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                                 Abstract

   We study the gauge couplings and the soft mass spectrum within supersymmetric

Eb grand unified theory. We examine how they are useful as the probe of physics at the

higher energy scale than the weak scale.

1 Introduction

    The supersymmetric grand unified theory (SUSY-GUT) [1] has been hopeful as a

realistic theory beyond standard model. In fact, SUSY SU(5) GUT has been taken

interest by the LEP experiments [2] and predicts the long lifetime of nucleon

consistent with the present data [3]. However, it is difficult to regard SUSY-GUT as

the final theory because there are still several problems. First it does not describe

gravity, while the Planck scale Mi]i is around the corner. Second there exists a great

deal of arbitrariness on the model building. That is, a Iot of freedom is left over on the

choice of matter multiplets and parameters. In fact, SUSY-GUT does not explain the

values of observed quark and lepton mass and the family number. Third it is not

known how to break supersymmetry (SUSY) and to get the desired low energy

physics yet. Last the fine-tuning is needed to keep the weak Higgs doublets. Iight but

to make the colored Higgs triplets superheavy in the minimal SUSY-GUT.

    It is expected that they are solved in more fundamental theories. Supergravity

theory (SUGRA) [4] is regarded as an attractive candidate. When we take SUGRA as

an effective theory at Mbi, some of the above problems can be solved. For example,

there exists such a scenario [5] that the spontaneous SUSY breaking occurs in the

hidden sector and the effect is meditated through the gravitational interaction and the

soft SUSY breaking terms appear in the observable sector. Then the form of soft

SUSY breaking terms is determined by the structure of SUGRA. As usual, the model

with the minimal Kahler function is chosen. Then'the soft parameters take universal

values at the gravitational scale MEiMl,t/Vgiir, i. e., the global SUSY model dertved
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from SUGRA with the minimal Kahler function has the universal scaiar mass mo, the

universal scalar trilinear coupling constant A and the universal mixing mass

parameter B given by B--A-mo. (The universal gaugino ma$s A41i2 is derived from

SUGRA with the simplest non-minimal gauge kinetic function fLrp= S 6aB.) The values

at the low energy scaie are obtained by the use of renormalization group equations.

The analyses based on the minimal SUGRA are quite interesting because it has high

predictabilities and testable enough, but it is difficult to say that this approach is

natural frorn the following reasoRs. First there is no strong reason that realistic

SUGRA takes the minimal structure. In fact, the effective SUGRA derived from

superstring theories (SSTs) have, in general, non-minimal structures and they can lead

to the effective theories with non-universal type of soft parameters in the flat limit [6].

Second the effects of intermediate physics' are ignored in the analysis of the running of

parameters. For example, the discrete change can occur at the symmetry breakings

scale for the models with certain unified gauge symmetry. Therefore it is generally

natural that we expect that measurements of soft parameters at TeV region give

useful informatiens for the GUT scale physics rather the Planck scale one. (They will

give a clue to resolve the Planck scale physics oniy in the case that the effects of

intermediate physics are absent or rieglected.)

   In this paper, we study the utility of the gauge coupling constants and soft masses

as the probe of GUT scale physics based on SUSY & GUTs. The first half of our

strategy is the same as the analyses before [7] [8].That is, on the postulation that the

minimal supersymmetric standard model (MSSM) is established as an effeGtive theory

which describes the physics of O(1) TeV and the precise measurements of the gauge

couplings and soft masses can be carried out, we examine how- they are useful as the

probe of GUT scale physics, In the second half, we investigate the scalar masses based

on a gauge Goupling unification scenario with chain breakings. And we get new type of

scalar mass relations which can be useful to select further the pattern of gauge

symmetry breakings.

   The content of this paper is as follows. In section 2, we review the unification of

gauge coupling constants and the soft masses in the framework of MSSM and the

minimal SUSY-GUT. In section 3, we give three examples of Eb gauge unification

scenario with intermediate gauge symmetry breaking consistent with the LEP data. In

section 4, we derive the characteristic relation among scalar masses for these

examples. It is also given all the tables with the particle assignments and the scalar

mass relations for other Eb breaking patterns. In section 5, we obtain new type of

scalar mass relations by adopting the gauge coupiing unification scenario discussed in

section 3. The conclusions are given in section 6. '
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2 Gauge couplings and soft rnasses

Let us first give a brief review on the usual unification scenario of gauge coupling

constants [9] and the renormalization fiow of soft masses [10] based on MSSM.

    The renormalization group equations (RGEs) of gauge couplings evi are given as

                            pt£a;･'(pt)--,b.i . '. ... (i)

                                                                   '                                                             ･1at one-loop level. Here bi are the coeflicients of the beta function and pt is a energy

scale. If the particle contents of MSSM and the precise measurements at LEP are used,

                     '                                                           tt                        '                                                    'the structure constants, a3, a2 and ai (ii-g-ay) of the `standard model gauge group' GsM

!SU(3)c×SU(2)L×U(1)y meet at the scale

                                                                 '                             Mx･v2.1×10'6GeV (2)
                                 'and the value at Mx is obtained as '

                                                                       '                      evcuTiiiai(Mx)'-v241.6 (i--1, 2, 3). i (3)

This fact suggests that GsM is possibly unified in SU(5) gauge group economically. (It

is regarded as one of the indirect evidence for SUSY.) We call the above scenario the

`minimal unification scenario'.

    Next the running of gaugino masses Mi(") yields to the following RGEs at

one-loop level [10],

                                                                       '                     ' ptii}('lil,tk(f)))-o ･ ･(4)

                                            '                                                                        '
and this equation is easily solved as M,(pt)/ev,(pt) :const. In the `minimal unification

scenario', the following boundary conditions are imposed on

                      McuT!Mh(Mx)=ua(th)tua(th) ' (5)
                                                                  '                         '                                                           '                                                  ,. . /.                                                       '                                                    /.                                                       'and

                       aGuT iii cla(Mx)= cu2(Mx) :ai(Mx) (6)

                                                             '                                                            'because of the unified gauge symmetry at Mk. So we get the interesting relation

      '
                      =M{k>x-5,?-{2((f))-#,5,pt3-Ys.u;･ (7)

This relation is called the `GUT relation'*.

    Last we consider the running of masses m. of scalar fields di.(x) in MSSM. The

one-loop level RGEs of them are as follows [10],
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     pt£m.(g)2=:-- r¥. C2(R,a･)ai(pt)Mi(pt)2+lo3. Ylzevi(pt)S(pt), (8)

       d               -･ b,     ptduS(pt) -2rrth(pt)S(pt), (9)
                                                                 '         S(ge) iiZYhnama(pt)2 (10)                 a･ .              '                 '
where i represents the gauge group, a the species of the scalar, Q(R,a･) the

second-order Casimir invariant of the gauge group i for the species a, }'h the

hypercharge and n. the multiplicity of the species a. In Eq. (8) , we have neglected the

Yukawa coupling contribution. This approximation should be valid for the first-and the

second-generation fields. It is straightforward to generalize our results to the

third-generation fields by considering the effects of Yukawa couplings. The

contribution from S is usually ignored since it is absent under the assumption of the

universal scalar mass. For MSSM, it ist

              S==m22-mi2+ : (m42-2mfi2+me2-mt2+md2). (11)
                          generations

Solving the above RGEs (8)"-(10), we obtain

                           2         ma(pt)2 = ma(pto) 2 - :i.]-s;. C2 (R ta･ ) (A4i(pt)2 - Mi(uo) 2)

                +s3b, IVh(S(pt)-S(uo)), (12)

         S(pt)= £'((ppt,)) S(pto). (13)
Once we obtain the value of S at the weak scale by measurements, we can easily take

its contribution to the scalar masses into account. Therefore the uncertainty on S does

not prevent us from going further. If we observe the gauge couplings and the soft

masses and measure their values precisely, we can obtain the values of Scalar masses

at certain higher energy scale, e.g. Mk, by using the above solutions.

   We comment on an assumption of the universal soft SUSY breaking terms briefly.

As usual the following universal type of boundary condition at M (or Mx) is taken,

                               mo2 :ma2 (14)
for scalar masses and

" We neglect both the threshold effects [11] and the `gravitational' corrections [12] which can

 violate this relation. And two-loop effects violate this relation, but it is small [13].

t We refer to the chiral multiplets as q for left-handed quark, l left-handed lepton, u right-handed

 up type quark, d right-handed down type quark and e for right-handed charged lepton. The tilde

 represents their scalar component. mi2 and m22 stand for the soft SUSY breaking mass terms of

 the Higgs with hypercharge -112 and +1/2, respectively.
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                               Ml,2 =: M, (15)
for gaugino masses. The condition (14) is motivated by SUGRA with the minimal

Kahler function. And the condition (15) is motivated by SUGRA with the simplest

non-minimal gauge kinetic function or certain un.ified gauge symmetry. The various

predictions at low-energy physics are derived by the use of RGEs of MSSM and the

constraints in SUSY-GUT, the particle cosmology and so on based on (14) and (15).

But the assumption (14) is not necessarily proper as described in the introduction.

Hence we do not impose it in our analysis.

3 Chain breaking seenario

   In the last section, we have explained that the `minimal unification scenario' is

supported by the LEP experiments. There exist, however, many scenarios based on the

various models of SUSY-GUT consistent with the LEP data if the concept of

`simplicity' is put aside. For example, there exist the foilowing three types of them

where the unification scale is the same as that of the `minimal' one.

  1. The direct breaking of the larger group than SU(5), e.g. SO(10) and Ets, down

   to GsM･

  2. The models with extra heavy generations.

  3. The models of SUSY SO(10) GUT with the chain breaking [14] [7].

   In this section, we discuss the unification scenario with chain breakings based on

SUSY Eb GUT [15]. There are so many possibilities that Ets breaks down to GsM such

as

                        Eb -I!IE'i "''''- Gn la' GsM. (16)

which cannot be selected unless the dynamics of symmetry breakings are clarified. The

chief subgroups of Ek are listed in Table 1. Here we shall exemplify the following three

breaking patterns

     (Ex. 1) E, -l!L' su(s).xu(1),xu(1),UE'IS G.,, (17)

     (Ex. 2) E6 sc' SU(6)xSU(2)i-4!S'l; Gsnf qs)

and

     (Ex. 3) E, -l!L' su(s).x u(1),ixsu(2), -l!!S'l; G,. (lg)

and obtain the particle contents consistent with the LEP data. It turns out that the final

breaking scale MkB agrees with the unification scale Mx in the `minimal scenario' for
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Table 1.' The chief subgroups of Eh

(O) E> D

(l) SO(10)× U(1),

(2), SU(6) X SU(2).

(2), SU(6)XSU(2),

(2)J SU(6) X SU(2)J

(2), SU(6)XSU(2),

(3), SU(3).×SU(3),×SU(3),

SO(le) × U(1),

SU(6) × SU(2).

, SU(6) × SU(2),

SU(6) × SU(2)J

SU(6) × SU(2),

SU(3), × SU(3), × SU(3).

SU(3), × SU(3), × SU(3),

SU(3), × SU(3), X SU(3)J

       ) SU(5)× U(1),× U(1),

         SU(5). × U(1), × U(1),

         SU(4) × SU(2), × SU(2). × U(1),

         SU(4) × SU(2), × SU(2), × U(1),

         SU(4) × SU(2), × SU(2)J × U(1),

       D SU(5).･X U(1),×SU(2).

         SU(4) × SU(2), × SU(2). × U(.1),

         SU(3), × SU(3), × SU(2), × U(1)R

       D SU(5).× U(1),t×SU(2),

         SU(4) × SU(2), × SU(2), × U(1),

         SU(3), × SU(3), × SU(2), × U(1)i

       D SU(5)× U(1),"×SU(2)J

         SU(4) × SU(2). × SU(2)J × U(1),

         SU(3), × SU(3), ×'SU(2)J × U(1)J

       D SU(5)FttX U(1)3mXSU(2)L

         SU(4) × SU(2). × SU(2), × U(1),

         SU(4) × SU(2), X SU(2). × U(1) ,

         SU(3), × SU(3), × SU(2)', × U(1)L

         SU(3), × SU(3), × SU(2), × U(1)L

            D

(3), SU(3),×SU(3),×SU(3),

(3)J SU(3),XSU(3),×SU(3)J

(1)

(2).

(2),

(2)J

(2),

(3).

(3),'

(3)J

(1-1)

(1-1).

(1-2).

(1-2),

(1-2)J

(2-1).

(2-2).

(2-3).

(2-1),･

(2-2),

(2-3),

(2-1),

(2-2)J

(2-3)J

(2-1),

(2-2),

(2-3),

(2-4),

(2-5),

  SU(3), × SU(3). × SU'(2), × U(1).

  SU(3). × SU(2), × U(1), × SU(3),

  SU(3). × SU(2), × U(1), × SU(2). × U(1).

] SU(3),×SU(3),×SU(2),× U(1)i

  SU(3), × SU(2), × U(1), × SU(3)i

  SU(3), × SU(2), × U(1), × SU(2), × U(1),

D SU(3), × Sq(3), × SU(2)J × U(1)J

  SU(3), × SU(2). × U(1), × SU(3),

  SU(3), × SU(2), × U(1), × SU(2)i × U(1)J
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all the above examples on the postulation that the physics below MSB is described by

MSSM.
   For (Ex.1), we have a relation among the structure constants cri (=--g-evy), ctsF and

                                              '                                          ttai(2) at MsiB such as

                               '                              25 l                                       24                              m= + (20)                                  C15F                              di al(2) ･
                                             '
where we denote the structure constants of SU(5)F and U(1)2 as ctsF and cri(2),

respectively. Here the gauge group SU(5)F× U(1)2 corresponds to that of the flipped

S(7(5) model [16]. Provided by the unificaion of the gauge couplings of Gsnf is realized

at Mx from the LEP data, the relation cvsF(Mx) = evi(Mx) holds and so the accidental

relation cutsF(Mx)=ai(2)(Mx) is derived On the other hand, the relation aGuTE!

ctsF(Mu) :=: evi(2}(Mu) holds because of Eb gauge symmetryS. There exists a scenario

that the relation cutsF(pt)=:ai(2)(pt) holds from Mu to ua. In this case, we have a

constraint bs= bi(2}. As an example of the anomaly free particle contents which satisfy

b,e,= b,(,?, we can find the foiiowing one, 3((-Ei-J. 2z7fs, 21i6)t (iO, - 2h6, 2i>g)+(i, -

                                                                  '                     '                            '                                                '  51         )) for matter multiplets, (24, O, O)+(1, e, O)+(1, O, O) for gauge multiples

                                                                     '                                'and 3((3, - th, - %)+(s, k, - fa)+(i, o, 'k))+6((rt,'2in, 2la)4ao, -

2in, 2176)) fof''Higgs multiplets under SU(5)FXU(1)2¥ ti(1)'i. In'such parti,cle

                           '
contents, we have , bsF = bi(2) == 12.,

   For (Ex.2), the relation ats(Mx)== a2i(Mx) is derived 6y the use of the LEP data

where a6 and cv2i are the structure constants of SU(6).and SU(2)i, respectively. And

Ets gauge symmetry yields to the relation aGuT ii cue(Mu) = a2i(Mu). Hence there exists

a constraint b6 = b2i in the scenario that the equality cr6 (pt) = a2i(pt) is kept from Mu to

Mx. As an example of the particle contents which satisfy b6:.=b2i, we can find the

following one, 3((6, 2)+(15, 1)) for matter multiplets, (35, 1)+(1, 3) for gauge

multiplets and 4((15, 1) + (15, 1)) + ( 6 , 2) + (6, 2) for Higgs multiplets under SU(6) ×

SU(2)r., In such particle contents, we have dg= b2i:= 9.

   We consider the final example. In.the same way, the relation

                                                 '
                 '                    '                                             '                  ' ,,s.(IM.) :=-g- .,,,,,(IM.)+-g ,,2,(IM.) (2i)

is derived phenomenologically by the use of the LEP data and the relation among

               '

* Here we ignore the effects of higher dimensional operators which split the values of cuBF(Mu) and

 ai(2)(Mu) on the EL breaking. For other two examples, we ignore the same effects, too.-
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                         Yiiii- ts 7-lii4+ fig Q3･+ 7-IS} (22)

where we denote the structure constants of U(1)3, and SU(2)i as ai<3)t and a2i,

respectively. If the group is further embedded into the Eb group, then there exists a

constraint bsF:=-g-bi(3t)+gb2i in the scenario that the equality asF(pt)-i= -g-ai(3r)(pt)-i+

-g-clei(u)Hi is kept from Mu to Mx. If we choose the particle contents as follows,

3((L5=, -2kg, 2)+(5, - 7?g, 1)+(iO, thi, 1)+(1, 2Zrs, 2)5 for niatter multiplets,

(24, o, 1)+(1, o, 1)+(1, O, 3) for gauge rpultiplets and (-Ei-, - 2ts, 2)+(5, 2kg, 2)+

5((10, thi, 1)+(lil6, ' Gg, 1)) for Higgs multiplets under SU(5)F× U(l)3t×SU(2)i,

we have bsF=gbi{3o+gb2i=11.

   'We can construct the similar unification scenarios for other breaking'patterns

[17].

    It is diflicult to distinguish these scenarios by the use of the precise measurements

of gauge couplings alone. Hence it is an important task to study how we can

discriminate among them by other experimental methods.

    It is expected that the soft SUSY-breaking mass parameters can be novel probes

of physics at higher energy scales. In fact, their utility has been examined in Ref. [7].

Let us recall the results again. The gaugino mass spectrum satisfies the `GUT-relation'

as far as `standard model gauge group' is embedded into a simple group, irrespective

of the symmetry breaking pattern, while the squark and slepton mass spectrum carries

the information on the breaking pattern of the gauge symmetry. Therefore, the

gaugino and the scalar mass spectrum play a complementary role to select among the

models of SUSY-GUT experimentally. As an explicit example, it is demonstrated how

the scalar mass spectrum distinguishes various SO(10) breaking patterns from each

other. Furthermore the scalar mass relations for Eli gauge symmetry breakings are

given in Ref. [8].

   We shall explain the above-mentioned consequence of the gaugino masses by using

the third example. The SU(3)c and SU(2)L gauginos come from the SU(5)F gaugino

and remain unbroken at ua and so the following equalities hold

                     Mli(pt) - ua(pt) - MkF(Mx) - McuT
                      tUb(tt) - cu2(ti) - abF(Mx) H a... (23)

for the SU(3)c gaugino and the SU(2)2L gaugino.'Here MGuT and MgF represents the

Eli and SU(5)F gaugino mass, respectively. There is a complication for the U(1)y

gaugino because it is a mixture of SU(5)F, U(1)3, and SU(2)i gauginos. The gauge
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fields A" mix as girmiAf=-gts]'-l;-Ag`F"+gtlg,)-g-Ai"{3,)+g21i v/IillAgi", and the gaugino

fields a mix correspondingly as

                  TiX'tli= - gl!,. -l;7As24F+ 'gtl,,, -g-ili(3')+ gl, v/IllllA23i i (24)

as required from SUSY. Thus the relation for the U(1)y gaugino mass is given as

      Ml(pt) - Ml(Mx) - 1 uaF(Mx)                                     9 Mi(3o(Mx)                                                   3sw,(M.) M...      cui(pt) - ai(Mx) -T2Tt cutsF(Mx) +'2Tt ai{3･)(Mx) +5 a2i(Mx) - aGuT (25)

where Mi<3,) is the U(1)3, gaugino mass and the solution to the RGEs for gaugino

masses is used. From Eqs. (23) and (25), the gaugino masses Mh, ca and Mi satisfy the

`GUT-relation' (7). Exactly the same argument applies to the first, second examples

and other breaking patterns as well.

    Hence the gaugino masses give no information of gauge symmetry breaking

pattern and we need the other probes. In the next section, we show that the scalar

masses can be useful.

4 Scalar mass relations

    In this section, we examine how the scalar masses are useful to select the pattern

of gauge symmetry breakings.

    Suppose scalar species a, b, c,･･･ belong to a single multiplet R under Gn. One

naively expects a kind of `unification' of the scalar masses at uaB as

                 ma(A4siB)2=mb(MsB)2=mc(ll4SB)2=･.･.･･=mR2. (26)

    There are some factors that the above `unification' is violated.

    First the threshold effects due to the heavy particle loops can give further

corrections to the Eq. (26). However, it is expected to be of the order of O (cr/rr) just

like in the case of the gauge coupling constants [18] or gaugino masses [11]. It can

be important only when there are large representations in the loops or large splitting

among the heavy multiplets producing large logarithms.

    Second effect may come from the `gravitational' corrections, like higher

dimensional non-renor' malizable interactions. Such corrections are suppressed by

powers of MbB/Mpt. They can be important if uaB is close to MI]i.

g Historically, it was demonstrated that the D-term contribution occurs when the gauge symmetry

 is broken at an intermediate scale due to the soft SUSY breaking terms in Refs. [20] and its

 existence in a more general situation was suggested in Ref. [21].

M It is known that the non-universal soft SUSY breaking parameters emerge in the effective theory

 derived from superstring theory [6]. Even if they are universal at the Planck scale tat as in the

 minirnal supergravity or SUSY breaking by dilaton F-term, the radiative corrections between M

 pt and daB generally induce non-universality.
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                     Table 2, The list of scalar mass relations

  Here g)vx is the gauge coupling constant of SU(:IY)x. The gauge group SU(5)F-× U(1)3t"×SU(2)L

is one of subgroups of SU(6) × SU(2)L and the two kinds of partigle assignments exist corresponding
to the choice of SU(2)R or SU(2)i as the subgroup of SU(5)F". We assume that the Higgs doublets

fl1 and ca belong to a multiplet of another 27 (or 27) of Eb. The asterisk ( * ) represents the scalar

mass relation derived under the assumption of `flavor' universality at MkB. Here the assurnption of

`flavor' universality means that mR(a)'s take the same value for the same type of representation.

Gn ,ScalarMasses
E, 2-RMd-Mi,

mi?2=m42=mg2,
m22-mi2=md-2-mti2

SO(10)×U(1), -2-2Md-Ml,

mii2=mfiZ==mg2,<a)m22-ml2=md2-m,T2

2-2Md-Mt,
ma2=ma2==ma2,(b)m22-m12=:md-2-ml?2(x)

SU(5)×U(1),×U(1), -2-2Md-Mt,

2-2-2mt7-m(i-mg,

SU(5).×U(1),×U(1), mci2-mt72=mti2Tni

SU(4)×SU(2),×SU(2).×U(1), mi2-m42==md2-mg2,
g2R2(mi4-mti2)=g42(md'2-mt72),

m22-ml2m-md2-mtl2

SU(3).×SU(2),XSU(2).×U(1)BmL×U(1), 7n22-ini2=pmtd2-?ntT2

SU(4)×SU(2),×SU(2),×U(1), g2iZ(ma2-mi2)=g42(mi2-m22),(x)
g2i2(me-2-m,72)=(g42-g2i2)(ml2-mi2)'(x)

SU(6)×SU(2). mi2-md2=:ma2rme2,
g2R2(mt2-m4-2)=g62(md2-mti
m22-mi2=md2-ma2

SU(5).･×U(1),×SU(2). m22-mlZ=md2-m,72

SU(6)×SU(2), m42-md2=mtT2-mte

SU(5)F×U(1)3'×SU(2)i m42-ma2=:mt72-m12

SU(6)×SU(2),
md2=mi2,2-2-2mt?-m4-mg

SU(5)×U(1)3rrXSU(2)y
LP'2-Md-Ml-,2-2-2MamM4--Me'

SU(6)×SU(2). m22rmmi2=md2-mt?2=mt2-m42,
mt72=mc7

SU(5)."XU(1),"･XSU(2),' m,2-m,2=md2-m,i(SU(2).)or

md2-mg2=:me-mti2,(SU(2)i)

SU(3)cXSU<3)LXSU(3)R' m22-ml2=md2-mt12,
g3R2(m22-mg2)=g3L2(md2-mti2+m22-mA(x)

SU(3),×SU(3),×SU(2).×U(1). m22-mi2=md2-mti2

SU(3),×SU(2),×U(1),×SU(3)R m22-ml2=md2-mt?2

SU(3),×SU(2),×U(1),×SU(2).×U(1). m22-mlZ==mf72-mtl2

SU(3),×SU(3),×SU(3), m22-ml2=md2-mtT2;
g3i2(m22-me-2)=g3L2(md2-mt72･+m22-ml2)(x)

SU(3),×SU(2).×U(1),×SU(3), m22-vni2==md2-mt?2

SU(3),XSU(3),XSU(3),' m22-mi2:=:md2-mn2,
g3J2(m22-me-2)=g3L2(mdZ-m,72+m22-mt2)(x)

SU(3),×SU(2),×U(1),×SU(3)J mz2rmmi2==md2-mt?2
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   We neglect the above two effects in this paper.

   Third effect is significant. There can exist additional tree level contributions to

scalar masses from F-term and D-term after the heavy fields are integrated out [19]i

and the scalar mass formula is given as

               ma(Msa)2= mR{a)2+:gt2Qi(ipa)Di+(F- terms)･ (27)
                                i

   Here the mR{a)'s represent the soft mass parameters of the scalar fields dia included

in R(a) representation of Gn and show a kind of `unification' in the unified theorybased

on the gauge group Gn. (Note that the assumption that the soft mass parameters have

a universal structure is not imposed on. It is only assumed that the mR(a)'s respect the

gauge symmetries.) The second term on the right-hand side of Eq. (27) represents the

D-term contributions to scalar masses on the symmetry breal<ing which violate the

`unification'. The g)'s and Qi(dia)'s are the gauge coupling constants and the diagonal

charges related to the broken gauge symmetry respectively, and the Di's are the

quantities which depend on the heavy field condensations. One can show that the

sizable D-term contributions generaliy exist [19] when the soft SUSY breaking terms

in the scalar potentiai are non-universai fl and the rank of the group is reduced due to

the gauge symmetry breakings. When Ilb breaks down to GsM, the rank is reduced by

two and the D-term contributions are expressed by two parameters. The third term

(F-terms) represents the contributions from F-term. We assume that they are

negligible. This assumption is justified for the unified theory with a certain type of

rion-universal soft SUSY breaking terms when Yukawa couplings with heavy fieids are

negiigible and there exists no heavy field with the same quantum number aS usuai

matter fields.

   In Eq.(27), the free pararneters are mR{a)'s, Di's and caB. And if the number of

independent equations is more than that of unknown parameters, the non-trivial

relati'ons among s6alar masses exsist. The scalar mass relations for Ets gauge

symmetry breaking patterns have been already obtained [8]. We give the result in

Table 2 again for a completeness.

   Here we shall explain how they are obtained for (Ex. 1) where G.=SU(5)F×

U(1)2× U(1)i. The particle assignment and quantum numbers are shown in Tabie 3
-2. The ' scalar masses satisfy

    md(Mx)2=mio2+Di+(--ll-gtsF2+-zilttTgt(2)2) oD', (2s)

    mi(Mx)2= ms2+Di- ('iiiltTgiF2+-zits'gt{2)2) e D', (29)

    ma(Mx)2= ms2+Di+(Lil;-gtsF2m-zili-gi{2)2) "D', (30)
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ma(Mx)2== mio2+Di+ (ft gtF2+lfti-g(2)2) e D',

 tt
me(Mx)2== mi2+Di+ml}7gl(2)2 e Di,

mi(Mx)2=: m{;H2- 2Di - (-iiilii-gsF2-llS6-gt(2)2) e D',

m2(Mx)2:=: msH2-2Di- (-iiltJgtsF2+-S6-gt(2)2) e D',

(31)

(32)

(33)

(34)

where mio2 ms2 and mi2 are the soft SUSY breaking masses for sfermion fields with the

representations 10, 5 and 1 under SU(5)F and msH2 and msH2 are those for Higgs fields

with the representations 5 and 5 under SU(5)F. The following relation is derived by

the elimination of mio2, ms2 and D',

                  m4(Mx)2" md(Mx)2=: ma(ua)2- mt( Mx)2. (35)

   We get the same relation (35) for the second and third examples. In the same way,

we can obtain specific relations among scalar masses at MSB in other breaking patterns

by using the particle assignments under Eh subgroups given in Table 3-1-s-3-22.

Therefore we can get the information on the final stage of pattern of gauge symmetry

breaking by measuring the scalar masses precisely and checking the scalar mass

relations.

   We give two comments.

different chain breaking patterns.

mass reiations are derived for some breaking patterns by

gauge coupling unification discussed in section 3

to select the breaking patterns further.

   First we write down the RGEs for scalar masses mR(a)

         y z2i} mR(a)(pt)2 = -- i-]:i,] C2(R,a･ ) evi(pt)Mi(pt?2

  1 The same results hold for its U(1) subgroup in place of SU(2)R(i,J).

  2 We notice that the common relations appear in the wide class of Eb breakings.

   This fact originates from the G. gauge symmetry and the matter assignment. Here

   we explain it by taking an example. The relations md=mi and mff=m4=mg are

   obtained for G.=::Ets, SO(10)×U(1)i, SU(5)×U(1)2×U(1)i, SU(6)XSU(2)J

   and SU (5) × U(l)3" × SU(2)i. This is due to the fact that the above groups iRclude

   SU(5) as a subgroup, and (a l) and (za-, q"', e') belong to 5 and 10 of the SU(5),

   respectively.

5 Additional scalar mass relations

   As pointed out in the last section, we find that the same relations hold for the

                            In this section we show that the additional scalar
                                        ,
                                                adopting a scenario of the

                                        and they can be useful informations

above MsiB,
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                    +21. Z,. Qfe?a)aj'(pt)Si(pt), (36)

         pt zZl si(p)= 2bi ai(pt) s,･(pt), (37)

         Sj=Z(?E}?a)nR(a)mR(a)2, (38)            R(a)

where i runs ail the gauge groups, but i runs only U(1) gauge groups whose charges

are QEi?a). Here we used the anomaly cancellation condition :R(a)Q(R,a･ ) QM]a}nR(a)= O

and the relation of orthgonality ZR(a}Qfe'?a)(?S?b>nR(a)=O for ]' t i'. The solutions of the

above RGEs are given as

                                              '         mR(a)(pt)2=mR(pto)2-]:i.il-3;.-C2(R,a･)(Mi(pt)2-Mi(uo)2)

                  +;.]-g. Qff.)(s･(pt)2-s,･(g,)2), (3g)

                q,･ (pt)
                     S･(pto). (40)         s,(") =
                cqi(uo)

For the breaking pattern

                                    MSB                              M.
                           E6 uum" Gn-Gsnf, (41)

the mass formula at uaB is

         mR(a)(MSB)2= m272 - ¥. -il;.-C2 (Rff･ ) (Mi(MSB)2- McuT2)

                                  '                    +pu, t. QEi?a)Si(whB)2 (42)

where we use the relation mR(Mu)2=:m272, Mi(Mu)2= McuT2 and S)･(Mu) =m272ZR{a)

QEi?a)nR(a}= O . Here we impose the condition that the decouplings of particles occur

keeping the reiation ZR{a)(?fe?a)nR(a)= O li. Then we have the further relation Sj(MSB) =

o
.

   Now we take the breaking pattern (Ex. 1) as an example and derive the scalar

mass relations. The values of second-order Casimir operator are given as Cb(Rs'FO) =

-litL,Q(RgF) ==]tltL and Q(RgF) := O for SU(5)F. And those are C2(Rl(02)) =-it', C2(R?(2))=

2t, C2(Rt(2))= -ll- for U(1)2 and C2(Rt(Oi)) ==tt, C2(Rga))= -Stt, C2(Rfm) =it for U(1)i･

We consider the model with bsF= bi{2). This model has the relations evsF(pt)= ai(2)(pt)

and MkF(pt)== Mi(2)(pt)･ '
   The solutions of scalar masses are as follows,

iiThis relation agrees with the gravitational afiomaly cancellation condition.
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           mioF (u)2 : m272+(C2 (RgFO )+ C2(Rl{02)))MZF + C2(Rt{Oi)) ut i), (43)

            vaF (u)2 :=: m272+ (C2 (RgF+ C2 (R?(2)))MZF + C2(I??(D) Mi2a) (44)

                                 '                                                            '                                                     '

            miF(pt)2= m272+(C2(RgF)+ C2(Rl(2)))MglF + C2(Rl(i))Mi2a) (45)

 '        '                      'where thi(pt)2'i!i-i3;,-(MGuT2-Mi(pt)2).

                                              '   By the use of the above solutions, the scalar masses at Mx are given as

                                                    tt                                                         '
                       mp(M.)2-i inz,+-2:9Lne.-3D., (46)

                       m,(M.)2= foz3,+-Zl;t-i[ilil.-3D., (47)

                                 '
                                                 '                       m,(Mltr)2 :in37+-2Xtz-itF+DF, (48)

                                '                       m,(ua)2 =[= fozg,+-II9L?izg}.+D., (4g)

                                                                   '                                                             '                        ve(M.)2 =hz3,+g?[igl.+D., (50)

                                         '
where imZ7 i= m272+ Di -un i4 mbfa) and DF ii -l}-gsF2 e D'. The number of unknown

parameters is three, i. e. (im;7, ?l]gF, DF), and the number of indebendent equations, i.

e. (46)--(50), is five, so there must exist two relations. In fact, we get the following

relations,

                  nz7(Mx)2- md(Mx)2= vei(Mx)2- mi(ua)2 (sD

and

                 2(mi(Mx)2- mi(Mx)2) ir m7(Mx)2- mg(ua)2. (52)

The Eq. (52) is a new relation. Note that only the relation bsF= bi{2} is used in the

   '         ttderivation of the above equations and we do not have to l<now the particle contents

above Mx.

   For (Ex. 2) we obtain the relation,

                           m?(Mx)2=me(Mx)2 (53)
by adopting ･the unification scenario discussed in section 3.

   When the same method is applied for (Ex.3), no additional relation is derived.

   So we can discriminate among three examples by checking the relation (52) and

(53). The same method is applied for other breaking patterns and some new type of

relations can be derived [17].
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6 Conclusions

   We have studied how the gauge couplings and soft mass spectrum are useful to

probe the physics at higher energy scales within supersymmetric Eh grand unified

theory. We have given a scenario of gauge coupling unificlation based on three types of

Eb chain breakings (Ex. 1), (Ex. 2) and (Ex. 3). It has been pointed out that there exist

many gauge coupling unification scenarios based on SUSY EU GUT consistent with the

LEP data. Since the `GUT relation' holds for alkhain breakings in the grand unified

theories, the gaugino masses give no information of gauge symmetry breaking pattern.

On the other hand, the scalar masses can give a useful information. We have obtained

the scalar mass relations specific to the Eb breaking patterns. It is imp6rtant that the

specific relations hold without specifying the particle content above the symmetry

breaking scale from the group theoretical reason. We can select the final stage of some

chain breakings by checking scalar mass relations. But it is not easy to carry out the

complete selection of gauge symrnetry breakings since the same relations hold in the

wide class of SUSY Ets GUTs. The other powerful information is needed to specify the

pattern of symmetry breakings further. Additional relations derived by the

consideration of the physics beyond MsB can be the candidate. In fact, we have derived

the new type of relations specific to the breaking pattern Eb- SU(5)F × U(1)2 × U(1)i

.GsM and l!ig. SU(6)×SU(2)i.Gsnf. It is important thatthey are derived not by
specifying the particle content above Mx but based on a scenario of the gauge coupling

unification.

                                                '        tt  ' In conclusion, the measurements of the scalar masses will give a big impact on

high energy physics in the future because it is expected that scalar mass spectrum

owns a useful information on the pattern of gauge symmetry breaking in SUSY-GUTs.
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        Table 3-1-v3-22 The particle assignments and quantum numbers

                        under Eb subgroups

 We refer to the chiral multiplets as q for left-handed quark, l left-handed lepton, u right-handed

up type quark, d right-handed down type quark, e right-handed charged lepton and v right-handed

neutrino. The `exotics' are denoted as a DC, L, LC and NC whose quantum numbers under GsM can

be read through the Tables. The superscript c represents their charge conjugated states. We take

the following normalization for the U(1)i charges Qi,

                                    : O?･ - 3
                                    27

and for the U(1)v charge Y,

                                   Z Y2=s.
                                    27

The assignment that dC and l lie in 16 of SO(10) is case (a) and assignment that they lie 10 of SO(10)

is case (b) in Table 3-1 and 3-2.

Table 3-1 (1-1) (a) ((b))

E, SO(10) SU(5) SU(3)c SU(2),
U(1),

2VI5Q,
U(1),

2VI6O,
U(1),
2V6Q,

SPecies'

'ci- 1 2 dC(Dc)

'5- 1 2 -3 3 l(L)

3 2 1 q

16 le g 1 -4 -! 1 Uc

1 1 6 ec

27 1 1 1 o -5 yc(Nc)

3 1 -2 D
5 1 2 3 2 Lc

10 -･3 1 2 -2 DC(dc)

5 1 2 -3 -2 L(l)

1 1 1 l o o 4 NC(vc)

YE
vaguaTQh
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Table 3-2 (1-I)F (a) ((b))

E, SO(10) SU(5). SU(3)c SU(2),
U(1).

2VI5Q.
U(1),

2VIOQ,
U(1),

2V6Q,
U(1).

6Y
SPecies

3 1 2 -4 Uc

n5M 1 2' -3 3 -3 l(L)

3 2 1 1 4

16 10 -il' 1 -4 -1 1 2 dC(Dc)

1 1 6 o vC (NC)

27 1 1 1 o -5 6 ec

3 1 -2 -2 D
5 1 2 3 2 3 Lc

10 g 1 2 -2 2 DC(dc)

Lg- 1 2 -3 -2 -3 L(l)

1 1 1 1 o o 4 o NC(vc)

y=-de(g.- E6Q2

         t.
 Table 3-3 (1-2)R

E, SO(10) SU(4) SU(3)c SU(2), SU(2).
U(1).L,

gV6Q,-,
U(1),
2V6Q,

U(1).

6Y
SPecies

3 1
-
3

1 q

4 1 2
'
1

1 -3 l

16 -Il7

!
3

1
2
-
4

dc

Uc

27

n4

1

1 2

-1 6
o

ec

yC

1 1 2 2 o
3
-
3

Lc

L

10 3 z
3

-2 -2 D

6 3 1 1
2
r
m
f

2 Dc

1 1 1 1 1 o 4 o Nc

}r =- --iiP-QB-L + 71ii?
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       Table3-4 (lu2)i

39

E, SO(10) SU(4) SU(3)c SU(2), SU(2),
U(1)B-u

gV6Q.-,r
U(1),
2V6Q,

U(1)y

6Y
SPecies

3
1
-
-
i
r

1 q

4 1
'

2 1 1 -3 L

16 i !
3

1
2
-
4

Dc

Uc

27

if

1

1 2

-1 6
o

ec

Nc

1 1 2 2 o
3
-
3

Lc,

l

10 3 z
3

-2 -2 D

6 g 1 1 2
"
-
g

2 dc

1 1 1 1 1 o 4 o yC

y.. -L(lll-o.-,,-F 7-}g

Table 3-5 (1-2)J

E, SO(10) SU(4) SU(3)c SU(2), SU(2),
U(1).-.-

gV6Q.r,-
U(1),

2V6Q,
U(1)y

6Y
SPecies

3
1
-
r
E
r

1 q

4 1 2 1 1 3 Lc

16 -ilrr

2
3

1 2 (dC,Dc)

27 "4r 1 1 2 -l o (yc,NC)

1 1 2 2 o -3 (l,L)

10 3 2
3

-2 -2 D

6 3 1 1 2
-
5

-4 Uc

1 1 1 1 1 o 4 6 ec

y=--
kQ,-L"+ljQi
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 Table 3"6 (2ml)R

E, SU(6) SU(5)Fr SU(3)c SU(2),
U(1).･

2VrSQ.r
U(1),

2VilJ5Q3 SU(2).
U(1)v

6Y
SPecies

3 1 -2 -2 D
5 1 2 3 -4 -3 l

15 3 2 1 1 q

10 -IIU 1 -4 2 1 2 Dc

1 1 6 o Nc

27

'IilM
1 2

2
-
4

dc

Uc

5
5

1 2 -3
-1

2
3
-
3

Lc

L

1 1 1 o 5 6
o

ec

Vc

    1     QFr-g-Y=-   as

  Table 3-7

3
  Q,+ 71S),
as

(2-2).

E, SU(6) SU(4) SU(3)c
U(1).-,'
2
V
6
Q
.
-
,
3

SU(2),
U(1),
2VeQ, SU(2).

U(1)r

6Y
SPecies

3 z
3

-2 D

6 5
2
r
m
m
i
r

1 -2 2 Dc

15 3
1
-
-
g

1 1 q

4 1 1 2 1 -3 l

1 1 o 1 4 o Nc

27

-il-

l
3

2
-
4

dc

Uc

-6'

L4

1 -1
1 1

2 6
o

ec

Vc

1 1 o 2 -2
3
-
3

Lc

L

Y!-!: -"(?.u,+ 7-l£,
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Table 3-8 (2-3)R

E, SU(6) SU(3)c SU(3), SU(2).
U(1).
2V3Q,

U(1),
2V{iQ. SU(2)n

U(1)v

6Y
SPecies

3 1 1 o 2 2 Dc

2 -1 -3 l

15 1 rliT 1 2 -2 1 o Nc

2 1 1 q

3 3 1 -2 o -2 D
27

3 1 1 o -1
2
-
4

dc

Uc

M6M 2 -1 2
3
-
3

Lc

L
1 -ii-

1 2

1

6
o

ec

Vc

y=- %Q,-i- ili} (?,+ 71ii,

Table 3rm9 (2-1)i

E, SU(6) SU(5). SU(3)c SU(2),
U(1).
2Vr5Q.

U(1),F
2VilSQ,t SU(2),

U(1)i

6Y
SPecies

3 1 -2 -2 D

5 ･1 2 3 -4 -3 L

15 3 2 1 1 1 q

10 -g- 1 -4 2 2 dc

1 1 6 o yC

27

-!i- 1 2
2
-
4

Dc
Uc

L6"

-I;-

1 2 -3
-1

2
3
-
3

Lc

l

1 1 1 o 5 6
o

ec

Nc

Y=-
Gii (?F+ ilg Q,･+ 7'll}
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 Table 3-10 (2-2)i

E, SU(6) SU(4) SU(3)c
U(1)B-u

gV6Q,.fi,･ SU(2),
U(1),
2V6Q, SU(2),

U(1)v

6Y
SPecies

3 z
3

-2 D

6 3 2
m
i

1 -2 2 dc

15 3
1
m
i
r

1 1 q

4 1 1 2 1 -3 L
1 1 o 1 4 o Vc

27

-li-

!
3

2
-
4

Dc

Uc

-6"
T

1 -1
1 1

2 6
o

ec

Nc

1 1 o 2 -2
3
-
3

Lc
l

Y=- --21P-Q,-,,+ 7}l}

Table 3-11 (2T3)i

E, SU(6) SU(3)c SU(3), SU(2),
U(1).
2V!i(?,

U(1),
2VIiO, SU(2),

U(1)y

6Y
SPecies

mlin 1 1 o 2 2 dc

2 -1 -3 L

15 1 -Ii- 1 2 -2 1 o yC

2 1 1 a

3 3 1 -2 o -2 D

27

-g- 1 1 o -1
2
-
4

Dc

Uc

6 2 -1 2
3
-
3

Lc

l

1 3

1 2

1

6
o

ec

Nc

Y =' r
ts' (?L +kQi + [ir}Sir
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      Table 3-12 (2-1)J

43

E, SU(6) SU(5) SU(3)c SU(2),'
U(1),

2JI5Qh
U(1),"

2Vr5Q,･r SU(2)J SPecies

3 1 -2 D

5 1 2 3 -4 Lc

15 3 2 1 1 q

10 3 l -4 2 Uc

27 1 1 6 ec

3 1 2 (dC,DC)

6 -57 1 2 -3 -1 2 (l,L)

1 1 1 o 5 (vC,NC)

  Y=- !glQ,

Table 3rm13 (2m2)J

E, SU(6) SU(4) SU(3)c
U(1)B-Lu

gV6Q,-," SU(2),
U(1),
2J6Q, SU(2)J

U(1)v

6Y
SPecies

3 z
3

-2 D

6 rll7 2
-
g

1 -2 -4 Uc

15 3 1
-
3

1 1 q

4 1 1 2 1 3 Lc

27 1 1 o 1 4 6 ec

3 2
3

2 (dC,Dc)

6 4 1 -1 1 1 2 o (vC,NC)

1 1 o 2 -2 -3 (l,L)

Y=- fo (?.7,"-}-%Qi
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 Table 3-14 (2-3)J

E, SU(6) SU(3)c SU(3), SU(2),
U(1),
2VfiQL

U(1)J2V3Q,

SU(2)J
U(1),6Y

SPecies

-Ei- 1 1 o 2 -4 Uc

2 -1 3 Lc

15 1 ug- 1 2 -2 1 6 ec

2 1 1 q

27 3 3 1 -2 o -2 D

5 1 1 o -1 2 (d,Dc)

5 2 -1 2 -3 (l,L)

l rll' 1 2 1 o (yc,NC)

y=-
el;-(?L--k-(?J

Table 3u15 (2-1)L

E, SU(6) SU(5).,, SU(3)c SU(2).u)
U(1),

2VI5Q,
U(l)3･n

2A5Q,･- SU(2),
U(1)y

6Y
SPecies

3 1 2 2 DC(dC)

-5-

1 2 -3
4

6
o

ec

vC (NC)

rt

3 2 -1

1

2
-
4

dC(Da)

Uc

af ib 3 1 4 -2 -2 D

1 1 -6 o NC(vc)

3 1 -2 1 q

6

5

1 2 3

1

2
3
-
3

Lc

L(l)

1 1 1 o -5 -3 l(L)

Y=-
Gg Qh + th Q3m+ 7-lli?(i)
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       Table 3-16 (2r2)L
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E, SU(6) SU(4) SU(3)c
U(1).-L

gV6Q,-, SU(2).
U(1),
2V6Q, SU(2).

U(1)y

6Y
SPecies

3 z
3

-2 D

-(;- g 2
-
-
g

1 2 2 Dc

is 5 2
3

1
2
-
4

dc

Uc

af r4

1 -1
2 -1

6
o

ec

Vc

1 1 o 1 -4 o Nc

3
1
r
m
m
E
r

1 q

4 1 1 1 -1 -3 l

6

1 1 e 2 2

2

3
-
3

Lc

L

y=- --Cil-(p.-,÷ 7-m,

Table 3-17 (2-3)L

E, SU(6) SU(4) SU(3)c
U(1)B-u

gveQ.-,･ SU(2),
U(1),
2V6Q, SU(2),

U(1).

6Y
SPecies

3

2
-
l
i
- -2 D

"Elr -liM 2
-
g

1 2 2 dc

ts 3 1
3

1
2
-
4

Dc

Uc

2
7
t i

1 -1
2 -1

6
o

ec

Nc

1 1 o 1 -4 o yC

3
1
-
-
g

1 q

4 1 1 1 -1 -3 L

6

l 1 o 2 2

2

3
-
3

Lc

l

   ,/6     QB-L'+ 7'ElrY=--   3
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Table 3-18 (2-4)L

E, SU(6) SU(3)c SU(3). SU(2).
U(1).
2VIiO.

U(l),
2VIiQ, SU(2),

U(1)v

6Y
SPecies

3 1 1 o -2 -2 D

I 3 2 1 2 6
o

e
[
vrt 1 -2 1 o Nc

2Tt i 3 2 -1 o
2
-
4

dc
Uc

1 2 2 Dc

3 1 1 o 1 1 q

6 1 3 2 1 -1 2
3
-
3

Lc

L

1 -2 -3 l

Y=- -tsQL + -jlg-QR + 7'}ii?

Table 3-19 (275)L

E, SU(6) SU(3)c SU(3), SU(2),
U<1),
2tsQi

U(1),
2VIIi(?, SU(2),

U(1)y

6Y
SPecies

3 1 1 o -2 -2 D

1 3 2 1 2 6
o

ec

Nc

Ft 1 -2 1 o yC

of 3
rmii" 2 -1 o

2
-
4

Dc
Uc

1 2 2 dc

3 1 1 o 1 1 q

6 1 3 2 1 -1 2
3
-
3

Lc
l

1 -2 -3 L

Y=- lii (?L+kQi+ 7'Zr
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Table 3-20 (3)R

E, SU(3)c SU(3), SU(3). SU(2),
U(1),

2BQL SU(2).
U(1).
2V!IQ,

U(1).

6Y
SPecies

2 1 1 a

3 3 1 1 -2 1 o -2 D

g 1 rli7
1
.

o 2 -1
2
-
4

dc
Uc

1 2 2 Dc

27
2 -1 2 1

3
-
3

Lc
L

1 -2 -3 l

1 3 3

1 2 2 1 6
o

e
:
v

1 -2 o Nc

YE! ts Q. +feQ. -}- [Z'lil,

Table 3-21 (3)i

E, SU(3)c SU(3), SU(3), SU(2),
U(1),
2VIiQ, SU(2),

U(1),
2V:iQ,

U(1)y

6Y
SPecies

2 1 1 4

3 3 1 1 -2 l o -2 D

-ii- 1 3 1 o 2 -1
2
-
4

Dc
Uc

1 2 2 dc

27
2 -1 2 1

3
-
3

Lc
l

1 -2 -3 L

1 3 3

1 2 2 1 6
o

ec

Nc

1 -2 o Vc

Y -'T
ts'(?L +- li;(?i + 7'Elr
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　Table　3－22　（3）∫

E6 Sσ（3）c Sσ（3）ム Sσ（3）∫ Sσ（2）L
σ（1）ム

Q凋〔2ム
Sσ（2）ノ

σ（1）ノ

Q語9ノ

σ（1）γ

Ur 助召6ゴ2s

2 1 1 σ

3 3 1 1 一2 1 0 一2 D
2 一1 2 （ゴ。，Dc）

歪 1 3 1 0 1 2 一4 Z4c

27 2 1 一3 （1，五）

2 一1 1 一2 3 五。

1 万 3 2 1 0 （レ。，2Vσ）

1 2 1 一2 6 召σ

r・ 処黷薰p・


