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   1. Introduction.

   We shall treat here the stability problem for the difference scheme

(1.1) u(t+k, x)::SAu(t x),

approximating the Cauchy problem

                                         .a .a                                a                                   D=(-z                                                        ))(1.2) D,u==P(.X; D)u (Dt=-i                                             ,".".,-z                               at'                                          Eix,                                                     axn
           with u(o, x)=u.(E L2(R.")).

   In the finite difference schemes the amplitude matrix is the symbol cr(Sh)==

S(eq bl)to=he of the operator SA, the elements of which are trigonometric polynomials

in bl==hg. The von Neumann condition is the statement that the modulus of

eigenvalues of S(eq bl) do not exeed 1 and, as is well known, this condition is necessary

for the stability of the scheme. Many schemes used in practice of numerical analysis

are stabie under the von Neumann condition while there is an instable scheme
                                       '
satisfying the von Neumann condition. Then, it is quite natural to ask what class of

schemes are stable only under the von Neumann condition.

   The aim of this paper is to give an answer for the above question, that is to state

that the schemes of Kreiss's class (defined in the beginning of the sectioii 3) having the

property (*) are L2-stable. These schemes satisfy necessarily the von Neumann

condition. The property (*) is given in the section 3 and we shall give comments on it

in relation to the so called Courant-Friedrichs-Lewy condition in the section 4. From

the observation there we can see that the property (') is not restrictive for schemes

approximating a hyperbolic system. Uniformly diagonalizable schemes approximating

a hyperbolic system belong to this class.

   The stability of the schemes of Kreiss's class with constant coefficients and some

criterion were completely discussed by H. O. Kreiss ([7]). Our stability statement is a

prolongation of Kreiss's to the variabie coeflicients case.
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   The proof of the above statement will be done in the algebra {SAO.} of

pseudo-differential operators with a special basic weight function Ah(4). As for

definitions of kh(4) and {SAM,}, see the section 2 of this paper or g2 of [5] which

origioate from Kumano-go [9], [10]. The study of stability often meets the problen of

decomposition of a non-negative symbol into a finite sum of squares ([12], [17]), but

this problem can be passed over by means of the Friedrichs part of the operator with

non-negative syrnbol. The Friedrichs part gives us the symmetrization of operator PL

with Hermitian symmetric symbol (see Remark 2.5-Proposition 2.7) as well as an

approximation to IL. It should be noted that the approximation is an O (h)-

approximation in our difference calculus. By virtue of these propertjes of the

Friedrichs part the stability discussion here is more direct and simpler than in g 5 of

[5]. Especially, the stability of the Lax-Wendroff scheme with Hermitian symmetric

coeflicients (already known in the paper [13]) can be derived within our method of

treatment. The idea of dissipation formerly discussed by several authors ([8], [14]) is

unnecessary for the linear schemes with Cco-coeflicients.

   One of the algebraic criterion as was discussed by H. O. Kreiss, will be in the

variable coefficients case the assertion that the inequality

           1S(x, o)jl$C

holds where C is independent of x, bl and i For finite difference schemes this is a

necessary condition for the L2-stability ([15], [16] In the variabie coefficients case the

problen whether the L2-stability of SA can be reduced to such a simple criterion or not,

remains open. Nevertheless, our discussion shows that new schemes (not necessarily

diagonalizable) may be stable. we propose such an example in the section 5. we can see

Ieastways that the stability of many classical schemes known hitherto can be derived

by the unified treatment developped here (See also Remark 3. 7.)

   For clarification of our method we treat here the L2-stability of linear schemes

with CeO-coefflcients, however, one can develop it to the C2-coeflicients case through the

approximation theory due to H. Kumano-go and M. Nagase ([11]).

   2. Preliminaries.

   Notations used here are same as in [6].

   In the following we give a brief survey concerning on families of
pseudo-differential operators with a parameter h (O<h<1). Let ev = (ai, ･･-･･･,evn) be a

multi-integer of cblO. we put 1a1 =: evi+･･･-･･+evn, a!=ai!･･････ an! and (O/Oe)"=::

(o/oe)a,･･････ (o/ogh)a..

   Definition 2. 1. A family fth(4) of real valued Cco-functions defined on R," is

called a basic weight function, when there exist positive constants Ao, A. (independent
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of h) such that

           i) 1$ a, (8) $ A.<g>

(2.1) and

           ii) lA.h(a)(tlir)I$A.JL,(tl:)i-lal

for any ev, where <e> = (1+l412)'t2 and a(a),(g) = (a/og)aah(4).

Here and hereafter we shali use the special basic weight function defined by Zh(4) =

< fh>, where gM(g) = (huisin hes,･･････,h-isin heq).

It is easily verified that

( 2 . 2 ) h <-- (n + 1) "2 Ah (4)-i.

For applications we shall often use Xh(4) = ahi2(4). But once a scheme is given, the

basic weight function is fixed.

   Defimition 2. 2. i) A family of Cco-symbols Ph(x; 4) in R."×Ren is calied of class

{SAM.} (-oo<m<oo), when there exist constants Ch,B (independent of h) such that

(2 . 3) IP{a),,{m(c, 4) Is Ch,pa,(4)m-lai

for any cr, 6 where P(")h,(B)(Jxg g) = DB.Oae Ph(v g) (Dtv･ = -i oO
,,,).

                                                                o   ii) The set of all symbols Ph(A 8) such that h-'PhE{SIZ"} is denoted by {SAM,} and

the set of all symbols Ph(x, g) such that h-iP(a)hE{SX".'i-iai} for any a (=x O) is denoted

by {S-",M,}.

   iii) A family of iinear operators PL,: Y.Y is called a pseudo-differential

operator of class {SAM,} with symbol Ph(x, 4) when there exists a symbol Ph(x, 8) of

class {Sa".i} such that

(2.4) IZu=P,(X; D) u(x)= ,feiXip,(n g) a(4) of4

for uES, where d4 == (2rr)'"d4 and ti(4) == ,fe-iXe u(x)cix. We denote

(2 . 4) briefly by 4=Ph(?C D)EEE{SAM,}, or cr(Ph) =:Ph(x, e)･

It is evident that {SA".'2}c{SAM,'} for m2 S- mi. We set {Sx,"O}=A{SAM.}, {SAco,}= U{SAM,}. The

                                                 m ln       O .--classes {SAO,}, {SAO.} are important for difference calculus. The several examples of "

introduced in S 2 of [6] will give us a good view and we omitt to recall them here.

   Furthermore we shall use the algebra of operators of class {SAM.} and the

Calder6n-Vaillancourt theorem. (see Theorem 3. 1, its corollaries and Lemma 3. 8 in

[6]). We recall here only the commutator lemma which is a corollary of the asymptotic

expansion formula.
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   Lemma 2. 3. For a scalar val"ed function qh(4) (E{SAO.}) and ph(Jtu g) (Ei {Sa".t})

we get

                                                   o(2.5) [qh, Ph]= qh(D) Ph(X; D)-Ph(X; D) q,(D)E{S,".i-i}.

   Now we turn to the equation (1. 1), (1. 2). The hyperbolicity of (1. 2) means the

following (2. 6), (2. 7), (2. 8).

(2.6) P(g g) EiiSi.E. (HOrmander class of order 1) and is homogeneous of degree

1 in 4,

(2.7) ptJ･(c 4) (1' =1,･･････, d), eigenvalues ofP(ag 4) are real,

(2.8) there exists a uniform diagonalizer N(eq 4) for large<g>, i. e.N(x, 4)

P(ag 4) == 9(c 4) N(eq g)

for I4I =>M, whereldet N(x, 4)l =>co for some positjve constant cb. The stability

calculus may be done indepentently of these assumptions (2. 6) - (2. 8), however,

according to the well known Lax's equivalence theorem it is natural to expect that the

L2-wellposedness of the Cauchy problem (1. 2). This is the reason why we set these

assumptions and we may forget them in the inference of the stability calculus.

   Let the symbol of the scheme S" in (1. 1) be

(2.9) cr(S),) =qh(4) I+Qh(eq 4),

where I is the identity d× d matrix, qh(4) is a real scalar valued function of {SAO,} and

                                      oQh(x} 4) is a d× d matrix valued function of {SAO,}. These schemes are restricted in the

sense that 4h(D) operates in the same fasion for each component of u(4 x) in (1. I).

In the latter part of the following section we shall treat the stability of schemes with

diagonal matrix valued function qh(4). In this case we shall impose on qh(4)

                      o(2 .10) J- q,(4) E{SAO.}.

(See Theorem 3. 6 and Remark 3. 7.) Qh contains a real parameter T(=fe/h) which is

constant in the stability calculus and therefore we omitt to write it explicitly except

in the section 4. From the elementary observation for the discretization of (1. 2), it is

seen that the symbol cr(Sh) given in (2. 9) (or (2. 9) with (2. IO)) is the general

representation of the two-step difference scheme. (See also Remark 3. 7) Evidently we

               -. vsee that tf(Sh)E{SAO,} : We often use the following symbol cr(Sh) in place of tf(Sh) :

  vcr(Sh)=qh(4) I+Qh(ag 4) (1-xh(4)),

where x (E Cb(Rgn)) is identically 1 in some neighborhood of g=o and xh(4) =

x(st (8)). In the stability calculus we may neglect O(h) quantity and then we may

        vregard cr(Sh) as the symbol of Slj through the cutting-off prlnciple. (see Lemma 5. 4 in

                     vN[6]) Aiso we see that if(Sh)E{SaO,}.

   We recall the Friedrichs part of operator and several propositions relating to it.
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For further clarification [3], [10] should be referred to.

   Let q(cr) be an even and COO-function satisfying that q(6) le, supp q(6) c

{6: 1 crl$1} and fo2(6) dcr=1. We define F(e e) by

F(i9; g) =q((e-e) z,(g)-u2) A,(g)-nt4

and double symbol Ph,F(e; x', 4') by

phF(ei; x', s')=fF(e; e) p,(x', e) F(4', e) dg

for PhE{SaM,}.

   Definition 2. 4. The operator Ph,F called the Friedrichs part of B, is defined by

PAh,Fu (4) =/17'ix'E {.,feix'e' p,,,(4 x', 4') n(gr) qez7t} dut.

Let Ph,F(eq 4) denote the simplified symbol of a,F. Then we get the asymptotic

expanslon

(2.11) Ph,F(Az 4)--Ph(c, g)+: gbh,B(tli) Ph,(p}(ag 4) -i- : gbh,.,B(4)Ph,`a'{m(`g 4),
                           IBI==1                                                ia+fill2
Whe re IPn h,B(8) E {S A-,'}, th h,p(e) P h,(B) (x, 4) E {S AM,-i}, IPn h,., fi (e) (iE {S lj,aiTiBi ),2}and

lb:h,a,al)h,(a}(B)(u, 4) E{S,7,l-la'Bii2}.

   The following remark is essential.

   Remark. 2. 5. If Ph(ag 4) is independent of x and Ph(8) E{SaO,}, then the terms

with subscripts P( ¥O) in the right hand side of

(2.11) vanish and therefore we have
                           o(2 .12) P,, ,(4) -P,(4) E{S,",i}.

   The following propositions are weli known.

    Proposition 2. 6. If Ph(x, 4) (E{SaM,}) is Hermitian syminetric, then we have

(2.13) (4, ,za, V)=(U, a, FV)

for u, v E &. Especially, if Ph(n 4) is non-negtztive, then we have

(2.14) (4 ,u, u)20.

    Proposition 2. 7. (a sharp form of GSrding's inequality). If Ph(ag 4) (E{Sln.}) is

Hermitian symmetric and satisfies the inequality Ph(eq 4) Z clh(e)M, then we have

(2 .ls) Re(jRF,u, u) Zcll ull ?,,m - C ll ull k,,(m-i)t2

for some constant C, where ll ･ II a,,, denotes the Sobolev norm with respect to the basic

weight function lh(4).
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   3. Stability of Schemes of Kreiss's Class.

   We begin with the definition of schemes of Kreiss's class.

   Definition 3. 1. The scheme SA is called of Kreiss's class if there exists an

Hermitian symbol HA(c 4) for large st(4) such that

   (I) 1 oaeDauH},( c, 4) I s q,, z,(4)-iai,

   (II) O<c$Hh(A4 g)$C

and

   (III) HA(al 4)-cr(&)*HL(ag g) if(S,)ZO

holds there.

   Remark 3. 2. For the constant coeff}cients case llA(eq 4) (if it exist) is

independent of x and is of the form HA(4) = H(bl)..he in general for classical finite

difference schemes. (see Kreiss [7]). This is the reason why the schemes defined in

Definition 3. 1 are called of Kreiss's class. From (III) we see that schemes of Kreiss'

s class satisfy necessarily the von Neumann condition for large &(e).

   The schemes we shall treat here are of the form (2. 9). These are restricted in the

sense that qh(4) (the term independent of the equation (1. 2)) is a real scalar valued

function, i. e. qh(D) works in the same fashon for each component of za(t x) in (l. 1).

Further we assume for qh(e) that

(*) 1-q2h(4) k O.

Then, our stability statement is the following theorem.

   Theorem 3. 3. Let Sh be of Kreiss's ciass and of the form (2. 9) with the property

("). Then SA is L2-stable.

   Proof. For clarification of the method of our proof, first the proof will be done

in the special case when we may put HA(n 4) = I for (v 8) (II R."×Re" and secondly

the general case will be treated.

  (i) The case when Hh(t4 g) = I.

     We have

           ll Shu ll 2- II u ll 2= ((I - Sh# SA) u, u)

(3.1) == Re ((1'-Sh* oSh) u, u)+O(h) IIull 2,

where A o B (called the symbolic product of A and B) denotes the operator with

symbol cr(A) cr(B). We have applied in (3. 1) the asymptotic expansion formula of

pseudo-differential operators. Since the taking of the Friedrichs part is linear operator,

we see
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           (l-Si oSh)F = (1-q2h(D))F+RhF(?C D),

                                                            owhere 6(Rh)=:qh(4)Qh(n 4)+Qh"(x, 4) qh(g)+Qi(ag 8) Qh(ag 4)E{S2.}･ We get

here by applying (2. 12) to Ph(4) =:1-q2h(4),

                                     o(3 . 2) (1-q2, (D))F - (1-q2h(D) EIi {SA','}

and, by applying (2. 11) to Ph=Rh(ag 4),

                                 e(3.3) R,, ,(X] D)- R,(X; D) E {Sii

Then we have

           (l'-S,* oS,) = (1"-S,* oS,),

                        + (I-S,* oSA) - (I-S,* oS,)F

                      = (I-Sh* oSh)F+ (1-q2h(D)) - (1-q2h(D)),

                        + (R,-R. ,).

Since ((I-Sh* oSh),u, u) )O by (2. 14), we get by using (3. 2) and (3. 3)

           Il S>,za ll 2- ll u II 2 s 0 (h) ll u ll 2.

Thus the proof in the case (i) is completed.

   Before the proof in the general case we mention a corollary.

   Corollary 3. 4. The Hermitian symmetric scheme of the form (2. 9) with the

property (") is L2-stable.

   In this case the proof above works well also for diagonal matrix valued function

qh(g). The stability of the Lax-Wendroff scheme with Hermitian symmetric

coethcients (already known in [13]) can be derived within our method of treatment as

follows.

   The Lax-Wendroff scheme Lh has the symbol:

(3 . 4) cr (Lh) == I+ iTIiph- (1/2) r2h2P2h-D,,

where Ph==h-' (A(x) sin h4+B(x) sin h&), A(x) and B(x) are real symmetric

matrix and Dh = 2r2 (A2 (x) sin` (he/2) +B2 (x) sin` (ht}2/2)). If A (x) and B (x) are

functions of B(R2.), we see that cr(Lh) is of the form (2. 9) by setting ih= (1+

4h-2 Si]sin2 (hee/2))"2. Since the von Neumann condition is satisfied for T such that

   J'--1

(3.5) T2A2S (1/8) I and T2B2$ (1/8) I,

Lh is of Kreiss's class. Then, the proof in the case (i) gives an alternative one for the

L2-stability of Lh･

    (ii) The general case.

    In order to reduce the main part of the proof to that in the case (i) we make the

followilg device.
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   Assume that (I) and (II) hold for1gh(4)Ik M. Choose positive numbers ua･ (i=

O, 1, 2) such that M<A46<Mi<ca. These may be arbitrarily large but fixed. We

prepare non-negative scalar valued functions (ph(4), lbh(4) and lbh(4) as follws. Let {p,

V and th be COO-functions such that

     ($:li ITO, ig; iiil't..?lf6. (#(,ii'LMO.i iii:.il2･

and {::g; :.S ig', l5,i//,'tk,

and set qin(g)=op(k(e)), ibh(g)=th(4i(e)), xh(4) ==x(k(4))･
         v   Define ,l7A(x, 4) =HL(x, 4)op2h(4)+th2h(e)I. Then we see by the definition of (ph

(e), leh(e) that

                 v
(3.6) O< co $ th(x, 8) <-- Cb for any (t4 e) EIIR."× R,n.

Therefore we see by proposition 2. 6 that there exists a positive number C' such that

            v( 3 . 7 ) Re(H), (X; D) za, bl)l co II u ll 2- C' ll u II a,,-it2-

We construct a new normll.ll G. equivalent to the originai L2-norm as follows. Put

Kh(x, e) = HA(x, 4)"2and

(3 . 8) R,(x,4) =:: cr((K},(X) D)op,(D))#)-K>,(x, 4) op,(4).

Note that KA(x, g)oph(e) is well defined and KhophE{SAO.}.

Then we know by the asymptotic expansion formula that

(3.9) R,(M 8)E{Si,i}.

Therefore we have

6((K),oph)")tf(K>,qh)==H),(x, 4)oph(4)2+R',(x, 4),

where R'h(x, 4) :Rh(x, 4)d(Khoph)E{SA"ti}･

Further put

R"h(x, 4)=cr((Khoph)"(KAqh))-d((KAoph))")cr(KAqh).

Then by using the asymptotic expansion formula again we see

R"h(x, 4)E{Si'}.

Now define the operator Gh by

(3.10) Gh=(K,oph)"(Khoph)+lb･E(D)+C"A,(D)"',

where C" will be determined below and the new norm by

(3.11) I･ll G,=(Ghbl, u)i'2.
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This new nerm is equivalent to the original L2-norm. For, we

get Re(((K},qh)"(KAoph)+Vh2(D))u, u)
               v
          =Re(H), u, u)÷Re(R"'hu, bl),

where R"'h =::R'h+R"hE{SA-,i}, and furthermore get by (3. 7)

            Re(((Kh rph) " (Khrph) + thh2 (D)) u, u) l co 11 u ll 2- C"V u 11 2A.,rfii2

for some positive constant C".

                    vvThen we shail calculate ll Shza II 2G,- H uII 2c, for Sh=qh(4) + Qh(x, g)(1-xh(8))･

We have

           v vv          11 s,u Il 2.,- II u 3.= (G,S,za, S,u)-(G,u, u)

                 vv          =(KhophShu, KhophShu)-(Khophza, Khqhu)

            -Re(((thh2(D)+C"A,(D)-i)(I-S)f oSh)u, u)+O(h) 11 nt 112

and further get by noting the facts that the commutators

                        o[ibfih, qh], [oph, (?h] belong to EEI{SAO,},

           V          11 Shu II 2c, - ll u ll 2G.

               vv(3.12) =(KAShqhza, KAShophu)-(Khophu, KAophu)

            -Re((lb'k(D)+C"Ah(D)-i)(I-Sti oSh)u, za)+0(h) Ilu112.

Let ll, 1> denote

                vv          A=(K,S,op,u, KAS,op,u)-(KAop,u, K>,op,u)

and

          .1>= -((1thlt(D)+C"A,(D)-i)(I-g,* og,)bl, u), respectively.

In order to estimate A we define ZA by

                         v(3.13) cr(Zh)=K>,(x, 4) if(Sh)K},(x, 4)uni forkh(e)llMo

and ff(ZL)= qh(g) forlfh(4)ISMi.
Then ZAis well defined and of the form (2. 9) and ZA E{SR,}.

                vNoting that both 6(Sh) and 6(ZA) are of the same form (2. 9), we get through the
                 vmatrix equation Khcr(Sh) = ff(ZA)KA

             vv(3.14) K),S, =- K, oS, = ZA oKh =! ZLK),,

where Ai!B means that the operator A-B is an O(h) ･ L2-bounded operator. By (3.

14) we get

          A =(Z],Vh, Z),Vh)-(Vh, Vh)

             = -Re((I-Z"hZ},)vh, vh)+O(h) 11 ull 2,
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where vh=KAophar. Further by using the asymptotic expansion formula we get

           ll = - .l{]e((I - Z7f oZ),) vh, vh) +O(h) il u II 2.

Now we see from the assumption (III)(in Definition 3. 1) that

           tf(I-zi oZA) == I- cr(ZA)*o(Zh)
                                    vv                       == K};-iJ2(HA- if(S,)*Hh cr (S,))K]I'i,2 2 O.

Thus, through the similar discussion to the case (i) we get

(3 .15) ll f-{ O(h) Il za II 2.

   The estimation of h is much easy. Because of the equality

6(I-Sh"Sh) = 1-qft(4)+Qh(x, e)(1-xh(4)), where QhE{S2.}, we see that

   (Vt(D)+C"Ah(D)-i)Q,,(X] D) is O(h) - L2-bounded operator.

Therefore we have only to estimate

    (lb:ll(D)+C"Ah(D)"')(I-q,2(D))za, u),

that is equal to

    ((I-qZ(D))wh, wh)+C"((I-qft(D))yh, yh),

where wh= thh(D)u and yh=1,(D)-ii2u.

By the property (*) we have from (2. 12)

(3.16) li, S O(h) llull2.

Combining (3. 15) with (3. 16) we get

            v           II S,u fi1 2.. - II uIl 2., = O(h) 11 uII 2.

Through the cutting-off principie SA is also L2-stable. Q. E. D.

   Remark 3. 5. In the constant coeflicients case HA and KA are independent of x and

so is cr(ZA). Then, the proof above works weil also for diagonal matrix valued function

qh(e) (E{SAO.}). This is the well known Kreiss stability theorem. Since

Kh(eq 4)qh(4)KA(eq 4)'i depends on x in general, the above discussion can not be

expected to work well for diagonal matrix qh(g).

   Theorem 3. 6. Let Sh be of Kreiss's class and of the form (2. 9) (2. 10) with the

property ("). Then Sh is L2-stable.

    Proof. We have only to observe to what extent KA(c e)qh(4)KA(g 4)-' in the

representation of 6(ZA) is violated from scalar valued funetioR. Put KA(x, g) -- (h,,･),

qh(4) = (qiiv) and KA(g g)-i = (fe"ij). Then we have
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     cri,･ = the (ij)-element of KA(x, 4)qh(4)Kh(x4 g)"i

           nn --        = Z : qtqtt khikiifekif,leitj
          h=:1 t,ti==1

and further get, by applying the indentity

 '           qtqt･ = 1-(1-qt)-qi(1-qit),

                   n n--           criJ' = : : fehlfekifehltfeltJ'
                  k==1 l,V=1

                     nn --                  -: Z (1-qi)khiletikkvkirj
                    h==1 t,tr=:1

                     nn --                  -: Z qt(1-qtt)khifeiikkyktrj･
                    h=1 4tr= 1
The lst term in the right hand side is Kronecker's Si,･.

                          oThe 2nd and 3rd term belog to {SAO,} by the condition (2. 10). Therefore we can see that

6(ZA) is rewrittin in the form

                                       o
     cr(Z7,) =I÷Qh(x, 4), where Qh(x, 4)Eii{SAO,}.

   Other part of the proof (ii) of Theorem 3. 3 works well here also.

   Remark 3. 7. The classical finite difference scheme has the symbol of the form

                  n : A.(x)ei"he(cr4=Z crja･) with relation: A.(x)= I.

a,flnite J'=1 aThen we have

     af(SA)=:A.(x)eiah"==I+Qh(x, g), where Qh=:A.(x) (e'ah"-1).

Since we know

             n    eiahe-1==: sin(ha･12)b,(he) (bj(w)EB(R'i.)),
            J'=1

we get ([l],(x, 4)E{g£,} by setting the basic weight function Xh =Xh,2.

This shows that the class of schemes of the form (2. 9) with (2. 10) is satisfactorily

wide one.

   4. Cornments on the Property (") and the T-depemdence of Stability.

   For given T (>O) the approximate solution u (4 x) is calculated through the

j-times iteration of the operator Sh (T= .de) from u (O, x) ::: zfo. Now let Sh be a finite

difference scheme, i. e. Sh= : A.(x)Tah, where 7)fX=Tifh'･-･T.?h and 7)h u(x)==u
                       a,flnlte

(x+hej). Then (1. 1) shows that the values of u (t÷le, x) in the neighborhood with

center xb are determined from the values of u(L x) in the finite number of

                            nneighborhoods with centers xb+:ac,･hei. Therefore, from the law of finite speed of
                           J'=1
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propagation for the solution of the hyperbolic system, we see that for large k/h u(Z

x) can not approximate the solution of (1. 2) in any topology. This fact was originally

pointed out by R. Courant, K. Friedrichs and H. Lewy ([1]). We recall it in the

following proposition.

   Proposition 4. 1(the C-F-L eondition). Let the finite difference scheme SA

approximate the hyperbolic system having the property of finite speed of propagation,

Then, for the L2-stability of Sh it is necessary that there exists a positive bound Tb such

that le/h$Tb.

   Proof. It was sketched in the above. The strict proof will be completed on the

basis of the Lax equivalence theorem and the L2-wellposedness of (1. 2) and it is left

to the reader.

   On the other hand we get the following proposition.

   Proposition 4. 2. If the von Neumann condition is satisfied for small T, then the

property (*) holds.

   Proof. If the property (*) do not hold, then there exist la and a such that

1-qft, (4b)<O. Tending T to zero in (2. 9) for this pair (Iit), 4b) contradicts the von

Neumann condition for SL.

   Now, we know that difference schemes with consistency are obtained by putting

T = le/h in (2. 9). Then from the observation above mentioned we see that the property

(*) is not restrictive for schemes approximating a hyperbolic system.

   5. An Example of stable DiffereRce Scheme.

   We propose here a new difference scheme approximating a hyperbolic system. Its

stability will be justified by our theorem in the section 3.

   Let the hyperbolic system be such that

(5.1) Dtu=A(x)P.u (n=1, d :2),

where u == ( Z'21 :i ), A(x) ==(ai,･(x)), ai,･(x)EiB(Ri), all ai,･(x)

are real valued and a2i=O,

and let the scheme & approximating the system (5. 1) be the following :

(s.2) 6(&)=(8,i･ iTZZi2(X,),Sinh4)

where Ai = cos hg÷i2Tzzii(x)sin(h4/2), A2= cos h4+i2Tu22(x)sin(h4/2).
This scheme is of the form (2. 9) by setting the basic weight function ih(4) = Ahi2(4)

and not necessarily diagonalizable even if A(x) is diagonalizable. The von Neumann

condition is
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(5.3) T2a2ii(x)S.1/2 and T2a222(x)Sl/2.

   In order to see that Sh is of Kreiss's class for well selected T, we shall calculate

Hh-6(SA)*HA6(SA) for HA= (1[ : ) where 1 and d will be determined later.

We have

           HA-cr(Sh)*HA6(Sh)

(s･4) -(1-IEI"tk'1.Zi,`,i.-£}2i2,lww,.?gj.vaes)si",,h4),

where !1=d(1-IA2I2)-7r2a2i2(x)sin2he

           +ivai2(x).fiA2sin h4-iirzii2(x)iA2sin h4.

Then we get

           det(M-if(S,)* Hh6(SA))

           =(2-4T2a2ii(x))sin2(he/2){d(2-4T2a222(t)sin2(hg/2)

(s . s) -T2a2i2(x)sin2h4+ivai2(x).11A2sin h4-iTzzi2(x).liA2sin h4

           - I .fi, (1 -AiA2) -Ai ivai2(x)sin h4I2.

For the estimation of det(HA-cr(SA)"HAtf(Sh)) from below the existence of the last

term in the right hand side of (5. 5) raises a troublesome question. In order that sin`

(h4/2) may be a factor of the last term we put

(5 . 6) n=(aii(x)-a22(x))-iai2(x) cos (he/2).

Then we get

           i-n,
           li(1-AiA2)-AiiTzzi2(x) sin h812

           $(1.fi,1(4+4T21aiila221)+4T2iaii(x)ai2(x)1)2sin`(hc}'/2)

and

           det(H},-if(S,)'Hhif(&))

( s . 7 ) ) (2-4T'2a2ii(x)) (d(2-4T'2a222(x))- T'2a2i2( c) -2T'lai2(x)1 l ,i?,I)

           -(l.f},1(4+4T21aii1Ia221)+4T21aii(x)ai2(x)1)2sin`(h4/2),

where Iai,･1=:suplai,･(x)1･

Here we meet with two problems : the lst is the problem whenA defined in (5. 6) is of

class {S£,} and the 2nd is the one when det(HA- if(Sh)"HA6(Sh)) is non-negative and

detH),=d-lil2 is positive. The answer for the lst problem is affirmative if the

following condition (5. 8) is satisfied ;
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(5 . 8) (an (x)-a22(x))-iai2(x)"'EB (n)

           where st={xEIRilaii(x)#a22(x)}and this function is extensible to a

           function b(x) of B(Ri).

Then it is easily checked that jZ=b(x)cos(h4/2)Ei{Slll}. It should be noted that the

condition (5. 8) does not exclude the equality aii(x) == a22(x) if ai2(x)=O for xERi-

st-

   Noting that the C-F-L condition here is that T2p2Sl/2 where p:=max(laiil,

Ia221), we consider the 2nd problen in the following two cases (i), (ii).

(i) In the case T2p2<1/2.

   From (5. 7) we get

           det(HA-cr(S,)*lilh6(S,))

( 5 . 9 ) Za(dcu -T2a2i2(x)2TIai2(x)1 1 fi1)-(MI IA12-- calai,(x)12) xsin`(h8/2),

where ev = 1/2 - r2 p2 ( > O) and M] (i rm- 1, 2) is positive constant depending on l aiA . Then

by choosing d suMciently large we get that det(HA-6(Sh)*llAcr(Sh)))O and detHA==

d- 1fil2>O. Hence Sh is of Kreiss's class and L2-stable by the theorem in the section

3
.

(ii) In the case T2p2=1/2.

   Put a･(x) :p2-a2j,･(x) (i--1, 2). Then from (5. 7) we get

           det(Hh-cr(&)*HAcr(Sh))

(s . 10) 24 T'2x3i (x) (ct8b (x)-r2a2i2(x) -2 T' 1 ai2(x) Hl, l

             -uaa2i2(x) ((aii(x)-a22(x))-2+1) sin`(h4/2)

for some constant Mi.

If there exist positive numbers 7, N7 such that

(s .11.i) 7i8 (x) llai2(x)1

and

(5.ll.ii) 5i6i(x)Zlai2(x)t((aii(x)-a22(x))n2+1)

for xERi, we have also the L2-stability of SA by choosing d sufliciently large.

   In the case when aii(x) is constant and laiil l 1 a22(x) 1, we see that fii (x) :=:O and

then the L2-stability will not be expected unless ai2(x) = O. The condition (5. 11) states

more ; in the case when the off-diagonal element ai2(x) vanishes at some order where

/(i}(x) vanish the critical case (ii) produces the L2-stability.

    In the above we have assumed the condition (5. 8), however, this is seen to be

natural by the following remark.

    Remark 5. 1. It should be noted that the condition (5. 8) is a consequence of the



                   L2-stability Theory of Linear Difference Schemes 15

uniform diagonalizability of A(x). It is verified as follows.

From Alv =N g(NEB(Ri)), 9==( gliX,)('.)O ), we see

            (D allnrl+a12n21=:nllall,

            @ allnl2+a12n22=nl2a22

and

            @ (Z22n21=n21all-

For xEIifl ={xclRi1aii(x)=¥ a22(x)}, we get from @

                n2i(x)=O.

Then n22(x) can not approach to zero in fl because of the uniform diagonolizability of

A(x). From@ we get

            ai2(x) (an (x)-a22(x))-i=ni2(x)n22(x)"i.

Therefore we see ai2(x) (aii(x)-a22(x))-'EB(fl).

For xEiRi-st we see from @ ai2(x)n22(x) ==O-

On the other hand we see from O ai2(x)n2i(x) ==O･

Since n22i(x)+n222(x) #O, we get ai2(x)=O and A(x) =aii (x)l. Then any matrix may

be diagonalizer in R'-st. Choose a function nN22(x) (EB(Ri)) which does not

approach to zero in R'-st and coincides with n22(x) in fl. Then b(x) defined by b(x) =

ni2(x)n-22(x)-' is an extension of ai2(x) (aii(x)-a22(x))-'.
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