{2}+j_{3}{ }^{2}-2 j_{2}\left(1-j_{3}\right) \cos \frac{c}{2} q_{z}-2 j_{3} \cos \left(c q_{z}\right)} . \tag{19}
\end{align*}
$$

By differentiating $\varepsilon$ with respect to $q_{x}, q_{y}$ and $q_{z}$, we obtain the following relations:

$$
\begin{align*}
& \sin \frac{a}{2} q_{x} \cos \frac{a}{2} q_{y} \sqrt{1+j_{2}{ }^{2}+j_{3}{ }^{2}-2 j_{2}\left(1-j_{3}\right) \cos \frac{c}{2} q_{z}-2 j_{3} \cos \left(c q_{z}\right)}=0, \\
& \cos \frac{a}{2} q_{x} \sin \frac{a}{2} q_{y} \sqrt{1+j_{2}{ }^{2}+j_{3}{ }^{2}-2 j_{2}\left(1-j_{3}\right) \cos \frac{c}{2} q_{z}-2 j_{3} \cos \left(c q_{z}\right)}=0,  \tag{20}\\
& \sin \frac{c}{2} q_{z}\left[j_{1}-\frac{ \pm \cos \left(a q_{x} / 2\right) \cos \left(a q_{v} / 2\right) \times 2\left\{j_{2}\left(1-j_{3}\right)+4 j_{3} \cos \left(c q_{z} / 2\right)\right\}}{\sqrt{1+j_{2}^{2}+j_{3}{ }^{2}-2 j_{2}\left(1-j_{3}\right) \cos \left(c q_{z} / 2\right)-2 j_{3} \cos \left(c q_{z}\right)}}\right]=0 .
\end{align*}
$$

The wave vector of the spin arrangement of possible stable states are obtained as $(0,0,0),(0,0,2 \pi / c),(\pi / a, \pi / a, 0),(\pi / a, \pi / a, 2 \pi / c)$ and $(0,0, q)$ where $q$ satisfies the following equation:

$$
\begin{equation*}
j_{1}=\frac{2\left\{j_{2}\left(1-j_{3}\right)+4 j_{3} \cos (c q / 2)\right\}}{\sqrt{1+j_{2}{ }^{2}+j_{3}{ }^{2}-2 j_{2}\left(1-j_{3}\right) \cos (c q / 2)-2 j_{3} \cos (c q)}} . \tag{21}
\end{equation*}
$$

The reduced exchange energy $\varepsilon$ of these five states are given by

$$
\begin{align*}
\varepsilon_{1} & \equiv \varepsilon(0,0,0)=-\frac{1}{2} j_{1}-\left|j_{2}+j_{3}-1\right|  \tag{22a}\\
\varepsilon_{2} & =\varepsilon(0,0,2 \pi / c)=\frac{1}{2} j_{1}-\left|j_{2}-j_{3}+1\right|  \tag{22b}\\
\varepsilon_{3} & =\varepsilon(\pi / a, \pi / a, 0)=-\frac{1}{2} j_{1}  \tag{22c}\\
\varepsilon_{4} & =\varepsilon(\pi / a, \pi / a, 2 \pi / c)=\frac{1}{2} j_{1}  \tag{22d}\\
\varepsilon_{5} & =\varepsilon(0,0, q) \\
& =-\frac{1}{2} j_{1} \cos \frac{c}{2} q-\sqrt{1+j_{2}{ }^{2}+j_{3}{ }^{2}-2 j_{2}\left(1-j_{3}\right) \cos \frac{c}{2} q-2 j_{3} \cos (c q)} \tag{22e}
\end{align*}
$$

Using $j_{l}, j_{2}$ and $j_{3}$ defined by eq.(18), eq.(17) is written as

$$
\begin{equation*}
\exp (\mathrm{i} \theta)=\frac{j_{2}+j_{3} \exp (\mathrm{i} c q / 2)-\exp (-\mathrm{i} c q / 2)}{\sqrt{1+j_{2}^{2}+j_{3}^{2}-2 j_{2}\left(1-j_{3}\right) \cos (c q / 2)-2 j_{3} \cos (c q)}} \tag{23}
\end{equation*}
$$

In the special cases of $q=(0,0,0)$ and $q=(0,0,2 \pi / c)$, the relative angles $\theta$ of spin 1 and 2 are determined from the following relations:
$\exp (\mathrm{i} \theta)=\frac{j_{2}+j_{3}-1}{\sqrt{1+j_{2}{ }^{2}+j_{3}{ }^{2}+2 j_{2} j_{3}-2\left(j_{2}+j_{3}\right)}}=\frac{j_{2}+j_{3}-1}{\left|j_{2}+j_{3}-1\right|}$ for $q=(0,0,0)$
$\exp (\mathrm{i} \theta)=\frac{j_{2}-j_{3}+1}{\sqrt{1+j_{2}{ }^{2}+j_{3}{ }^{2}-2 j_{2} j_{3}+2\left(j_{2}-j_{3}\right)}}=\frac{j_{2}-j_{3}+1}{\left|j_{2}-j_{3}+1\right|} \quad$ for $q=(0,0,2 \pi / c)$.

## 4 Phase diagram

By comparing the energy of each spin arrangement, we construct the phase diagram as a function of exchange parameterers $j_{1}, j_{2}$ and $j_{3}$. Apparently $\varepsilon_{1}<\varepsilon_{3}$ unless $j_{2}=1-j_{3}$, and $\varepsilon_{2}<\varepsilon_{4}$ unless $j_{2}=-1+j_{3}$. This means that the lowest energy state has $q_{x}=q_{y}=0$, then all spins in a $c$-plane are parallel as observed. So we consider only $\varepsilon_{1}, \varepsilon_{2}$ and $\varepsilon_{5}$. From the comparison of $\varepsilon_{1}$ and $\varepsilon_{2}$ we have four regions in $\left(j_{2}, j_{1}\right)$ plane. The four regions, together with the lowest energy and the angle $\theta$ given by eq.(24) in each region, are summarized as follows:

In the case of $j_{3} \leqq 1$ :
region 1: $j_{1}>2\left(1-j_{3}\right), j_{2}>1-j_{3} ; \varepsilon_{1}=-\frac{1}{2} j_{1}-\left(j_{2}+j_{3}-1\right) ; \theta=0$
region 2: $j_{1}>-2\left(1-j_{3}\right), j_{2}<1-j_{3}, j_{1}>2 j_{2} ; \varepsilon_{1}=-\frac{1}{2} j_{1}+\left(j_{2}+j_{3}-1\right) ; \theta=\pi$


Fig. 3. Four regions in $\left(j_{2}, j_{1} / 2\right)$ plane.
(a) $j_{3}<1$
(b) $j_{3}>1$
region 3: $\quad j_{1}<-2\left(1-j_{3}\right), j_{2}<-\left(1-j_{3}\right) ; \varepsilon_{2}=\frac{1}{2} j_{1}+\left(j_{2}-j_{3}+1\right) ; \theta=\pi$
region 4: $\quad j_{1}<2\left(1-j_{3}\right), j_{2}>-\left(1-j_{3}\right), j_{1}<2 j_{2} ; \varepsilon_{2}=\frac{1}{2} j_{1}-\left(j_{2}-j_{3}+1\right) ; \theta=0$
Four regions in the case of $j_{3}<1$ are shown in Fig.3(a).
In the case of $j_{3} \geqq 1$ :
region 1: $j_{1}>2\left(1-j_{3}\right), j_{2}>1-j_{3}, j_{1}>-2 j_{2} ; \varepsilon_{1}=-\frac{1}{2} j_{1}-\left(j_{2}+j_{3}-1\right) ; \theta=0$
region 2: $j_{1}>-2\left(1-j_{3}\right), j_{2}<1-j_{3} ; \varepsilon_{1}=-\frac{1}{2} j_{1}+\left(j_{2}+j_{3}-1\right) ; \theta=\pi$
region 3: $j_{1}<-2\left(1-j_{3}\right), j_{2}<-\left(1-j_{3}\right), j_{1}<-2 j_{2} ; \varepsilon_{2}=\frac{1}{2} j_{1}+\left(j_{2}-j_{3}+1\right) ; \theta=\pi$
region 4: $\quad j_{1}<2\left(1-j_{3}\right), j_{2}>-\left(1-j_{3}\right) ; \varepsilon_{2}=\frac{1}{2} j_{1}-\left(j_{2}-j_{3}+1\right) ; \theta=0$
Four regions in the case of $j_{3}>1$ are shown in Fig. 3(b).
Next we compare $\varepsilon_{1}$ or $\varepsilon_{2}$ in each region with $\varepsilon_{5}$ of double helical spin arrangement. In the cases of $q=(0,0,0$,$) and q=(0,0,2 \pi / \mathrm{c}), \varepsilon_{5}$ of eq. (22e) becomes

$$
\begin{align*}
& \varepsilon_{5}(q=0)=-\frac{1}{2} j_{1}-\left|j_{2}+j_{3}-1\right| \\
& \varepsilon_{5}(q=2 \pi / c)=\frac{1}{2} j_{1}-\left|j_{2}-j_{3}+1\right| \tag{25}
\end{align*}
$$

Therefore $\varepsilon_{5}(q=0)$ equals $\varepsilon_{1}$ in the regions 1 and 2 , and $\varepsilon_{5}(q=(0,0,2 \pi / c))$ equals $\varepsilon_{2}$ in the regions 3 and 4 . From these results we have found that in each region the boundary curve between the double helical spin arrangement and collinear spin


Fig. 4. Phase diagram for the case of $j_{3}=0$.
Shaded region represents the phase with double helical spin arrangement. Four types of collinear spin arrangement, specified by the wave vector $\vec{q}$ and the relative angle $\theta$ between $C u_{n}$ spin and Cuili spin, are described schematically. On the dotted line in the shaded region, the double helical spin arrangement with $q=(0,0, \pi / c)$ is realized.
arrangement is given by eq. (21) with $q=0$ or $q=2 \pi / c$. Then boundary curves are

$$
\begin{align*}
& j_{1}=\frac{2 j_{2}\left(1-j_{3}\right)+8 j_{3}}{j_{2}-\left(1-j_{3}\right)}=\frac{2\left(1+j_{3}\right)^{2}}{j_{2}-\left(1-j_{3}\right)}+2\left(1-j_{3}\right) \quad \text { in region 1 }  \tag{26a}\\
& j_{1}=-\frac{2 j_{2}\left(1-j_{3}\right)+8 j_{3}}{j_{2}-\left(1-j_{3}\right)}=-\frac{2\left(1+j_{3}\right)^{2}}{j_{2}-\left(1-j_{3}\right)}-2\left(1-j_{3}\right) \quad \text { in region 2 }  \tag{26b}\\
& j_{1}=-\frac{2 j_{2}\left(1-j_{3}\right)-8 j_{3}}{j_{2}+\left(1-j_{3}\right)}=\frac{2\left(1+j_{3}\right)^{2}}{j_{2}+\left(1-j_{3}\right)}-2\left(1-j_{3}\right) \quad \text { in region 3 }  \tag{26c}\\
& j_{1}=\frac{2 j_{2}\left(1-j_{3}\right)-8 j_{3}}{j_{2}+\left(1-j_{3}\right)}=-\frac{2\left(1+j_{3}\right)^{2}}{j_{2}+\left(1-j_{3}\right)}+2\left(1-j_{3}\right) \quad \text { in region 4 } \tag{26~d}
\end{align*}
$$

In ( $j_{2}, j_{1}$ ) plane, each boundary curve represents a hyperbola.
Asymptotic lines of the hyperbola of (26a) are the boundaries between regions 1 and 2 , and 1 and 4 , respectively. Those of (26b) are between regions 2 and 3 , and 2 and 1 , those of (26c) are between regions 3 and 4 , and 3 and 2, and those of ( 26 d ) are between regions 4 and 1 , and 4 and 3 . The line $j_{1}=2 j_{2}$ crosses the hyperbolae of eq. (26b) and (26d) at $j_{2}= \pm 2 \sqrt{\left|j_{3}\right|}$ in the case of $j_{3}<0$. In the region surrounded by these branches of hyperbolae and separated by the segment connecting $\left(2 \sqrt{\left|j_{3}\right|}, 4 \sqrt{\left|j_{3}\right|}\right)$ and $\left(-2 \sqrt{\left|j_{3}\right|}\right.$, $\left.-4 \sqrt{\left|j_{3}\right|}\right)$, a double helical spin arrangement is most stable. The phase diagram for the case of $j_{3}=0$ is shown in Fig.4. Fig. 5 (a) $\sim(f)$ show the phase diagram for the cases of $j_{3}=-0.09,-0.25,-0.5,-1,-1.5$ and -1.7 , respectively. In the shaded region the double helical spin arrangement is realized. Here it should be noted that the introduction of negative $j_{3}$ enlarges the collinear region 2 with $(q=0, \theta=\pi)$ and 4 with ( $q=2 \pi / \dot{c}, \theta=0$ ), and reduces the collinear region 1 with ( $q=0, \theta=0$ ) and 3 with ( $q=$ $2 \pi / c, \theta=\pi$ ). This result is resonable because negative $j_{3}$ is favourable to antiferromagnetic arrangement between $\mathrm{Cu}_{\text {IV }}$ and $\mathrm{Cu}_{\text {III }}$ or $\mathrm{Cu}_{\text {II }}$ and $\mathrm{Cu}_{1}$. Also, the introduction of negative $j_{3}$ narrows remarkably the region of the double helical spin arrangemnt, and for $j_{3}=-1$ the bouble helical region venishes completely as shown in


Fig. 5. Phase diagram for the cases of (a) $j_{3}=-0.09$, (b) $j_{3}=-0.25$, (c) $j_{s}=-0.5$, (d) $j_{3}=-1$, (e) $j_{3}=-1.5$ and (f) $j_{3}=-1.7$.

Shaded regions are with the double helical spin arrangement. For $j_{3}=-1$, the double helical region vanishes completely. The point $x$ in (a) corresponds to the values of the exchange parameters estimated by: Aïn et al, $j_{1} / 2=-0.18, j_{2}=\div 0.32$ and $j_{3}=-0.09$.


Fig. 6.


Fig. 8.


Fig. 7.

Fig. 6. Phase diagram for the case of $j_{3}=0.5$, shaded region being with double helical spin arrangement.
Fig. 7. Phase diagram for the case of $j_{3}=1.0$, shaded region being with double helical spin arrangement.
Fig. 8. Phase diagram for the case of $j_{3}=1.5$, shaded region being with double helical spin arrangement.

Fig. 5(d). For $j_{3}<-1$, the double helical region appears again and enlarges if the absolute value of $j_{3}$ increases. The line $j_{1}=2 j_{2}$ crosses the hyperbolae of eq. (26b) and (26d) at $j_{2}= \pm 2 \sqrt{\left|j_{3}\right|}$. In the region surrounded by the branches of hyperbolae (26a), (26b) and (26d), and the region surrounded by the branches of hyperbolae (26c), (26b) and (26d), which are separated from each other by the segment connecting ( $2 \sqrt{\left|j_{3}\right|}$, $\left.4 \sqrt{\left|j_{3}\right|}\right)$ and $\left(-2 \sqrt{\left|j_{3}\right|},-4 \sqrt{\left|j_{3}\right|}\right)$, a double helical spin arrangement is realised.

The values of $J$ 's estimated by Ain et al $^{4}$ ) from their own neutron scattering data correspond to $j_{1}=-0.36, j_{2}=-0.32$ and $j_{3}=-0.09$, and the corresponding point marked by $\times$ in Fig. 5(a) lies in the collinear region 2.

Next we consider the case of $0 \leqq j_{3} \leqq 1$. In this case the line $j_{I}=2 j_{2}$ has no crossing point with the hyperbolae given by eq.(26b) and (26d). Then the double helical region is enlarged if $j_{3}$ increases toward 1 . Also, by introducing positive $j_{3}$ less than 1 , the
collinear region 1 with ( $q=0, \theta=0$ ) and 3 with ( $q=2 \pi / c, \theta=\pi$ ) are slightly expanded, region 2 with ( $q=0, \theta=\pi$ ) and 4 with ( $q=2 \pi / c, \theta=0$ ) are reduced, and the double helical region is largely expanded. The phase diagram for the case of $j_{3}=0.5$, as an example, is shown in Fig. 6. Fig. 7 shows the phase diagram for the case of $j_{3}=1$.

Finally we consider the case of $j_{3}>1$. In Fig. 8 we show the phase diagram for the case of $j_{3}=1.5$, as an example. When $j_{3}$ increases, the collinear region 2 with ( $q=0, \theta$ $=\pi$ ) and 4 with ( $q=2 \pi / c, \theta=0$ ) are reduced, region 1 with ( $q=0, \theta=0$ ) and 3 with ( $q$ $=2 \pi / c, \theta=\pi$ ) are slightly expanded, and the double helical region enlarges remarkably.

## References

[1] J. P. Attfield : J. Phys. Condens. Matter 1 (1989) 7045-7053.
[2] E. W. Ong, G. H. Hwei, R. A. Robinson, B. L. Ramakrishna and R. B. Von Dreele : Phys. Rev. B 42 (1990) 4255-4262.
[3] K. Yamada, K. Takada, S. Hosoya, Y. Watanabe, Y. Endoh, N. Tomonaga, T. Suzuki, T. Ishigaki, T. Kamiyama, H. Asano and F. Izumi : J. Phys. Soc. Jpn. 60 (1991) 2406-2414.
[4] M. Ain, G. Dhalenne, O. Guiselin, B. Hennion, A. Revcolevschi ; Phys. Rev. B 47 (1993) 81678171
[5] H. Ohta, K. Yoshida, T. Matsuya, T. Nanba, M. Motokawa, K. Yamada, Y. Endoh and S. Hosoya : J. Phys. Soc. Jpn. 61 (1992) 2921-2929.


[^0]:    * Present adress : Faculty of Engineering, Gumma University, Kiriu 376, Japan
    ** Present adress : Department of Physics, Faculty of Science, Okayama University of Science, Okayama 700, Japan

