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Abstract

We study the gauge couplings and the soft mass spectrum within supersymmetric
E; grand unified theory. We examine how they are useful as the probe of physics at the
higher energy scale than the weak scale.

1 Introduction

The supersymmetric grand unified theory (SUSY-GUT) [1] has been hopeful as a
realistic theory beyond standard model. In fact, SUSY SU() GUT has been taken
interest by the LEP experiments [2] and predicts the long lifetime of nucleon
consistent with the present data [3]. However, it is difficult to regard SUSY-GUT as
the final theory because there are still several problems. First it does not describe
gravity, while the Planck scale Mp,; is around the corner. Second there exists a great
deal of arbitrariness on the model building. That is, a lot of freedom is left over on the
choice of matter multiplets and parameters. In fact, SUSY-GUT does not explain the
values of observed quark and lepton mass and the family number. Third it is not
known how to break supersymmetry (SUSY) and to get the desired low energy
physics yet. Last the fine-tuning is needed to keep the weak Higgs doublets light but
to make the colored Higgs triplets superheavy in the minimal SUSY-GUT.

It is expected that they are solved in more fundamental theories. Supergravity
theory (SUGRA) [4] is regarded as an attractive candidate. When we take SUGRA as
an effective theory at Mp;, some of the above problems can be solved. For example,
there exists such a scenario [5] that the spontaneous SUSY breaking occurs in the
hidden sector and the effect is meditated through the gravitational interaction and the
soft SUSY breaking terms appear in the observable sector. Then the form of soft
SUSY breaking terms is determined by the structure of SUGRA. As usual, the model
with the minimal Kahler function is chosen. Then the soft parameters take universal
values at the gravitational scale M =Mz/+87, i. e., the global SUSY model derived
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from SUGRA with the minimal K&hler function has the universal scalar mass s, the
universal scalar trilinear coupling constant A and the universal mixing mass
parameter B given by B=A—m,. (The universal gaugmo mass M, is derived from
SUGRA with the 51mplest non-minimal gauge kinetic function fss=S 6Su.) The values
at the low energy scale are obtained by the use of renormalization group equations.
The analyses based on the minimal SUGRA are quite interesting because it has high
predictabilities and testable enough, but it is difficult to say that this approach is
natural from the following reasons. First there is no strong reason that realistic
SUGRA takes the minimal structure. In fact, the effective SUGRA derived from
superstring theories (SSTs) have, in general, non-minimal structures and they can lead
to the effective theories with non-universal type of soft parameters in the flat limit [6].
Second the effects of intermediate physics'are ignored in the analysis of the running of
parameters. For example, the discrete change can occur at the symmetry breakings
scale for the models with certain unified gauge symmetry. Therefore it is generally
natural that we expect that measurements of soft parameters at TeV region give
useful informations for the GUT scale physics rather the Planck scale one. (They will
give a clue to resolve the Planck scale physics only in the case that the effects of
intermediate physics are absent or neglected.)

In this paper, we study the utility of the gauge coupling constants and soft masses
as the probe of GUT scale physics based on SUSY E; GUTs. The first half of our
strategy is the same as the analyses before [7] [8]. That is, on the postulation that the
minimal supersymmetric standard model (MSSM) is established as an effective theory
which describes the physics of O(1) TeV and the precise measurements of the gauge
couplings and soft masses can be carried out, we examine how they are useful as the
probe of GUT scale physics. In the second half, we investigate the scalar masses based
on a gauge coupling unification scenario with chain breakings. And we get new type of
scalar mass relations which can be useful to select further the pattern of gauge
symmetry breakings.

The content of this paper is as follows. In section 2, we review the unification of
gauge coupling constants and the soft masses in the framework of MSSM and the
minimal SUSY-GUT. In section 3, we give three examples of E, gauge unification
scenario with intermediate gauge symmetry breaking consistent with the LEP data. In
section 4, we derive the characteristic relation among scalar masses for these
examples. It is also given all the tables with the particle assignments and the scalar
mass relations for other F; breaking patterns. In section 5, we obtain new type of
scalar mass relations by adopting the gauge coupling unification scenario discussed in
section 3. The conclusions are given in section 6.
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2 Gauge couplings and soft masses

Let us first give a brief review on the usual unification scenario of gauge coupling
constants [9] and the renormalization flow of soft masses [10] based on MSSM.
The renormalization group equations (RGEs) of gauge couplings «; are given as

ﬂ%ai_l (= _ZL;t (1

at one-loop level. Here b; are the coefficients of the beta function and p is a energy
scale. If the particle contents of MSSM and the precise measurements at LEP are used,
the structure constants, as, @, and a (E%a/y) of the ‘standard model géuge group’ Gsu
=SUB) e X SU@) X Uy meet at the scale

Mx~2.1X10"*GeV ' (25

and the value at My is obtained as
wr=aMO~5s G=1,2,3. (3)

This fact suggests that Gsy is possibly unified in SU (5) gauge group economically. (It
is regarded as one of the indirect evidence for SUSY.) We call the above scenario the
‘minimal unification scenario’.

Next the running of gaugino masses M;(x) vields to the following RGEs at
one-loop level [10],

i M) _
AR Y

and this equation is easily solved as M;(u)/a;(u) = const. In the ‘minimal unification
scenario’, the following boundary conditions are imposed on

Mevr=Ms(Mx) = Me(Mx) = M (Myx) (5D
and | |
acur=as(Mx) = ae(Mx) = on (Mx) (6)

because of the unified gauge symmetry at Mx. So we get the interesting relation

Ms() _ MaCu) _ M) _ Meor 7
a@(#) az(p) al(/-t) deur

This relation is called the ‘GUT relation’*.r
Last we consider the running of masses m, of scalar fields ¢.(x) in MSSM. The
one-loop level RGEs of them are as follows [10],
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e = — LS CURD @) M)+ - Yo (1) S (1), (8)
S = (DS, (9
S =3 Vanamo()* | (10)

where ¢ represents the gauge group, « the species of the scalar, C:(R#) the
second-order Casimir invariant of the gauge group ¢ for the species @ Y, the
hypercharge and #, the multiplicity of the species a. In Eq. (8), we have neglected the
Yukawa coupling contribution. This approximation should be valid for the first-and the
second-generation fields. It is straightforward to generalize our results to the
third-generation fields by considering the effects of Yukawa couplings. The
contribution from S is usually ignored since it is absent under the assumption of the
universal scalar mass. For MSSM, it isT

S =ml—mi+ gene%}t.ons(mf— 2ma -+ miE— mi+mi). an

Solving the above RGEs (8)~(10), we obtain

MaC12?= a0y = B2 Co R (M~ M 20)®)

+ 55 Ya(S (=S (), a2
S (=25 (). (a3

Once we obtain the value of S at the weak scale by measurements, we can easily take
its contribution to the scalar masses into account. Therefore the uncertainty on S does
not prevent us from going further. If we observe the gauge couplings and the soft
masses and measure their values precisely, we can obtain the values of scalar masses
at certain higher energy scale, e.g. Mx, by using the above solutions.

We comment on an assumption of the universal soft SUSY breaking terms briefly.
As usual the following universal type of boundary condition at M (or Mx) is taken,

7%()2 = maz (14>

for scalar masses and

* We neglect both the threshold effects [11] and the ‘gravitational’ corrections [12] which can
violate this relation. And two-loop effects violate this relation, but it is small [13].

t We refer to the chiral multiplets as ¢ for left-handed quark, [ left-handed lepton, # right-handed
up type quark, d right-handed down type quark and ¢ for right-handed charged lepton. The tilde
represents their scalar component. m,% and m,? stand for the soft SUSY breaking mass terms of
the Higgs with hypercharge —1/2 and +1/2, respectively.
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M= M; (15)

for gaugino masses. The condition (14) is motivated by SUGRA with the minimal
Kdahler function. And the condition (15) is motivated by SUGRA with the simplest
non-minimal gauge kinetic function or certain unified gauge symmetry. The various
predictions at low-energy physics are derived by fhe use of RGEs of MSSM and the
constraints in SUSY-GUT, the particle cosmology and so on based on (14) and (15).
But the assumption (14) is not necessarily proper as described in the introduction.
Hence we do not impose it in our analysis.

3 Chain breaking scenario

In the last section, we have explained that the ‘minimal unification scenario’ is
supported by the LEP experiments. There exist, however, many scenarios based on the
various models of SUSY-GUT consistent with the LEP data if the concept of
‘simplicity’ is put aside. For example, there exist the following three types of them
where the unification scale is the same as that of the ‘minimal’ one.

1. The direct breaking of the larger group than SU (), e.g. SO(10) and FE,, down
to Gsnu.

2. The models with extra heavy generations.

3. The models of SUSY SO(10) GUT with the chain breaking [14] [7].

In this section, we discuss the unification scenario with chain breakings based on
SUSY E; GUT [15]. There are so many possibilities that E; breaks down to Gsy such
as

Eg— --en — Gp— Gsu. 16

which cannot be selected unless the dynamics of symmetry breakings are clarified. The
chief subgroups of F; are listed in Table 1. Here we shall exemplify the following three
breaking patterns

Ex. D B SUG X UWx U2 Gy an

Ex. 2 B su®xsu@i 2 Gu as)
and

Ex. D B SUG X Uy x SU@ Y2 Go, 19)

and obtain the particle contents consistent with the LEP data. It turns out that the final
breaking scale Msp agrees with the unification scale Mx in the ‘minimal scenario’ for
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Table 1. The chief subgroups of E;

O E D SO10)x UL, ‘ @
SUB) X SU(2)z (2)z
SU6) X SU@), @)
SU6) X SU(2), (2)
SU®) X SUQ@). @
SUG)e X SUB). X SUG)x (3)
SU3)e X SU3). X SUB); @3
SUR)e X SUR)L X SU3), 3),
Q) SouOxUd), D SUGXUQL),XU), a-1
SUG)rx UL, x U(1), (1-1)r
SUM@) X SU@2).x SUQ@)x x U(L), (12
SUM)X SUR).x SUQ); x U(L), (1-2),
SUM4) % SU2). X SUQ2); x U(L), 1-2),
@ SUG)XSUQRe D SUG)X U(L)yXSUQ2)z (21
SUMA)X SUR). X SU@)x X U(1), (2~2)e
SUB)e X SUE) X SUQ)e X U(L)z 2—3)s
@): SUBXSUE@); D SUG)rx ULy SUQ); @-1)
SUMA) X SU2). X SU2); % U(1), 2—2)
SUB)e X SUE)L X SUER); x ULy, @2-3)
@), SUG)XSUE), D SUG)X U)X SUR); 21y,
SUMA)X SUQR). % SUQ); x UQ), (2-2),
SU@E)e X SU@)L X SUQR); x U1, (2-3),
@ SUG)XSU@)L D SUG) X U)X SUQ). @1,
SUM) X SU(2)e X SUQ). X U(1), 2-2).
SUM)X SU(2); X SU2). x U(L), 2-3).
SU@)e X SUB)r X SUQR). X U(L). (2—4),
SUB)e X SUG) X SU @) X U(L)L (2-5),
B SUR)eXSUGLXSUB): D SUEB)ex SUG).X SUQ)x ULz

@)

@)

SUB)e X SUQ)L X U)X SU(3)x
SUB)e XSU@)X U1) XSUR)e X U1)r

SU@BYe X SUB).XSUB): D SUEB)eXSUE)XSU2)x UQ):

SU@E)e X SUR)x U)X SU@B)
SUB)e XSU@) X U)X SU@) X UQ1):

SUBYc X SU@IXSU@); D SUB)eXSUB) XSUQ); x U(1),

SU@R)eXSUR)L X UQ)xSUM);
SUB)e X SU@)L X U)X SUQ2), X U(1),
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all the above examples on the postulation that the physics below Mss is described by
MSSM.

For (Ex.1), we have a relation among the structure constants a; ( 5%0’}'), asr and

ays at Mss such as

25_ 1 24
a1 as5F a1 (2)

@0

where we denote the structure constants of SUG)r and U(1), as asr and aie,
respectively. Here the gauge group SU ) » X U(1), corresponds to that of the flipped
SU (5) model [16]. Provided by the unificaion of the gauge couplings of Gax is realized
at My from the LEP data, the relation asr(Mx) = a; (Mx) holds and so the accidental
relation asr(Mx) = a1 (Mx) is derived. On the other hand, the relation acur=
asr (My) = aoy(My) holds because of E, gauge symmetryf. There exists a scenario
that the relation asr(u)=ay () holds from My to Mx. In this case, we have a
constraint bs= by;). As an example of the anomaly free particle contents which satisfy

bsF‘: by, we can find the following one, 3((5, Zr 2/_> + (10, — 2@’ 2—@> + ?1, -

_5 1 . .
2/10" 2 JE)) for matter multiplets, (24, 0, )+, 0, Q)+ @, 0, 0) for gauge multiples

1 1 2 — 1 1
T f>+(5 1/1—, 76‘)+(1, 0,“‘/—6))+6((10,m,§\/_€)+(10,—

1 1 g . \ .
210" 276 fD for nggs multiplets under SUG)X UQ), X U(1),. In such particle

and 3((5,

contents, we have bsp= by =12.

For (Ex.2), the relation as(Mx) =aw; (Mx) is derived by the use of the LEP data
where a; and a.; are the structure constants of SU(6) and SU(2),, respectively. And
E; gauge symmetry yields to the relation acuvr=ae(Mv) = ae; (My). Hence there exists
a constraint b= b,; in the scenario that the equality ws(u) = oo (1) is kept from My to
Mx. As an example of the particle contents which satisfy b= b2, we can find the
following one, 3((6, 2)+ (15, 1)) for matter multiplets, (35, D+ (1, 3) for gauge
multiplets and 4((15, 1D+ 5, 1))+ (6, 2) + (6, 2) for Higgs multiplets under SU (6) X
SU(2) .. In such particle contents, we have b= b, =9.

We consider the final example. In the same way, the relation

1 3 1.5 1
a’sF(Mx) 8 01(3')(MX) 8 aZI(MX)

@D

is derived phenomenologically by the use of the LEP data and the relation among
charges ’

I Here we ignore the effects of higher dimensional operators which split the values of @ (M) and
oz (My) on the E; breaking. For other two examples, we ignore the same effects, too.
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=1 7o 3 3
Y—* JE 5F+ JE Q3’+ TZI (22)
where we denote the structure constants of U(1)y and SU(2); as aey and au,
respectively. If the group is further embedded into the £y group, then there exists a

constraint dsr :%bua')‘f‘%by in the scenario that the equality asr ()™ :%m(a,)(#)ﬂ_,_
%ale ()™t is kept from My to Mx. If we choose the particle contents as follows,
5, 1 10, 1 1
3((5, 2[«, 2+ «/_ )4 ( J_ )+, 2«/_’ 2)) for matter multiplets,
(24,0, D+, 0, L+A, 0, 3) for gauge multiplets and (5, ZJ_’ 2)+ (5, ZJ_' 2)+
1 . .
5((10, J_ D+Q0, — T 1)) for Higgs multiplets under SUG)» X U)X SU(2);,

we have bsr :§b1(3l) +§521 =11.

We can construct the similar unification scenarios for other breaking patterns
[17].

It is difficult to distinguish these scenarios by the use of the precise measurements
of gauge couplings alone. Hence it is an important task to study how we can
discriminate among them by other experimental methods.

It is expected that the soft SUSY-breaking mass parameters can be novel probes
of physics at higher energy scales. In fact, their utility has been examined in Ref. [7].
Let us recall the results again. The gaugino mass spectrum satisfies the ‘GUT-relation’
as far as ‘standard model gauge group’ is embedded into a simple group, irrespective
of the symmetry breaking pattern, while the squark and slepton mass spectrum carries
the information on the breaking pattern of the gauge symmetry. Therefore, the
gaugino and the scalar mass spectrum play a complementary role to select among the
models of SUSY-GUT experimentally. As an explicit example, it is demonstrated how
the scalar mass spectrum distinguishes various SO (10) breaking patterns from each
other. Furthermore the scalar mass relations for E; gauge symmetry breakings are
given in Ref. [8].

We shall explain the above-mentioned consequence of the gaugino masses by using
the third example. The SU(3)¢ and SU (2), gauginos come from the SU(5)r gaugino
and remain unbroken at Mx and so the following equalities hold

Ms(ll) — Mz(ﬂ) — Msr(Mx) — Meur (23>
a/s(#) a’z(#) asr (Mx) deur

for the SU(3)¢ gaugino and the SU(2). gaugino. Here Mcur and Msr represents the
Es; and SU(5)r gaugino mass, respectively. There is a complication for the Uy
gaugino because it is a mixture of SU(B)r, Uy and SU(2); gauginos. The gauge
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fields A" mix as gilAf Zhgs}l%Aé“F" +g1_<31')~g—A{'<3')+gz’1‘ 1/%A§1“ , and the gaugino
fields A mix correspondingly as

L, 1 1w, 1 3 1 /3
gl/h G 5/15F"|' i 5/11(3')+g21 5A21 (24)

as required from SUSY. Thus the relation for the U(1)y gaugino mass is given as

M — M (M) 1 Msr(Mx) | 9 My (Mx) +~:i Mor (M) - Meor (25)
on () a(Mx) 25 asr(Mx) ' 25 aus(Mx) 5 ar(Mx) Qcur

where Miay is the U(1)y gaugino mass and the solution to the RGEs for gaugino
masses is used. From Eqs. (23) and (25), the gaugino masses M;, M, and M, satisfy the
‘GUT-relation’ (7). Exactly the same argument applies to the first, second examples
and other breaking patterns as well.

Hence the gaugino masses give no information of gauge symmetry breaking
pattern and we need the other probes. In the next section, we show that the scalar
masses can be useful.

4 Scalar mass relations

In this section, we examine how the scalar masses are useful to select the pattern
of gauge symmetry breakings.

Suppose scalar species g, b, ¢,--- belong to a single multiplet R under G,. One
naively expects a kind of ‘unification’ of the scalar masses at Mss as

WLE(MSB)ZZmb(MSE)Z:mC(MSB)ZZ """ =mg> 26

There are some factors that the above ‘unification’ is violated.

First the threshold effects due to the heavy particle loops can give further
corrections to the Eq. (26). However, it is expected to be of the order of O (a/z) just
like in the case of the gauge coupling constants [18] or gaugino masses [11]. It can
be important only when there are large representations in the loops or large splitting
among the heavy multiplets producing large logarithms.

Second effect may come from the ‘gravitational’ corrections, like higher
dimensional non-renormalizable interactions. Such corrections are suppressed by
powers of Mss/Mp;. They can be important if Mss is close to Mp..

§ Historically, it was demonstrated that the D-term contribution occurs when the gauge symmetry
is broken at an intermediate scale due to the soft SUSY breaking terms in Refs. [20] and its
existence in a more general situation was suggested in Ref. [21].

9) It is known that the non-universal soft SUSY breaking parameters emerge in the effective theory
derived from superstring theory [6]. Even if they are universal at the Planck scale My, as in the
minimal supergravity or SUSY breaking by dilaton F-term, the radiative corrections between M
o and Mgz generally induce non-universality.
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Table 2. The list of scalar mass relations

Here gnx is the gauge coupling constant of SUMNV)x. The gauge group SU(5)r»X U(1)a»X SU(2)L
is one of subgroups of SU(6) X SU(2). and the two kinds of particle assignments exist corresponding
to the choice of SU(2)z or SU(2); as the subgroup of SUB)r», We assume that the Higgs doublets
H, and H, belong to a multiplet of another 27 (or 27) of E,. The asterisk ( * ) represents the scalar
mass relation derived under the assumption of ‘flavor’ universality at Mss. Here the assumption of
‘flavor’ universality means that #z)’s take the same value for the same type of representation.

G . Scalar Masses

E; mat=mp,
mat = mgt = md,
= my = g — ma

SOQ0)x U1, ma*=mp,
ma® = m,yz = WLEZ, (a)
myt— myt=ma®— mi®
mat=mp,
ma®= msz - me'z, (b)

m?— mP=mi—mg (%)

SUGYX UL):>x Ul

mat= mi? s
ma® = mg® = ms*

SUE)r X U)X U(1)
SUMA)XSUR)LXSUQR)e X U(1)s

mg?— mat=ma®— mi

mit— mg? = ma®— mé,
gznz(mﬁ - m:zz) :gf(mliz —mi?),
me®— myt = mat— mi?

SUB)e XSUR): X SUR)e X UL)p- X U(1)
SUAYXSU @)X SU2); x U1,

w2 1 2= mat— e

&r*(myg® — m )= g (i — my?), (%)
&t (met— ma?) = (gt — 21" (mi*—m,d (=)
mit— mg? = ma*— mé,

G’ (mit—mg®) = gs*(ma> — ma®),

et —my = mat— mad®

SUB)X SUQ2)x

2

SUB)r X U1)s X SU(2)r M — My = ma*— ma

SU6) X SU2): mg?— mat= ma® — mi*
SUB)r X U)s X SU2): mg— ma*= mg®— mi*
SU(6)x SU(2), mat=mp,

ma®= qu =me*

SUBG)X U(1)sxSU(2),

| mat=mp,
ma® = mg’ = ma*

SUB)XSU@2). W2 — my = ma®— ma*= mi*— mg’,
WLﬂZ:ngz
SUB)r» X U1z X SU2)L et — = ma®— ma®, (SU(2)r)
or

ma*— ma = wmi*— mg?, (SU2):)

my — m = ma?— mai?,
G (M2 — mP) = ga (ma®— ma® + mt— mi®) (%)

SU@B)e X SUB) X SUB)r

SUR)e X SUB) X SU2)e X U(1)r

my?— = ma® — ma

SU@B)e X SUQXUL) X SUB)#

my?— my = mat— mi?

SU@B)e X SUQR) X UML) XSUR)r X U(1)e

Myt — m 2= ma®— ma?

SUB3)e X SUB) X SU(3):

myt—mt = ma*— mid,
Gur (Mg — mP) = ga(ma*— maP+ mp?— mi?) (%)

SU@B)e X SU @)X U(1). X SU(3):

Wy — 2= ma® — ma

SUB)e X SU3)L X SU(3),

Wy — m 2= ma® — ma?,
8o/ (M2 — m?) = gL H(mad® — ma®+ 2 — mi?) (%)

SU3)e X SUQ2). X U(1)L X SU(3);

Wp? — myt = mat— ma®
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We neglect the above two effects in this paper. ,

Third effect is significant. There can exist additional tree level contributions to
scalar masses from F-term and D-term after the heavy fields are integrated out [19]}
and the scalar mass formula is given as

WLa(MSB)ZZ m1?(a)2+ ZgﬁQl (¢a>Dl + (F_ t€7m3>- (27)

Here the mzr's represent the soft mass parameters of the scalar fields ¢, included
in R (&) representation of G, and show a kind of ‘unification’ in the unified theory based
on the gauge group G,. (Note that the assumption that the soft mass parameters have
a universal structure is not imposed on. It is only assumed that the mg)’s respect the
gauge symmetries.) The second term on the right-hand side of Eq. (27) represents the
D-term contributions to scalar masses on the symmetry breaking which violate the
‘unification’. The g/’s and @:(¢.)’s are the gauge coupling constants and the diagonal
charges related to the broken gauge symmetry respectively, and the D;’s are the
quantities which depend on the heavy field condensations. One can show that the
sizable D-term contributions generally exist [19] when the soft SUSY breaking terms
in the scalar potential are non-universal " and the rank of the group is reduced due to
the gauge symmetry breakings. When E; breaks down to Gsu, the rank is reduced by
two and the D-term contributions are expressed by two parameters. The third term
(F-terms) represents the contributions from F-term. We assume that they are
negligible. This assumption is justified for the unified theory with a certain type of
non-universal soft SUSY breaking terms when Yukawa couplings with heavy fields are
negligible and there exists no heavy field with the same quantum number as usual
matter fields.

In Eq.(27), the free parameters are #mr's, Di's and Mss. And if the number of
independent equations is more than that of unknown parameters, the non-trivial
relations among scalar masses exsist. The scalar mass relations for E, gauge
symmetry breaking patterns have been already obtained [8]. We give the result in
Table 2 again for a completeness.

Here we shall explain how they are obtained for (Ex. 1) where G,=SU(5)r X
U (1), x U(1),. The particle assignment and quantum numbers are shown in Table 3
-2. The scalar masses satisfy

ma(Mx)?*=mu?+Di+ (—%gst”l‘z%gl(mz) - I, 8
mi(Mx)? =md+ Dy~ (T%ng‘}‘z%gumz) - D, 29

ma (M) = i+ D+ (gor =g + D, (30)
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MM = mugt + Dit Gogor™ + 2 gio® » D, 3D
meM)?=mi+ Di+g gt D, 32
(M= msn*— 2D~ (g — kg « D, 33)
maCM* = s 2D — (s o+ ™ + D, 30

where m,,2 m* and m,® are the soft SUSY breaking masses for sfermion fields with the
representations 10, 5 and 1 under SU(5)r and ms,2 and msx? are those for Higgs fields
with the representations 5 and 5 under SU(5)r. The following relation is derived by
the elimination of 0%, ms* and D',

mi(MX)Z_ mJ(Mx)2: mﬂ(MXDZ_ m;(MX)Z. (35)

We get the same relation (35) for the second and third examples. In the same way,
we can obtain specific relations among scalar masses at Mss in other breaking patterns
by using the particle assignments under Fs subgroups given in Table 3-1~3-22.
Therefore we can get the information on the final stage of pattern of gauge symmetry
breaking by measuring the scalar masses precisely and checking the scalar mass
relations.

We give two comments.

1. The same results hold for its U (1) subgroup in place of SU2)rqu.p).

2. We notice that the common relations appear in the wide class of E; breakings.
This fact originates from the G, gauge symmetry and the matter assignment. Here
we explain it by taking an example. The relations mas=wm; and m,= m,;= m, are
obtained for G,=£F;, SOUQ)XUW),, SUG)X UML), xU1),, SU®B)XSU2),
and SU (5) X U(1)3-X SU (2),. This is due to the fact that the above groups include
SU(5) as a subgroup, and (d, 1) and (& g, & belong to 5 and 10 of the SU(5),
respectively.

5 Additional scalar mass relations

As pointed out in the last section, we find that the same relations hold for the
different chain breaking patterns. In this section, we show that the additional scalar
mass relations are derived for some breaking patterns by adopting a scenario of the
gauge coupling unification discussed in section 3 and they can be useful informations
to select the breaking patterns further.

First we write down the RGEs for scalar masses #r(y above Msz,

ﬂd—‘immm(u)z: —L3C(RD ) M )*
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5 TRl 1) S5, 36)
8 =i Sy, @D
Si= 23 Qo nr iy mrca, (38)

where 7 runs all the gauge groups, but j runs only U (1) gauge groups whose charges
are Q¥,. Here we used the anomaly cancellation condition Xz C2( R Q¥ #rwy= 0
and the relation of orthgonality 2k Q¥ @F b nr@y=0 for j#;’. The solutions of the
above RGEs are given as

e (1= (o) = S1=CoC R (M1 = M)

+ T QM (S (= i), (39
S = “(% i) 40)

For the breaking pattern

Es My G Msy G, “n

the mass formula at Mg is
MR (a) (M53>2 = WL27Z - E%Cz (R?) (Mi(MSB)Z - MGUT2>
+ %}—blsz(ej3a)Sj (Ms)* (42)

where we use the relation me (My)?=ma’, M;(My)?*=Msur® and S;(My) = mx*2ira
Q¥aynry= 0. Here we impose the condition that the decouplings of particles occur
keeping the relation 2z @¥mnr@= 0. Then we have the further relation S;(Mss) =
0.

Now we take the breaking pattern (Ex. 1) as an example and derive the scalar
mass relations. The values of second-order Casimir operator are given as C(RID=

Cz(R F) - and Cz(R:w) 0 for SU(5)F And those are Cz(Ruz)) 40, CZ(R](Z)) -
490, CZ(RI(Z)) fOl‘ Uz and CZ(R1(1)>‘_i, C2<R§<1>) :”2%1‘, CZ(RII(I)):Z( for U(:.

We consider the model with bsr= by(;. This model has the relations asr () = 15 (1)
and M5F (ﬂ) :Ml(z) (/l)
The solutions of scalar masses are as follows,

"This relation agrees with the gravitational anomaly cancellation condition.
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mlOF(ﬂ)ZZ Wl272+ (Cz(Rslg) + 02(1311?2)))]‘2521«"‘*‘ Cz(Rll(Ol)) Mlz(l), (43)
Wi F (#)Z: Wl27z+ (CZ(R§F+ C2<R§(2)))M52F + CZ(R§(1)>M12(1) (44}
and

mar ()= mart+ (Co(Rér) + Cz(Rll(z)))Mst + CZ(RII(IDMIZ(I) 45)

where M:’(#)ZE*’%"(MGUTZ_ Mi(ﬂ)z) .

By the use of the above solutions, the scalar masses at Mx are given as

ma (M= ety + 2012~ 3D, (46)
mi(Mx)* = g+ %118 — 3Dy, "
e = b+ Bt D, (48)
(M= i+ 212+ D, 49
mM)* = g+ 0 + D, €

where ﬁ’t%7~=~mZ72+D1+iM1z(1) and DFE%gSFZ' D’. The number of unknown

parameters is three, i. e. (W3, M2, Dr), and the number of independent equations, i.
e. (46)~(50), is five, so there must exist two relations. In fact, we get the following
relations,

mg(Mx)* — ma( M) * = ma (M) — ma(Mix)* 6D

and
2 CmaCM)?— M) = ma M)~ moC M) (52

The Eq. (562) is a new relation. Note that only the relation b&;r= by, is used in the
derivation of the above equations and we do not have to know the particle contents
above Mx.

For (Ex. 2) we obtain the relation,

Wlﬂ(Mx)Z: %(MX)Z (53)

by adopting the unification scenario discussed in section 3.
When the same method is applied for (Ex.3), no additional relation is derived.
So we can discriminate among three examples by checking the relation (62) and
(563). The same method is applied for other breaking patterns and some new type of
relations can be derived [17].
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6 Conclusions

We have studied how the gatige couplings and soft mass spectrum are useful to
probe the physics at higher energy scales within supersymmetric E; grand unified
theory. We have given a scenario of gauge coupling unification based on three types of
Es chain breakings (Ex. 1), (Ex. 2) and (Ex. 3). It has been pointed out that there exist
many gauge coupling unification scenarios based on SUSY Ey GUT consistent with the
LEP data. Since the ‘GUT relation’ holds for all chain breakings in the grand unified
theories, the gaugino masses give no information of gauge symmetry breaking pattern.
On the bther hand, the scalar masses can give a useful information. We have obtained
the scalar mass relations specific to the Fy breaking patterns. It is impbrtant that the
specific relations hold without specifying the particle content above the symmetry
breaking scale from the group theoretical reason. We can select the final stage of some
chain breakings by checking scalar mass relations. But it is not easy to carry out the
complete selection of gauge symmetry breakings since the same relations hold in the
wide class of SUSY E; GUTs. The other powerful information is needed to specify the
pattern of symmetry breakings further. Additional relations derived by the
consideration of the physics beyond Mss can be the candidate. In fact, we have derived
the new type of relations specific to the breaking pattern Fs— SUG) X U(1), X U (1),
—Gar and Es— SUGB) X SU(2);— Gsy. It is important that they are derived not by
specifying the particle content above Mx but based on a scenario of the gauge coupling
unification.

In conclusion, the measurements of the scalar masses will give a big impact on
high energy physics in the future because it is expected that scalar mass spectrum
owns a useful information on the pattern of gauge symmetry breaking in SUSY-GUTs.
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Table 3-1~3-22 The particle assignments and quantum numbers
under E; subgroups

We refer to the chiral multiplets as ¢ for left-handed quark, / left-handed lepton, # right-handed
up type quark, 4 right-handed down type quark, e right-handed charged lepton and v right-handed
neutrino. The ‘exotics’ are denoted as D, D¢, L, L° and N° whose quantum numbers under Gsy can
be read through the Tables. The superscript ¢ represents their charge conjugated states. We take
the following normalization for the U(1): charges @,

2
227: Q=3
and for the U(1)y charge Y,
2 Yi=5.

27

The assignment that d° and [ lie in 16 of SO(10) is case (a) and assignment that they lie 10 of SO(10)
is case (b) in Table 3-1 and 3-2.

Table 3-1 (1-1) (a) (b))

Ea| S000) | sUG) | su@. | suen | JARe | e A Species
3 1 2 de(D%
5 1 2 -3 3 1D
3 2 1 q
16 10 3 1 —4 -1 1 u®
1 1 6 et
27 1 1 1 0 —5 V(N
3 1 —2 D
5 1 2 3 2 e
10 3 1 2 -2 De(d®)
5 1 2 -3 -2 LD
1 1 1 1 0 0 4 NeG®)
5



38

Yoshiharu KAWAMURA

Table 3-2 (1-1)r (a) (b))

3

Ul)r u) U(l) Ul)y .
Es| SOQ0) | SUG)r | SU@)c | SUQ@L |, J15Qr | 2 méz 9 Jéd 5y Sbeczes
3 1 2 —4 u®
5 1 2 -3 3 -3 D)
3 2 1 1 q
16 10 3 1 —4 -1 1 2 d°(D%)
1 1 6 0 ve(N®)
27 1 1 1 0 -5 6 e
3 1 -2 -2 D
5 1 2 3 2 3 Le
10 3 1 2 -2 2 D(d®)
5 1 2 -3 -2 -3 LD
1 1 1 1 0 0 4 0 NeQ®
=1, 4
Y— /Ig QF m QZ
Table 3-3 (1-2)&
Y .
Es| SO@0) | SUM@ | SU@B) | SUE@) | SU@)« _g_ 605 | 276 Ql; 6y Species
_1
3 3 1 q
4 1 2 1 1 -3 [
2 de
16 3 1 1 4 ut
3
1 1 2 6 et
27 1 -1 0 Ve
3 Le
1 1 2 2 0 -3 L
2
10 3 T -2 -2 D
__ 2 ¢
6 3 1 1 -5 2 D
1 1 1 1 1 0 4 0 N¢
Y= **QQB—L‘F T23R
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Table 3-4 (1-2);
U | g U _
Es| SO0) | SUM) | SUB) | SU@). | SU@): % 6010|2760, oy | Species
1
3 —‘g 1 q
4 1 2 1 1 -3 L
2 D*
16 Kl L 1 —4 e
T 1 2 6 e°
27 1 -1 0 Ne
3 Le
1 1 2 2 0 -3 !
10 3 % —2 -y D
__ 2 ¢
6 3 1 1 -5 2 d
1 1 1 1 1 0 4 0 Ve
= *@Qaﬁu-i- 75
Table 3-5 (1-2),
E| Soa0) | suw | su@. | sue. | sve g D v L Uy | g
6 c L ; ?JGQI%L" 260 6V pecies
1
3 “3 1 q
4 1 9 1 1 3 Le
16 T % 1 2 | Do
27 4 1 1 2 -1 0 (v¢, N9
1 1 2 2 0 -3 U, L
10 3 % ) — 9 D
6 3 1 1 - —4 ut
1 1 1 1 1 0 4 6 e°
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Table 3-6 (2-1)z

U)r 0] Uu)y .
Es| SUE) | SUG) | SUB)e | SUQL |, 150w | 2 Jﬁéa SU2)x s Species

3 1 -2 -2 D

5 1 2 3 —4 -3 l

15 3 2 1 1 q

10 3 1 —4 2 1 2 De

1 1 6 0 Ne¢

27 2 d°
3 1 2 — 4 u®

5 -1 3 Le

6 1 2 -3 2 -3 L

eC

1 1 1 0 5 e

V= Qrt Qo t T
J15 J15
Table 3-7 (2-2)&
U(l)E—L U(l) U(l)
v .
Es| SU(@) SU4) | SU@B)e % J6Qss SU@. | Jédl SU(@2)x % Species
2

3 T -2 D

—_ 2 N A

6 3 -5 1 2 2 D

1

15 3 Y 1 1 q

4 1 1 2 1 -3 [

1 1 0 1 4 0 Ne

27 2 d°
I 1 ¢

3 ? — 4 U

4 1 1 6 e

6 1 -1 2 0 Ve

3 Le

1 1 0 2 -2 -3 L

Y= ""Q_GQE—L + T
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Table 3-8 (2-3)x
Es| SU®) | SU®G | SUG. | sU@. 2%1222 2%1& su@e | YD | Species
3 1 1 0 2 2 D¢
2 -1 -3 !
15 1 K 1 2 -2 1 0 N¢
2 1 1 q
3 3 1 -2 0 -2
27 2 d°
3 1 1 0 -1 — 4 u®
3 e
6 2 -1 2 -3 L
1 3 1 6 et
1 2 0 ve
YELQL +LQR+ Tie
J3 3
Table 3-9 (2-1);
B sue | sue: | su@e | su@n | Y85 | YRS | suen | G| species
3 1 -2 -2 D
5 1 2 3 —¢ -3 L
15 3 2 1 1 1 a
10 3 1 — 4 2 2 de
1 1 6 0 Ve
27 2 De
3 1 2 —4 u®
5 -1 3 Le
6 1 2 -3 2 -3 /
6 e’
1 1 1 0 5 0 N°¢

1l 3 o
Y= mQF+JEQa+7}1
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Table 3-10 (2-2);
U1z
uq) U(l)y .
Es| SU®) SU@ | SU@B)e % 60| SUGL | 4 JEQZ SU®2): 6y Species
2
3 5 -2 D
__ 2 c
6 3 -5 1 -2 2 d
1
15 3 -3 1 1 q
4 1 1 2 1 -3 L
1 1 0 1 4 0 Ve
27 2 D°
—_ 1 c
3 T — 4 U
s 1 1 6 et
6 1 -1 2 0 N¢
3 Le
1 1 0 2 -2 -3 /
y=_-16 3
- 3 QB—L’+ Tzl
Table 3-11 (2-3),
E.| SU®) | SUB: | SUB. | SU@)L 2%%1 2%%, su@; | YL | Species
3 1 1 0 2 2 d°
2 -1 —3 L
15 1 3 1 2 -2 1 0 Ve
2 1 1 a
3 3 1 -2 0 -2 D
27 2 D°
3 1 1 0 -1 -4 u®
3 L¢
6 2 -1 2 —3 l
1 3 1 e®
1 2 N¢

Y E%QL-F%Qﬁ 35
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Table 3-12 (2-1),

43

U)x U(1)s .
Eq SU(6) SU(®5) SU@3)c SU@2) ZJEQ;. 21/1—5@3" SU(2), Species
3 1 -2 D
5 1 2 3 — 4 Le
15 3 2 1 1 q
10 3 1 —4 2 u®
27 1 1 6 e’
3 1 2 (@, D
6 5 1 2 -3 -1 2 , L
1 1 1 0 5 (vé, N9
YEth
Table 3-13 (2-2);
: U)a-rn
(1) U(l) .
Es| SU(®) SU(4) SUB)c %/@Qa-uf SU@): 2\/§Q11 SU2), 6YY Species
2
3 3 —2 D
— 2 c
6 3 ) 1 -2 —4 u
1
15 3 3 1 1 q
4 1 1 2 1 3 LE
27 1 1 0 1 4 6 e
— 1 c c
3 5 2 d°, D%
6 4 1 -1 1 1 2 0 (v, N°)
1 0 2 —2 -3 U, L)
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Table 3-14 (2-3);
Es| SU®) | SUG) | SUG). | SU@): 2%1& 2%1221] su@y | YD | Species
3 1 1 0 2 —4 u®
2 -1 3 Le
15 1 3 1 2 -2 1 6 e°
2 1 1 a
27 3 3 1 -2 0 —2 D
3 1 1 0 -1 2 |, Do
6 2 -1 2 -3 U, L
1 3 1 2 1 0 | os N
YE“JI—:),‘QL—%Q/
Table 3-15 (2-1),
Ea| SUG) | SUGK: | SUG. | SU@mw | gl | S8 | su@n | G | species
3 1 2 2 De(d®)
5 4 6 e®
1 2 -3 0 VE(N®)
15 1 2 ac(D"
3 2 -1 ~4 u
27 10 3 1 4 -2 -2 D
1 1 —6 0 NeQv®)
3 1 -2 1 q
5 1 3 Le
6 1 2 3 2 -3 LD
1 1 1 0 —5 -3 L)

1 3
Y= _‘EQA +”J*1—’5‘Q3"'+ Tiran
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Table 3-16 (2-2).
U(l)s-1
U@ uQ) .
Es| SU(6) SU4) SU®B)c %‘N/EQE—L SU@2)e 2/6le SU@). 6Yy Species
2
3 5l -2 D
T El -2 1 2 2 D
2 d°
5 Kl 1 1 —4 uc
3
27 ry 2 -1 6 e’
1 -1 0 Ve
1 1 0 1 —4 0 N°¢
3 —5 1 q
4 1 1 1 —1 —3 /
6 2 3 Le
1 1 0 2 2 -3 L
Y= _@QB—L + 7%
Table 3-17 (2-3).
U(1)p-1-
uq) Ul)y .
Ee SU(G) SU(4) SU(S)C %/GQE—L' SU(Z)I ZJGQ‘I SU(Z)L 6Y Speczes
2
3 3 -2 D
T Kl -2 1 2 2 e
2 D¢
5 3 1 1 —4 u
3
27 n 2 -1 6 e’
1 —1 0 N°¢
1 1 0 1 —4 0 Ve
3 -5 1 q
4 1 1 1 -1 -3 L
6 2 3 Le
1 1 0 2 2 -3 !

Y= "@QB‘L"" 5
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Table 3-18 (2-4).

Es| SUG) | SUG. | SUGk | SU@ | 2%12)'; 2%1291 su@. | YD | Species
3 1 1 0 —3 9 D
V 6 e’
1 3 2 1 2 0 Ve
15 1 -2 1 0 N°¢
_ _ _ 9 d°
77 3 3 2 -1 0 4 u
1 2 2 D
3 1 1 0 1 1 g
3 e
6 1 3 2 1 1 2 —3 L
1 —2 —3 /
YE_I‘QL +LQR + T
V3 V3
Table 3-19 (2-5).
E| SU®G) | SU®Re | SUG): | SU@: 2%151 2‘%& su@. | YD | Species
3 1 1 0 ) -9 D
6 e’
1 3 2 1 2 0 N°
15 1 -2 1 0 Ve
_ _ _ 2 D*
57 3 3 2 —-1 0 4 e
1 2 2 d°
3 1 1 0 1 1 a
3 Le
6 1 3 2 1 1 2 3 7
1 —9 —3 L

YE%QL+71—3—Q,+ T3
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Table 3-20 (3)e
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Es| SUG | SUG)L | SU®R | SUQ). 2%1& SU@)x 2%125; UM | Species
2 1 1 a
3 3 1 1 —9 1 0 )
B N 2 d°
3 1 3 1 0 2 1 4 ue
1 9 2 De
27 3 1%
2 -1 2 1 3 L
1 i —3 /
1 T 3 6 e
1 2 2 1 0 Ve
1 ) 0 NE
YELQL +LQR + T
J3 J3
Table 3-21 (3):
| SUG | SU@L | SU®), | sU@). 2%1& SUQ); 2%1251 Ur | Species
2 1 1 q
3 3 1 1 —3 1 0 —3 D
. _ 2 De
3 1 3 1 0 2 1 " e
1 9 2 i
27 3 e
2 1 2 1 3 /
1 —9 —3 L
1 T 3 6 et
1 2 2 1 0 NG
1 -2 0 Ve

YE%QL +%Ql + T231
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Table 3-22 (3)s
Es| SU®) | SUG. | su@), | su@. 2%1& SUQ), 2%125] U 1 Species
2 1 1 q
3 3 1 1 -2 1 0 -2 D
2 -1 2 (d¢, D%
3 1 3 1 0 1 2 -4 u®
27 2 1 -3 (1, L)
2 -1 1 -2 3 Le
1 3 3 2 1 0 (v¢, N°)
1 2 1 -2 6 ¢
1, 2
Y— ﬁ QL ‘/g Q]




