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                               Abstract

   We reexamine formulas for the Coulomb effects on the pion interferometry given

by Pratt in 1986, and derive several correct formulas. Analytic expressions for this

effect, i.e., the Coulomb correction to the Bose-Einstein correlations, are presented.

Several numerical computations are shown.

Introduction : The study of the Bose-Einstein correlations (BEC) on pions and kaons

is one of current problems. Recently the authors of NA44 experiment [1] have

mentioned a paper on the Coulomb correction to the BEC [2]. However, since there is

difference concerning treatments of the Gamow factor between Refs. [1, 2], we are

interested in this subject and reexamine several formulas given in Ref. [2]. We have

recognized that those formulas given by Pratt are very useful, and found that there are

a few improper expressions in Eq. (3.13) of Ref. [2].

   In the second paragraph, we recalculate several formulas in Ref.[2], and show

numerical results. In the third paragraph, to consider the problem about the different

treatments of the Gamow factor in Refs. [l, 2], we recalculate the BEC with the

Coulomb correction and show numerical results. Concluding remarks are presented in

the final paragraph.

Recalculation of formulas by Pratt : First of all we write down the Coulomb relative

wave function [3]:

        alr(q, r) ==P(l +i7)envt2eiq'i' tp(-i7, 1, iqr(1 -cos 0)),

where 7:=mev/2q, and ¢ is the confluent hypergeometric function :

                                    co
         ¢(-i7, 1, iqr(1 -cos 0)) == 1 +:(-i7)(1 -i7)
                                   n=1

(1)
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                                (zix )n
                  ･･････(n- 1 - i7)                                                                   (2)                               (n !)2,

            r( 1 ÷ i7)r"( 1 +i7) == rrr/siph(rr7), .
                                           '
where x= qr(1-cosO). We use the following approximation for ¢, because of the

usefulness [2]. The function ¢ can be expanded in powers of 7. To the first order in

7･

                                                                  '
         ¢(mi7, 1, ix)== 1'-i- 7Si(x)-i7(Ci(x)-C-In(x)), ' (3)
         si(x)-.=e=e,(,.(.-,i)l."(Xi"-,i-,), '

         Ci(x) rm C-In(x) = ,l;.i, ((2-.)1!)iZ2X.2n) ,

where Si(x) and Ci(x) are the sine and cosine integral, respectively. C is the Euler's

number. After the angular integration in 0, we have the following expressions which

correspond to Eq. (3.13) [2]. Notice that the second integrand is different from that of

Ref. [2], and different arguments in Si(x), and Ci(x)-ln(x) from Eq. (3.13)[2] :

         A(q)=rdO04ap(r)r2dr [1+27{F(2qr)] ･ i

         '' ''=1+6ic,' '' (4)
         F(2qr) = ,l .., (2.+ (IM) !1()2 n.(lqlr ))l(i2'.i, + 2 ) .

         h (q) = Zl e04 ng(r) r2 dr( Si"iq2rqr) . . .

               +7[COSiq2.qr)(ci(2qr)-c-in'(2qr))+Si"iq2.qr) si(2qr)]1, (s)

     '                            '
where g(r) is the source function. Since in the present paper the Gaussian source

function is assumed, we have to pay our attention to mathematical property of the

Gaussian source functions: . . .
                                              '         p(ri)p(r2) i= (2rr)i3i2R3 exp(- 2ri2) (2z)i3i2R3 exp(ur 21il2)

                  ; (2n)3i2(iR/v2)3 exp(L RRC2S" ) (2n)3tiv2R)3 exp (- 4rR22)

                  :g(Rc.)g(r)- ' (6)
In the derivation of 4(q), we take the leading terms of the following integrations (with

A=2Pr), according to [2]: . '' . '
         @(2n÷ 1)=ll(1-cos O)2""cos (Acos 0) dcos O, (7)

                2sinA -         @(1)= A ,

               23sinA                       12cosA 12sinA         @(3)= A+ A2 A3 ,
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------    '
e(2n+ 1 )ieadtng m- 22"'htmA ,

                                     '
e(2n) =i .Ll( i ±cos e)2n sin(Acos o)dcos o,

@(2)=22c&sA 22trn,A,

@(4)..2`ci;tsA 25trn,A'-3e2iltc,osA+3e2A`c,osA,

------    '
@(2n) ieading .,, 22"cAtsA .

(8)
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1. Numerical computations of Pratt formulas. The solid lines and dotted lines

  are reprQductiop of FIG. 2 of Ref, [2]. The solid lines are obtained by Eq. (3.

. ･13) of Ref. [2]with g(r):= (2rr)1,,,R, exp(-2ri?2,), The dotted lines are

  obtained by g(r) = (rr),1,,R, exp (- ftZ, ). R == 2, 4, 8 fm are used in (a), (b), and

  (c), respectively, They are coincided with FIG, 2 of Ref, [2]. The broken lines

                                                         1  are correct expressions in terms of Eqs. (4), (5) and (9) with g(r)=
                                                       (2n)3t2R3
  exp (- 2ri2)･
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Numerical computations in terms of Eqs, (4), (5), (6), (11), and (12), }lere we use

g(r)=
(2rr)3i21(v2R)3 exp(m4rR22), because of Eq. (6), The solid lines are

obtained by the exact expression of O(n). The broken lines are obtained by

making use of e(n)`eadi'ig, R=2, 4, and 16 fm are used in (a), (b), and (c),

respectively.

               results a Ia Pratt:The author of Ref. [2] has used the

     with the squared Gamow factor,

.P,rat` == G(q)2 [L(q)2+1>(q)2], (9)
 2rrr/(e2n'- 1). To confirm FIG. 2 in Ref. [2], we use Eq. (3.13) with the

   cpratt(fe =2q) == I?S.ra"/G(q)2. (Notice that FIG. 2 (a) and (c) in Ref. [2]

  The results are shown in FIG. 1. Indeed, our numerical computations

   2 in Ref. [2]. For the sal<e of comparisons, our new results in terms of

(6) and (9) with the same parameters are also superimposed in FIG. 1. Due

       1/(2n+2) in Eq. (4), the intercepts at fe=O (MeV/c) are smaller

      [2].

previous paragraph, the author of Ref.
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[2] has used the squared Gamow factor. However, the authors of Ref. [1] have used

the single Gamow factor [4]. By making use of a paper by Bowler [5], we obtain the

single Gamow factor. In other words, the single Gamow factor seems to be reasonable

[6, 7], because of property of the Coulomb wave function for the systern of the two

charged identical bosons [3]. Actually by making use of Eq. (1) and the following

symmetrized Coulomb wave function,

         Ws(q, r)=r(1+i7)ertrt2e-iq'i' ¢(-ir, 1, iqr(1+cos O)), (10)

we have the following improved formula for the exchange function, after the angular

integration in 0:

                                     '         h(q) =4rrygcog(r) r2ctht[ SiftA + 7(Sp(qr) +Cp(qr))),

             =E2B+SEc, (11)
where

         Sp(qr)- ,S.,(- i(),2h"t(¥r)),2g,'h@.(2,n)+ i),

                          '         Cp(qr) :'i..O, (- i i,2'h()q!r(),2£9(2n) .

In conclusion, we have the following formula :

         Rcc=G(q)[1+6ic+llbB+6Ec]･ (12)
To compare data corrected only by the Gamow factor with theoretical calcuiations, we

should consider the ratio as

         C(k=2a)=Rcc/G(q)

                 =(1 -iL 8ic+ SEc) [1+ 1+ ,Es, ZB+ 6.. ]･ (13)

It should be noticed that the normalization and an effective degree of coherence, i. e.,

the denominator of the ratio El]B/( 1 + 6ic+ 6Ec) is related to each other. We show our

results of the BEC with Coulomb corrections in FIG. 2. As is seen in FIG. 2. (b) and (c),

it should be noticed that the numerical results depend on the source size (R), through

@(n). In other words, there are discrepancies between contributions of the leding terms

@(n)teading and exact expressions of e(n), as the source size becomes large.

   To apply the above equation to data corrected by the Coulomb wave function [8],

we should modify the formula as :

                             Rcc         C(fe=24)[cc]=
                     [G(q)( 1 + 6ic+ 6Ec)]

                             E,B                    =1+ 1+6ic+ (SEc' (i4)
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The denominator of the radio E2B/( 1 +aib+ 6Ec) is also.playing the effective degree

of coherence.･

Concluding remarks : We reexamine several fomulas in Ref. [2].,Moreover, we obtain

several improved formulas for Coulomb correction to the BEC, by the use of the

approximation of the first order of 7. These formulas can be used in analyses of the

BEC in which the final state intera6tions excluding the Coulomb effects are weak.
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