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1. Introduction.

We shall treat here the stability problem for the difference scheme

(1.1) ult+k x)=Sult x),
approximating the Cauchy problem

_ -9 p_(_; 9 .. ._;_ 9
(1.2) Du=p(X, D)u (D,=—1 R D=(—1 e ) axn))

with #(o, x) =u,(E L*(RY).

In the finite difference schemes the amplitude matrix is the symbol ¢(S,)=
S, @)w=re of the operator S,, the elements of which are trigonometric polynomials
in @=h& The von Neumann condition is the statement that the modulus of
eigenvalues of S(x, @) do not exeed 1 and, as is well known, this condition is necessary
for the stability of the scheme. Many schemes used in practice of numerical analysis
are stable under the von Neumann condition, while there is an instable scheme
satisfying the von Neumann condition. Then, it is quite natural to ask what class of
schemes are stable only under the von Neumann condition.

The aim of this paper is to give an answer for the above question, that is to state
that the schemes of Kreiss’s class (defined in the beginning of the section 3) having the
property (*) are LZ-stable. These schemes satisfy necessarily the von Neumann
condition. The property (*) is given in the section 3 and we shall give comments on it
in relation to the so called Courant-Friedrichs-Lewy condition in the section 4. From
the observation there we can see that the property (*) is not restrictive for schemes
approximating a hyperbolic system. Uniformly diagonalizable schemes approximating
a hyperbolic system belong to this class.

The stability of the schemes of Kreiss’s class with constant coefficients and some
criterion were completely discussed by H. O. Kreiss ([7]). Our stability statement is a
prolongation of Kreiss’s to the variable coefficients case.
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The proof of the above statement will be done in the algebra {S%} of
pseudo-differential operators with a special basic weight function 21,(&). As for
definitions of 1,(&) and {SIY, see the section 2 of this paper or §2 of [5] which
origioate from Kumano-go [9], [10]. The study of stability often meets the problen of
decomposition of a non-negative symbol into a finite sum of squares ([12], [17]), but
this problem can be passed over by means of the Friedrichs part of the operator with
non-negative symbol. The Friedrichs part gives us the symmetrization of operator B,
with Hermitian symmetric symbol (see Remark 2.5-Proposition 2.7) as well as an
approximation to B,. It should be noted that the approximation is an O (h)-
approximation in our difference calculus. By virtue of these properties of the
Friedrichs part the stability discussion here is more direct and simpler than in § 5 of
[5]. Especially, the stability of the Lax-Wendroff scheme with Hermitian symmetric
coefficients (already known in the paper [13]) can be derived within our method of
treatment. The idea of dissipation formerly discussed by several authors ([8], [14]) is
unnecessary for the linear schemes with C*-coefficients.

One of the algebraic criterion as was discussed by H. O. Kreiss, will be in the
variable coefficients case the assertion that the inequality

S @) =C

holds where C is independent of x, @ and j. For finite difference schemes this is a
necessary condition for the L?-stability ([15], [16] In the variable coefficients case the
problen whether the L2-stability of S, can be reduced to such a simple criterion or not,
remains open. Nevertheless, our discussion shows that new schemes (not necessarily
diagonalizable) may be stable. we propose such an example in the section 5. we can see
leastways that the stability of many classical schemes known hitherto can be derived
by the unified treatment developped here (See also Remark 3. 7.)

For clarification of our method we treat here the L%-stability of linear schemes
with C=-coefficients, however, one can develop it to the C2-coefficients case through the
approximation theory due to H. Kumano-go and M. Nagase ([11]).

2. Preliminaries.

Notations used here are same as in [6].

In the following we give a brief survey concerning on families of
pseudo-differential operators with a parameter 2 (0<42<1).Let a="(a,, - ,an) be a
multi-integer of @;=0. we put |a|=a;+-- +an, al=al- a,) and (3/8&)¢=

(0/3&) %1+ (8/0&)%.

Definition 2. 1. A family 1,(&) of real valued C>~-functions defined on RZ is
called a basic weight function, when there exist positive constants A,, 4, (independent
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of h) such that

D 1=4(&)=40<g>
(2.1) and

i) [ (&)= Aadn()'

for any a, where <&> = (1+|&|D"2 and A, (&) = (8/3&)°AM(&).

Here and hereafter we shall use the special basic weight function defined by A,(&) =
< ¢p>, where ¢, (&) = (I'sin A&, - Jhlsin hEY).

It is easily verified that

(2.2) h= (n+1DY2,(8)7"

For applications we shall often use Xh(@ = Ay2(&). But once a scheme is given, the
basic weight function is fixed.

Definition 2. 2. i) A family of C*-symbols p,(x, &) in R?x R} is called of class
{SI} (—oco<m <o), when there exist constants C,, (independent of h) such that

(2.3) DD in(® &) S Copdn(&)m e

0

for any @, B where p'“ (%, &) = D’:0% pu(x, &) (Dy=—i75-).

ii) The set of all symbols p,(x, &) such that 2'p,={S;*'} is denoted by {éx’i’,} and
the set of all symbols p,(x, &) such that A~ 'p@,{Spr+1-19} for any a (20) is denoted
by {S%}.

iii) A family of linear operators P,: ¥—% is called a pseudo-differential
operator of class {S}}} with symbol p,(x, & when there exists a symbol p,(x, &) of
class {S} such that

(2.4) Pau=pp(X, D) u(x) = [e™pu(x, &) #(&) d&

for ue S, where d& = (2z)~"d& and 4(&) :./.e‘f"é u(x)dx. We denote

(2.4)  briefly by P,=p.(X, DYE{Sh}, or a(B) =pu(x, &).
It is evident that {SP*}{Sy'} for my<my. We set {S5°}=N{S¥}, {Sg}=U{Sy}). The

classes {:JS‘?,,}; {S9) are important for difference calculus. The several examples of P,
introduced in § 2 of [6] will give us a good view and we omitt to recall them here.

Furthermore we shall use the algebra of operators of class {SP} and the
Calderon-Vaillancourt theorem. (see Theorem 3. 1, its corollaries and Lemma 3. 8 in
[6]). We recall here only the commutator lemma which is a corollary of the asymptotic
expansion formula.
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Lemma 2. 3. For a scalar valued function ¢,(&) ({S3)) and p,(x, &) (€{S)
we get

(2.5) (@ 1) = @ (D) pu(X, D)—pu(X, D) g (DY{Sp).

Now we turn to the equation (1. 1), (1. 2). The hyperbolicity of (1. 2) means the
following (2. 6), (2. 7), (2. 8).
(2.6) plx, & &8, (Hormander class of order 1) and is homogeneous of degree
1in &,

(2.7) wslx, & =1, , d), eigenvalues of p(x, &) are real,
(2 .8) there exists a uniform diagonalizer N (x, &) for large<&>, i. e N(x, &)
plx, &) =9 & N, &

for |&| =M, where|det N(x, &) |=c, for some positive constant ¢. The stability
calculus may be done indepentently of these assumptions (2. 6) - (2. 8), however,
according to the well known Lax’s equivalence theorem it is natural to expect that the
L2-wellposedness of the Cauchy problem (1. 2). This is the reason why we set these
assumptions and we may forget them in the inference of the stability calculus.

Let the symbol of the scheme S, in (1. 1) be

(2.9 o(Sw) = qu(&) T+ Qu(x &),

where I is the identity d X d matrix, q,(&) is a real scalar valued function of {S%} and
Qn(x, &) is a d X d matrix valued function of {g‘fh}. These schemes are restricted in the
sense that ¢,(D) operates in the same fasion for each component of «#(# x) in (1. 1).
In the latter part of the following section we shall treat the stability of schemes with
diagonal matrix valued function g,(&). In this case we shall impose on ¢,(&)

(2.10) I— g (&) (85},

(See Theorem 3. 6 and Remark 3. 7.) @, contains a real parameter »(=%/%) which is
constant in the stability calculus and therefore we omitt to write it explicitly except
in the section 4. From the elementary observation for the discretization of (1. 2), it is
seen that the symbol ¢(S,) given in (2. 9) (or (2. 9) with (2. 10)) is the general
representation of the two-step difference scheme. (See also Remark 3. 7) Evidently we
see that ¢(S) {5} : We often use the following symbol o‘(LVQ,,) in place of ¢(S.) :

5(S) = 0u(&) 1+Qu(x &) I—xu()),

where ¥ (€C,(R#)) is identically 1 in some neighborhood of é=0 and x,(&) =
x (&, (&)). In the stability calculus we may neglect O(h) quantity and then we may
regard o‘(éh) as the symbol of S, through the cutting-off principle. (see Lemma 5. 4 in
[6]) Also we see that d(éh)E{gi’h}.

We recall the Friedrichs part of operator and several propositions relating to it.
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For further clarification [3], [10] should be referred to.
Let g(o) be an even and C*—function satisfying that ¢(¢) =0, supp ¢(o) C

{o:|o|<1) and fq2<a> do = 1. We define F(& &) by

F(& ) =q((E~8 1,(&7M) 2,(&)~
and double symbol p, (& %', &) by

bur (& %, 80 = [F(& © ma(x', © F(&', © d&

for phe{Sﬁ .

Definition 2. 4. The operator p,r called the Friedrichs part of P, is defined by
Prrtt (&) = [e¢ | /ez‘x’f’ brr (& 2/, ) (&) &'} ax',

Let pnr(x, &) denote the simplified symbol of P,r. Then we get the asymptotic
expansion

(210 st O~ O+ 3 dns(®) bun &+ 3 Guasl8) 00 G &),

where 4,6 E{S i}, ¥ relE) Prw(® E)E{SE, ¥raé&) e {S # "2 and
‘Wh,a,ﬁph,(a)(ﬂ)(x, &) E{S[,’f"””“z}'

The following remark is essential.

Remark. 2. 5. If p,(x, &) is independent of x and p,(&) <{SY}, then the terms
with subscripts 8(=0) in the right hand side of

(2.11) vanish and therefore we have

(2.1 par(® —pu(® € (85},
The following propositions are well known.
Proposition 2. 6. If p,(x &) (£{SF}) is Hermitian symmetric, then we have
(2.13) (P, vtt, 0) = (4, Py 50)
for u, v € &. Especially, if p,(x, &) is non-negative, then we have
(2.14) (P, w1, ) 20.

Proposition 2. 7. (a sharp form of Garding’s inequality). If p.(x, &) (&{S[}) is
Hermitian symmetric and satisfies the inequality p.(x, &) = cA,(&)™, then we have

(2.15 Re(Pou, w) =z c||uffum — Cllu|iuim-vr

for some constant C, where | - | 4,.s denotes the Sobolev norm with respect to the basic
weight function A,(&).
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3. Stability of Schemes of Kreiss’s Class.
We begin with the definition of schemes of Kreiss's class.

Definition 3. 1. The scheme S, is called of Kreiss’s class if there exists an
Hermitian symbol H,(x, &) for large &,(&) such that

D |0%D xH,(x, &)| < Cop 14(E)7,
(D 0<c<H,(x &) =C

and
1D Hulx, &) —o(S*Hu(x, &) 0(S0 20
holds there.

Remark 3. 2. For the constant coefficients case H,(x, &) (if it exist) is
independent of x and is of the form H,(&) = H(w)w-s in general for classical finite
difference schemes. (see Kreiss [7]). This is the reason why the schemes defined in
Definition 3. 1 are called of Kreiss’s class. From (III) we see that schemes of Kreiss’
s class satisfy necessarily the von Neumann condition for large &,(&).

The schemes we shall treat here are of the form (2. 9). These are restricted in the
sense that ¢,(&) (the term independent of the equation (1. 2)) is a real scalar valued
function, i. e. g,(D) works in the same fashon for each component of #(¢, x) in (1. 1).
Further we assume for ¢,(&) that

() 1—q%(&) =0.
Then, our stability statement is the following theorem.

Theorem 3. 3. Let S, be of Kreiss’s class and of the form (2. 9) with the property
(*). Then S, is L%stable.

Proof. For clarification of the method of our proof, first the proof will be done
in the special case when we may put H,(x, &) =1 for (x, &) & R}X R} and secondly
the general case will be treated.

(i) The case when H,(x, &) =1.
We have

| Snetl|>— ul|?= (I —SkSw) u, )
(3.1) =Re ((I—S} Sy u, w)+O0W | ul?

where A o B (called the symbolic product of A and B) denotes the operator with
symbol ¢(A4) ¢(B). We have applied in (3. 1) the asymptotic expansion formula of
pseudo-differential operators. Since the taking of the Friedrichs part is linear operator,

we see
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U =8k eS)r = 1~ (D)) +Ryp (X, D),

where o(Ry) = q,(&) Qu(x, )+ QF( &) a(&)+Qix &) Qulx, &) &{8)). We get
here by applying (2. 12) to p,(&) =1—¢* (&),

(3.2) (1= g% (D)) — (A— g% (D) € {831
and, by applying (2. 11) to p,=R.(x, &),
(3.3) Ris(X,D)—R,(X, D)€ {5:}).

Then we have

(L =Sk oS = (I =Sk °Swr
+ (I—SkoS) — T —S¥Swr
={U—=SkeSr+ A—=¢%(D)) — A—=g*(D)r
+ (By— Ry, ¥).

Since (I —S¥ oSpru, u) =0 by (2. 14), we get by using (3. 2) and (3. 3)
I Spzel* =Nl =0 (| u]?

Thus the proof in the case (i) is completed.
Before the proof in the general case we mention a corollary.

Corollary 3. 4. The Hermitian symmetric scheme of the form (2. 9) with the
property (*) is L%stable.

In this case the proof above works well also for diagonal matrix valued function
q,(&). The stability of the Lax-Wendroff scheme with Hermitian symmetric
coefficients (already known in [13]) can be derived within our method of treatment as
follows.

The Lax-Wendroff scheme L, has the symbol :
(3.4 o(Ly) = I +ithpy— (1/2) ©*h*p*,— Dh,

where p,=h"' (A (x) sin &+ B (x) sin k&), A (x) and B(x) are real symmetric
matrix and D,=27% (A% (x) sin* (h&/2) + B (x) sin* (h&/2)). If A(x) and B (x) are
functions of B (R%,), we see that ¢ (L,) is of the form (2. 9) by setting .=+

2 v
4147,‘22‘15in2 (h&;/2))Y2, Since the von Neumann condition is satisfied for' = such that

(3.5) 7?A*< (1/8) I and »*B%*< (1/8) I,

L, is of Kreiss's class. Then, the proof in the case (i) gives an alternative one for the
L2-stability of L,.

(i) The general case.

In order to reduce the main part of the proof to that in the case (i) we make the
followilg device.
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Assume that (I) and (II) hold for | £,(&) | =M. Choose positive numbers M, (G=
0, 1, 2) such that M <M,< M, <M,. These may be arbitrarily large but fixed. We
prepare non-negative scalar valued functions ¢, (&), ¥n (&) and ¥, (&) as follws. Let ¢,
v and ¢ be C=-functions such that

{Qo(é’) =0 for [¢[=M, {%(é’):l for |¢l=M
(&) =1 for [¢|=zM, Ww(=0 for |¢lzM,
and {x(é’) =1 for [¢|=M,

x (& =0 for large ¢,

and set %<€>:¢<§h<g>>» W (&) =V (&(E)), x(E)=x(5H0E)).
Define H,(x, &) =H,(x, &)@ (&) +¥*.(&)I. Then we see by the definition of ¢y

(&), yn(&) that

(3.6)  0<a=Hi(x =G for any (x &)ERIXRY.

Therefore we see by proposition 2. 6 that there exists a positive number C’ such that
(3.7)  ReCH.(X, Dyu, 20| ul*=C a1

We construct a new norm/|.| s, equivalent to the original L*norm as follows. Put
Ku(x, &) = Hu(x, §)'*and

(3.8) Ry (6,8) =0 ((Ku(X, D)@u(D))") — Ki(x, £ pu(&).

Note that K,(x, &)@.(&) is well defined and K,p,={S},}.
Then we know by the asymptotic expansion formula that

(3.9 R.(x &){Si1).
Therefore we have
o ((Kupw) ™) 0 (Knpn) = Hy (%, §) pn(E)*+ R (x, &),

where R, (x, &) =Ry(x, &) o (Kups) E{Si'}.
Further put

R",(x, &) =0 (Kupn) " (Kupi)) — 0 (Knp))*) 0 (Kngn)-

Then by using the asymptotic expansion formula again we see
R”,(x, ©)E{S3}.

Now define the operator G, by

(3.10 Gi= K@) * (Knpn) + (D) +C" 1, (D)7,
where C” will be determined below and the new norm by

(3.1D ” ” on=(Gntt, u)'".



L2-stability Theory of Linear Difference Schemes 9

This new nerm is equivalent to the original L%-norm. For, we

get Re((v(Kwh) *(Knpn) + i (D)) u, w)
=Re(H, u, u)+Re(R"” u, u),

where R”, =R’,+R”,={S;!}, and furthermore get by (3. 7)
Re(<<Kh(Ph> # (th)h) + 1/r,2,(D))u, U Z G H U “ r—C” H u “ Any—1/2

for some positive constant C”.
A\ A\
Then we shall calculate |[Sau||%,— || | %, for Si=¢x(&E)+ Qulx, &) (I~ xn(&)).

We have

|| éhu ” Gh ” u Ch (GhShu Shu) (Gh% 74)
= (Kh§0h5hu ththh%) (Kh§0h74 Kh¢h%)
—Re(((P(D)+C"0,(D)™ DU =Sk o Su, w)+O0h) || ul?

and further get by noting the facts that the commutators
[¥n @n), [@n @] belong to €{S3},

v
ISsul e, — lul%,

(3.12) = (Khéh¢huy Khéhq)hu)— (Kwpntt, Kpprt)
—Re((Yi(D)+C "2, (D)YDUT =S¥ oS u, u)+0(h) || u|>

Let J,, J. denote

1= KSupnt, KsSugpuit) — Knpuit, Knputt)
and

o= — ((YRDY+C A D)™ U —Sf oS 1, w), respectively.
In order to estimate /, we define Z, by

(3.13) 0(Z) = Kn(x, £)0(SHKn(x, &) for]ea(&)|=M,
and 0 (Z)=qn(&) for|¢.(&)|=M,.

Then Ziis well defined and of the form (2. 9) and Z, €{SJ,).
\
Noting that both ¢(S,) and ¢(Z,) are of the same form (2. 9), we get through the
v
matrix equation K,0(S,) = o¢(Z)K,

(3.14) Khéh = K, Oéh = Z,°K, = Z,K,,

where A=B means that the operator A— B is an O(h) - L®bounded operator. By (3.
14) we get

N = (Zn, Zyvy) — (Vs Un)
= —~Re((I—-Z*Z) v, v+ OCh) || u|| 2
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where v,= K,@,u. Further by using the asymptotic expansion formula we get
No=—Re(I —ZF - Z) v, v)+O0) | u|>
Now we see from the assumption (III) (in Definition 3. 1) that

oI —2ZFZ,) = [—6<Zh>*d(zvh> .
=KV (H,—o(Su)*Ho (SO K = 0.

Thus, through the similar discussion to the case (i) we get
(3.15) L =0 | ul

The estimation of /, is much easy. Because of the equality
v Vv _ ~ o
oI —=SESw) = 1—gi(&) + Qn(x, &) A—xa(&)), where Q,&{S),}, we see that

| (PED) +C" 2, (D)HGL(X, D) is O(h) - L*-bounded operator.
Therefore we have only to estimate
WD)+ C"A(DY DU —qh(D))u, w),
that is equal to
(=@ (D) wr, wi)+C" (U —qi(DIDYn In),

where w,=¥,(D)u and y,=A1,(D) " 2u.
By the property (*) we have from (2. 12)

(3.16) Joo= O | ul?
Combining (3. 15) with (3. 16) we get

v
ISnael 6n — ]

Z = O | u|*
Through the cutting-off principle S, is also L?-stable. Q. E. D.

Remark 3. 5. In the constant coefficients case H, and K, are independent of x and
so is 0(Z,). Then, the proof above works well also for diagonal matrix valued function
g:(&) (€{S4). This is the well known Kreiss stability theorem. Since
K, (x, £)q.(&)K,(x, &)7' depends on x in general, the above discussion can not be
expected to work well for diagonal matrix ¢,(&).

Theorem 3. 6. Let S, be of Kreiss’s class and of the form (2. 9) (2. 10) with the
property (*). Then S, is L*-stable.

Proof. We have only to observe to what extent K,(x, £)¢,(&)K,(x, &)~ in the
representation of ¢(Z,) is violated from scalar valued function. Put K,(x, &) = (k;),
gn(&) = (q:0;;) and K,(x, &)7'= (Eu) Then we have
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0;; = the (i) —element of K, (%, &)q.(&)K,(x, &)!

n n

=2 21 qiqr Zikzzszkz', El’j

k=1 l,i'=
and further get, by applying the indentity

aqr = 1-A—q)—q—qp,

o = 2o Eklzkikkl’kl’j
=1 47=1
- kzl l,lZ=1 (1—Qz>;kz}€:zikkz'kz'j

N

n

- ;}1 “Z] QI(l—QI’);kl;likkl’kl’j-

=1

The Ist term in the right hand side is Kronecker’s §;,.

The 2nd and 3rd term belog to {3‘5’,,} by the condition (2. 10). Therefore we can see that
o(Z,) is rewrittin in the form

0(Z) =1+Qu(x, &), where Qu(x, £)&{S5).
Other part of the proof (ii) of Theorem 3. 3 works well here also.

Remark 3. 7. The classical finite difference scheme has the symbol of the form
> A e (ag= ;‘1 @;&,) with relationS) Aq(x) =1,

Then we have

o‘(Sh):Za}Aa(x)e"““:I—!-Qh(x, &), where Qh:; A (x) (ef*h—1).

Since we know
eene—1=31 sinChé; | 2)b,Che) (b EBER"),

we get @, (%, g)e{éﬁ,} by setting the basic weight function An= Aus.

This shows that the class of schemes of the form (2. 9) with (2. 10) is satisfactorily
wide one.

4, Comments on the Property (*) and the z-dependence of Stability.

For given T (>0) the approximate solution # (¢ x) is calculated through the
j-times iteration of the operator S* (T =jk) from u (0, x) =u,. Now let S, be a finite
difference scheme, 7. e. S,= > A,(x)T*, where T))=T % TS and T;, u(x)=u

a,finite
(x+hey). Then (1. 1) shows that the values of # (¢-+k, x) in the neighborhood with
center % are determined from the values of u(f x) in the finite number of

neighborhoods with centers x0+§‘_,la,-hej. Therefore, from the law of finite speed of
£
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propagation for the solution of the hyperbolic system, we see that for large &/h u(7T,
x) can not approximate the solution of (1. 2) in any topology. This fact was originally
pointed out by R. Courant, K. Friedrichs and H. Lewy ([1]). We recall it in the
following proposition.

Proposition 4. 1(the C-F-L condition). Let the finite difference scheme S,
approximate the hyperbolic system having the property of finite speed of propagation,
Then, for the L2-stahility of S, it is necessary that there exists a positive bound 7, such
that &2/ h< 1.

Proof. It was sketched in the above. The strict proof will be completed on the
basis of the Lax equivalence theorem and the L%-wellposedness of (1. 2) and it is left
to the reader.

On the other hand we get the following proposition.

Proposition 4. 2. If the von Neumann condition is satisfied for small ¢, then the
property (*) holds.

Proof. If the property (*) do not hold, then there exist % and & such that
1—¢2, (&)<0. Tending = to zero in (2. 9) for this pair (%, &) contradicts the von
Neumann condition for S,.

Now, we know that difference schemes with consistency are obtained by putting
r=*Fk/hin (2.9). Then from the observation above mentioned we see that the property
(*) is not restrictive for schemes approximating a hyperbolic system.

5. An Example of stable Difference Scheme.

We propose here a new difference scheme approximating a hyperbolic system. Its
stability will be justified by our theorem in the section 3.
Let the hyperbolic system be such that

(5.1) Dau=A&) Dt (n=1, d=2),
w, (¢ x)
(4, x)

are real valued and a,, =0,

where u :( ) A =(a;(0)), a(OEBRY, all ay(x)

and let the scheme S, approximating the system (5. 1) be the following :
(5 2) (S, = < A, 1T, (x)sin h§>
0, A,
where Ay =cos h&+i27va;, (x)sin(h&/2), Ay=cos h&+i27ay, (x)sin(hE/2).
This scheme is of the form (2. 9) by setting the basic weight function A, (&) =2,,(&)
and not necessarily diagonalizable even if A(x) is diagonalizable. The von Neumann

condition is
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(5 . 3) 72a211<x)§1/2 and Tzazzzcx)él/z.

In order to see that S, is of Kreiss’s class for well selected 7, we shall calculate

‘Z’ . .
H,-0(S)*H,c(S,) for Hh:<f Z’) where f, and d will be determined later.
h,
We have
Hy—0o(Sp)*H,o (Sy)
(5 4) _ ( 1— A% fo(l—A,A,) — Aizay, (x)sin h§>
' T\ BA =AM+ Aviza, (Osin ke, A )

where A=d ({1~ |A;") —12a%(x)sin?hé
+ 1701, (X) [uDoSIN hE — iza, (X) Fuh,sin hE.

Then we get

det(H,— o (Sp)* Hy,a(Sw)

=2 —47%a%,(x))sin?(h&/2){d (2— 4 12a%, (x)sin?(hE/2)
(5.5) — 2% (2)SIN hE + itay, (X) [uldasin hE — izay, (x) ulh,sin hE

— | (1= A Az) — Ayizay, (x)sin hEJ2.

For the estimation of det(H,—o(S,)*H,0(S,)) from below the existence of the last
term in the right hand side of (5. 5) raises a troublesome question. In order that sin*
(h&/2) may be a factor of the last term we put

(5.6) w=(a (£) — @2 (x)) "', (x) cos (h&/2).

Then we get

Ja=r
|fh<1_51A2>—'Alz‘Ta12<x) Sin hg|2
é(|fh|(4+472]ﬂ11|6h2|)+4Tzia11(x)alz<x>|>251n4(hg/2)

and
det(Hy— o (S * Huo (S)

(5.7) 2 (2—47%a%1(x)) (dQ2—472a% (%)) — r*a’, (%) —27|an ()| | /D)
—<|fh|<4+4’fz|au| lae2|)+4TZ|011<x>alz(x>|)25in4<h'§:/2>:

where |a;|=sup|a;(x)|.

Here we meet with two problems : the Ist is the problem when f, defined in (5. 6) is of
class {S§} and the 2nd is the one when det(H,— ¢ (S,)*H,o(S,)) is non-negative and
detH,=d—|fi|* is positive. The answer for the Ist problem is affirmative if the
following condition (5. 8) is satisfied ;
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(5.8) (@ (%) — @5 () a (X)) ' EB Q)
where Q={x&RYa,(x)*am,(x)}and this function is extensible to a
function &(x) of B(RY).

Then it is easily checked that f,=b(x)cos(h&/2)={S5}. It should be noted that the
condition (5. 8) does not exclude the equality a,, (x) =@, (x) if @,(x)=0 for x&R'—
Q.

Noting that the C—F — L condition here is that z%p?<1/2 where p=max(|a,
|as]), we consider the 2nd problen in the following two cases (1), (ii).

>

(i) In the case z%p?2<1/2.
From (5. 7) we get

det(H,— o (S *H,0(S,)
(5.9) 2 a(da—7*a*:(0)27|a, (| | ful) — (M | ful2 + Molan, () |?) X sin® (k& /2),

where a=1/2—1%0*(>0) and M;(F=1, 2) is positive constant depending on |a,;]. Then
by choosing d sufficiently large we get that det(H,— ¢ (Sy)*H,o(S,)) =0 and detH,=
d—|£J>>0. Hence S, is of Kreiss's class and L2-stable by the theorem in the section
3.

(i) In the case z%p*=1/2.

Put B;(x) = p?—a?;(x) (=1, 2). Then from (5. 7) we get
det(H,— o (Sy)*H,0(S.))
(5.10) 24728, (%) (dB:(x) — a1 (%) —27| a2 (2) | | /1]
— Msa*5(x) ((a1 (%) — @ (2)) 2+ 1) sin®(hE/2)

for some constant M,.
If there exist positive numbers y, ¥ such that

(5.11.D B0 = | @, (x) ]

and
(5.11.i) VB (%) Z a1, ()| (@ (%) — @22 () 2 +1)

for xeR?', we have also the L?stability of S, by choosing d sufficiently large.

In the case when a;(x) is constant and |a, | 2 | @.(x) |, we see that £ (x)=0 and
then the L?-stability will not be expected unless a,,(x) =0. The condition (5. 11) states
more ; in the case when the off-diagonal element a,,(x) vanishes at some order where
B (x) vanish the critical case (ii) produces the L2-stability.

In the above we have assumed the condition (5. 8), however, this is seen to be
natural by the following remark.

Remark 5. 1. It should be noted that the condition (5. 8) is a consequence of the
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uniform diagonalizability of A(x). It is verified as follows.
@i (x), 0
0, @ (x)
@ @+ @t =naa,

@ antgt Gy = NGy

From AN=N 9(NEB(R), _@:< ) we see

and
@ @22¥21 — N1+

For xeQ={x&€R!| a;; (x) Fa(x)}, we get from B
21 (%) =0.

Then #,,(x) can not approach to zero in Q because of the uniform diagonolizability of
A(x). From @ we get

@2 (%) (@1 (%) — G2 () 71 = 11, (X)) e (X)) 1.

Therefore we see a,(x) (@ (x) —a(x))'€B Q).

For x& R'—Q we see from @) a,(x) 75, (x) =0.

On the other hand we see from @ a;,(x) 7y (x) =0.

Since n%y; (x) -+ 12, (x) 0, we get a1, (x) =0 and A(x) =a;,; (x)I. Then any matrix may
be diagonalizer in R'—. Choose a function #,,(x) (€B(RY) which does not
approach to zero in R!'—{) and coincides with #,,(x) in Q. Then b(x) defined by b (x) =
11,(x) 7, (x)~ is an extension of a,(x) (@ () — @ (X))~
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