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                               Abstract

   Magnetic excitations in the antiferromagnetic Bi2Cu04 (TN=42K) are

investigated on the basis of anisotropic exchange interaction between spins of Cu2'

ions. We calculate the dispersion curves and evaluate the intensity of the inelastic

neutron scattering by spin wave excitations. The results are discussed in connection

with observations. Spin contraction at OK, temperature dependence of the sublattice

magnetization and field dependence of the antiferromagnetic resonance frequency are

calculated. Furthermore, the effect of spin wave interaction on the spin wave

dispersions is investigated in the framework of the random phase approximation.

1 Introduction

   The discovery of the high temperature oxide superconductors has led to increasing

interest in studies of the physical properties of CuO-based rnaterials. Among the vast

group of Cu-based materiais, Bi2Cu04 attracts special attention because of its

interesting crystal structure and magnetic properties. Bi2Cu04 belongs to the

tetragonal space group P4/ncc. In this compound Cu04 units, one of which consists of

a square of O ions and a Cu2' ion at the center, are stacked along the c-axis in a

staggered manner, but in the c-plane two adjacent Cu04 units are separated with each

other by an intervened Bi cation. Only Cu2' cations are illustrated in Fig. 1 . The

antiferromagnetic 3-dimensional Iong range order was confirmed below TN ==42K by

neutron diffraction measurements.i) As shown in Fig. 1 magnetic moments aiign

ferromagnetically along the c-axis and antiferromagnetically between corner sites and

inter sites. The easy direction lies in the c-plane.

   Up to now this compound has been intensively studied by various experiments. For

single crystal of Bi2Cu04 , Ohta et al.2) observed paramagnetic and antiferromagnetic

resonances and analyzed the observed results by using the molecular field model based
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on the anisotropic exchange Hamiltonian. With use of inelastic neutron scattering

measurements the spin wave excitation of this compound has been investigated

recently by two different groups. As for their results there is some controversy : Am

et al.3} reported the existence of a single doubly degenerate dispersion braneh, while

Furrer et al.`) found two branches with finite energy gaps at q =O.

   In the present paper, first the spjn wave djspersions are studied theoretically on the

basis of the anisotropic exchange interactions between spins of Cu2' ions. Spin

contra,ctioR at OK is estimated and temperature dependence of the sublattice

magnetization and field dependence of the antiferromagnetic resonance frequency are

calculated. Next the intensity of the inelastic neutron scattering due to the spin waves

is calculated and the results are compared with observations. Finally the effect of spin

wave interaction is investigated by taking account of fourth order terms in the

exchange Hamiltonian with respect to magnon operators.

2 Spin wave dispersion

   In the system of Cu2' ions the anisotropy energy of the one-ion type arising from

the crystalline electric field vanishes completely. Therefore, the anisotropic exchange

interaction plays an important role 'as the origin of the anisotropy energy. For the

antiferromagnetic Bi2Cu04 we adopt two sublattice (1 and 2) model and assume the

anisotropic exchange Hamiltonian as follows :

H= -2 Z [1iiiirSiXiSiit+(Aiiit+Diiiit)SriSrir+fiiiirS
   (i,it)Pair

-2 : [J2,j,･tSijSi･,+(fe2,･,･f+D22,･,･,)Si･Si,･,+h2j,･tS
   (J',j')Pair

- 2 :(fi2 i,･Sii Si･ + (fi2i,･ + Di2i,･) Si'i S2',･ + Ji2 i,･SiZi S2fl,･],

   i,J'
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]
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whereiand i' denote atomic sites in the sublattice1 and 1' and i' stand for those in the

sublattice 2. The notation Aiii, ca2j,v) represents the isotropic part of the coeflicient of

the exchange interaction between spins in the sublattice 1(2) and Dniif (a2j,v)

represents the remaining anisotropic part of the exchange interaction coefficient. The

y-direction is taken to be along the c-axis and the z-direction is parallel to the spin

direction in the c-Plane. Furthermore, Sii, for instance, stands for the x component of

the spin operator at the i-th site in the sublattice 1.

   The Hamiltonian given by eq. (1) can be written in terms of the spin deviation

operators, ai, a;, bj and bj defined by

         Sfi= S-a;･ ai

         s,+,=si,+ is,y, =: ns(i- ai' sai )i'2a, (2)

         Si-i= si,- isr,=nsa;. ( i - ai'sai)i'2

   and

         S,fl,･ =-S+ b, b,

         si,･=si,･+ isi,.= ns b, (1- bstsbJ･ )ii2 ･(3)

         Si･ = Si - is,y,･ = ns( 1 - bi･ sbj )i,2 b,.

   We perform Fourier transformations :

         aq = thf i.,aiexP(- iqe ri) at -- thiF i,{].,al･ exp(iqe ri)

         L)q= tt;.,,bjexP(- iq"i:,･) btq= th7,.,bj exp(iqer,･) (4)

   and

         fii(q)= Z fiiiitexp(-iqe(ri-rit))=f22(q)
               iEl,irEl

         1i2(q)= : Ji2i,･exp(-iqe(ri-il)･)], (5)
               iEl,jE2

where N is the number of spins per sublattice, and ri or rif denotes the position vector

of the spin i or i' in the sublattice 1 and ny denotes the position vector of the spin 1' in

the sublattice 2. The Fourier transforms Dii(q) :Di2(q) and Di2(q) are simiiarly

defined. Then the Hamiltonian (1) can be written as

                            '                      '         H= -.S-(4S2)NV,,( O ) -fi2( O )]

              2S            - 4 :i]{(4Jn(q)+2Dii(q)-41ii(O)+4fi2(O)]aLa,

            - Dii(q) aq a-q- Dii(q) atat-q
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             + (4fii(q) +2Dii(q) -41n( O ) +41i2( O )]b', b,

             -DH(q)bgb-q-Dn(q)btqbt-,

             + [41i2(q) + 2Di2(q) ]a', bt,+ [4fi2(- q) +2Di2(- q) ]a, b-,

             -2Di2(q) atqbq -2Di2(-q) aq btq}- (6)

   In order to diagonalize the Hamiltonian given by eq. (6) we make transformation

as

                      (;g=Ltqaq+Vqat-q+Pqbq+Aqbt-a ' (7)

which satisfies the equation

                            (6q, H)=hWq 8q- (8)
   FinaJly, we obtain two kinds of eigenvalue :

hWq

        ==[e2q-IAq 12+IBq l2± 4IBa12(E2qmIAq l2)+(A,B6+AeB,)2]i'2 (g)

where

       eq == t{ -[Dii(q) + Dii(- q) ]2

             +[2fii(q) t 2Ai(- q) +Dii(q) + Dii(- q) -41ii( O )+4Ji2( o )]2} it2

      A,=- S {(2fi2(q)+Di2(q))(cosh2e,isinh2e,)+2Di2(q)coshO,sinhO,} (10)

      B,=--±-{-Di2(q)(cosh2e,+sinh20,)-2[21i2(q)+Di2(q)]coshO,sinhe,}

with

     tanh0g = t[Dn(q) + Dii(- q) } × {eq --2-(21ii(q) + 2fn (- q) +

             +Dll(q)+Dn(-q)-4fii(O)+4Ji2(O)]}-'- (11)

   The Hamiltonian (6) has thus been diagonalized in the following form :

                H := Z{htoeC(SSC)'8eC+hto9P(69P)'4,OP]+const, (12)
                    q

where htoeC corresponds to the eigenvalue with - sign of eq. (9) and hto9" to that

with + sign of eq. (9). We ca}l the spin wave branch for la toeC as the acoustical branch

and that for hto9" as the optical branch, because at q==Ohto;C becomes zero and hca9P

has a finite value. We consider one kind of intra-sublattice exchange interaction and

three kinds of inter-sublattice exchange interactions as shown in Fig. 1 . Their

coeflicients are denoted as A, n, A and L for the isotropic part and Di, Dz, D3 and D4

for the anisotropic part. In terms of these coefficients the Fourier transforms of the
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exchange interactions defined by eq. (5) are thus given by

                     1ii(q)=2ficos(qec),

                     Dii(q)=2Dicos(qec),

Ji2(q) =

     4cos( q5a)cos( qSb)exp(i6qe c) (h+k exp(- iqe c) +k exp(iqa c) ]
'

13
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2 : Spin wave dispersion curves along the [100] and [OOI] directions,

 Solid curves are the calculated results by the free spin wave

 approximation. Dashed curves represent the observed ones.3)
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     Di2(q) :4cos(qSa)cos(qEb)exp(i6qec)×

             ×[D2+D3 exp(- iqec)+D4 exp(iqec)], (13)
where a, b and c are the lattice vectors characterizing the crystal structure, a and b

lying in the c-plane. The parameter a is defined in Fig. 1 . These values are determined

so as to reproduce the observed antiferromagnetic resonance frequency2) and to fit the

optical spin wave dispersion curves calculated along the [OOI] and [100] directions

with those observed by neutron inelastic scattering.3) We have

                     fi=-O.84mev Di=-9xiO"3mev

                     k= -O.72 D, == 14×10-3
                     fo=-O.23 D,=O

                     k=:: -2.23 D,=7×10-3

The calculated spin wave dispersion curves are shown in Fig. 2 together with the

observed ones.

   In the spin wave approximation the thermal average of each spin is given by the

following expression :

     <SZ> =S--Iilij E.]<aI･ ai>

                                       '           =S- lv:i]{[l pteCI2-i- 1 yecI2]<(sec)t6ec>

              +[1 L` 9P j2+ l u.O" j2) < (e, 2P) ' (; 9P >

              +l yec 12+lu9P 12}. (14)
The last term of eq. (14) represents the spin contraction at T =: OK. By using the results

of spin wave dispersion we have calculated <SZ> as a function of temperature. The

result is shown in Fig. 3.At T=OK, <SZ>/S is evaluated to be 85%. This value is

in good agreement with the value of 84% observed by Yamada et al.i), but is larger

than the value of 63% observed by Ain et al.3)

   Next we study the field effect on the spin wave energy. In the case of the external

field applied along the spin direction z, the Zeeman interaction is expressed as

                        Hleeman =::Zha(dqag ua b'qbq), (15)
                               q

where

                              hZ :- - gptBH,

H being the applied external field. In this case, the total Hamiltonian H÷HE,,.., can

be diagonalized and the spin wave energy is obtained as
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Fig. 3 :Thermal average of a spin as a function of temperature

    calculated with the free spin wave approximation.

   ( h2csVk )2= (Eah)2I; (EX)2 - IA, 12+IB, I2

           ±{4{( E"h +2 ebk )2m ]A, l2][( Ealt +2 e2 )2+IB, 12] + (A,B,* +A,* B,)2}ii2 (16)

where

        eg=t{(21ii(q) +2fii(- q) + Dii(q) + Dii(- q)

           -4fii(O)+41i2(O)-4h"]2-[Dii(q)+D,,(-q)]2}iJ2

        E2=t{(2fii(q) + 2Ai(- q) + Dii(q) +Dii(- q)

           -4fii(O)+41i2(O)+4hZ]2-[Dn(q)+Dii(-q)]2}"2, (17)

and A, and B, are given in the forms of eqs. (10) with replacement of cosh20., sinh2

e, and 2sinhe. coshO, by coshOzcoshOg, sinhOa,sinhO2 and sinhOa,coshO2+sinhO2

coshO`,' respectiveiy. The angles 0z and 0i,' are defined by

     tanhez = t (Dn(q)+Dn(-q))×{eZ- t [2fii(q)

+2Jn(-q)+Dn(q)+Dii(rmq)m41n(O)+41i2(O)-4hZ]}u',

     tanh O3 = t{ Dii(q) + Dn (- q) ] × {E2 -{I-[2fu (q)

                                      '
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 in the case of the external magnetic field applied

 along the spin direction(z-axis) are shown for the

 acoustic and optical branches.
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+2k(-q)+Dn(q)+Dn(-q)-4fH(O)+41i2(O)+4ha]}-i. (ls)
For q =: O, we have found that the spin wave energy of the optical branch increases

quadratically with increasing exterhal field as shown in Fig. 4 . 0n the other hand, the

spin wave energy of acoustical branch becomes imaginary. This fact is understpod in

the following way. The normal mode of the acoustical branch at q = O corresponds to

the uniform mode in the c-plane, because in the present calculation we have neglected

anisotropy energy in the c-plane. Therefore spin flop occurs easily due to the applied

field parallel to the spin direction. If a small anisotropy energy is introduced in the c

-plane, the acoustical branch will have a finite energy gap at q =: O. This gap will

decrease with increasing field and vanish at spin flop field which was observed.

   When the external field is applied perpendicular to the spin direction, the Zeeman

interaction is given by

                      ffieeman=-h"(ao+ao'+bo+bot). (19)

This interaction has an effect only for q = O. The total Hamiltonian, eq. (6)+ Zeeman

interaction, can be diagolized for q == 0 as follows:

         H + Hz±eeman =

           hosC(g,AC)t(hx) e,AC(hx) +hto,OP (8,on)t(h") 88P (h") +const, (20)

where

                                   hXP                     ecC(hX) = ecCm
                                  h ca,".C

                               . hXQ                     ev"(h")=&9 -h.,op- (21)

Furthermore, P and Q in eq. (21) are given by

                 P="o"C-vo"C*+p,"C-A,"C*

                  Q= uoOP - voOP"+ poOP -A8P".

Therefore the spin wave energy at a = O does not depend on the applied field in this

case. In order to discuss the field effect we must take into account fourth order terms

in the Hamiltonian with respect to the magnon operators.

3 Intensity of neutron scattering by magnetic excitations

   The differential cross-section of neutron scattering by magnetic excitations can be

written in terms of the correlation function of spin moment operators in the form

          d2o
              oc:(6aB-eaeB)
         clS2clE a,p

              Xy(Il dt exp(iErt!h);.ll.exp(ii?eRr'i,j). <Si.(O)SjB(t) >, (22)
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where i-=:rtl1K'1(rt:a scattering vector), a and P denote x,.y, z (z: the spin

direction), and < > represents the thermal average.

   We have calculated the correlation function <Si.( O )S･p(t)> in the framework

of the spin wave approximation. At zero temperature, the scattering intensity due to

emissions of magnons of the acoustical branch, 4c, and that of the optical branch, fop,

                   t ttt                       'are obtained as follows :

     1]tLcoola(1(2K2-K'K-)(-v4.C*+e-`G"'rip".-C')-(K')2(pt4.C"-e'iG"'`A4.C")12

        + i (2 K2 - K'K-) (pe 4.C* - e- `G"'dA4.C") - (K-)2(- y".-C* -l- e'`CK' rip".-C*) l2

        +2(K2)21K-(-v4.C*+euniGK'rip4KC*)+K"("4.C*-e'iGK'dAAK.C*)12]

                          i
    ･ IbpOokfCl(2K2-K'K-)(-v.`ZP'+e-iC"'Ap.CU'")-(K')2(u.(iP"-e-`CK'dA.(2']*)I2

        +1(2K2-K'K-)(u.`2P"-ehi6"'ziAil)*)-(K')2(-y.QP*+e-iG"'rip.aP")I2

        +2(KZ) 21K- (- y.QP*+ em iC"'rip.C2i] ') -i- K'(pt .or]"- e-`GK'dA .QP ') 12], (23)

where K'iKX±iK), and "4KC, v"K-C, p"K-C, A4KC represent the coefficients of the
transformation defined by eq. (7) in g 2 for the acoustical branch and pt R" etc, represent

                                                    --.those for the optical branch. Here for a given scattering vector K, we have defined the

             N-reduced vector K =K-G,f in the first Brillouin zone with the appropriate reciprocal

lattice vector GK. The notation A stands for the position vector of an atom belonging

to the sublattice 2 relative to the atom belonging to the sublattice 1 in the same unit

cell, namely, A::-ll-a+-3-b+ (Sc, where a,b and c are the lattice vectors.

   We have calculated the ratio of L4c to lbp for the three kinds of scattering vectors,

(O, O, 1/20), (1, O, 1/20), (O, 1, I/20) and the results are shown in Table 1. It should be

noted here that the scattering vectors (1, O, 1/20) etc. are described by using the

coordinate axes which are referred to the crystal axes a, b and c. The relation between

a, b, c and x, y, z axes is as follows:a 11 z, b // x, c 1! y. As seen in the table, for the

measurement at (1, O, 1/20) both the acoustical and optical branches are observable,

but for the measurement at (O, 1, 1/20) it is diflicult to observe the acoustical branch.

                                      4 Effect of magnon-magnon

                                        interaction

Table 1 : The calculated intensity ratio of

L4c to Iop for the three s¢attering

vectors.

S6atteringvector IntensityratioIAcllop

(O,O,1120) 3.0

(1,O,1/20) 1.3

(O,1,1120) 4.1×lo-3

   In the case of S = 1/2 jike Cu2'

ions, the magnon-magnon interaction,

which arises from higher-order terms

in the Hamiltonian expanded by

magnon operators, is important

because the Holstein-Primakoff

method is based on the expansion of
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                Fig, 5: Cross points denote the spin wave energies

                    'calculated at OK by taking account of the spin wave

                    interaction. For comparison, spin wave dispersions

                    calculated by the free spin wave approximation are

                                                        '                    shown by solid curves. '
                        '

spin operators in powers of l/S. In the framework of the random phase approximation,

the fourth-order terms with respect to magnon operators a, and b, of the

Hamiltonian given by eq. (6) is obtained as

/
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       pA rm 1     or -T7{[(8hi(q)-8Jn(D)+8Ji2(O))XS

   +uzikf7((8Jii(k) - 8Jii(h- q)) < aLah >

   +4A2(' k) < ah b-h > +4Ji2(h) < aXb'-h>)]a', a,

   +-iltz¥[(2Jii(q)+21ii(k)-4fii(k-q))<aLath>+2fi2(le)<aibk>]aqa-q

   +-Xr?[(2Jii(q) + 2fii(k) -4fii(k- q))< ah a-h > +2fi2(k) < ah bi >]ata'-,

   + [terms obtained from the foregoing expressions by interchanging the roles of

a and b]

                  1   +(8Ji2(- q) tiS+ 7gf781i2(k- q) < aL bt lt >]a, b-,

   +(81i2(q)AS+-;tr]Ill]81i2(q-le)<akb-h>]a}b'-,

                                      '    + X7 ]Il}[(2Ji2(- q) (< aLa'-h>+<blt b-h>)+8Ji2(k- q) < aibh >]a, b}

   +-;ijr]ii][(21i2(q)(<alta-k>+<blb'-h>)+8Ji2(q-k)<akbL>]a',b,}, (24)

where tiS represents the spin contraction S-<SZ> at OK expressed by the second

term of eq. (14) and only the isotropic part of exchange interaction is taken into

consideration since the anisotropic part is very small as shown in g2. The total

Hamiltonian, the sum of eq. (6) and HliP", can be diagonalized by the rnethod described

in g2. '
                     '   The spin wave energies at OK calculated by including magnon-magnon interaction

are shown in Fig. 5 . The energies are a little bit larger than those, which follow the

free spin wave theory, due to the effect of the zero-point motion of spins. This

tendency is remarkable near the zone boundary. As for the temperature dependence of

the spin wave energy it is necessary to calculate the thermal averages appearing in

Hl"PA self-consistently. This is a complicate task and remains as a future problem.
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