J. FAC. SCL, SHINSHU UNIVERSITY, Vol. 25, No. 2, 1990

On Blow-up Sets for the Parabolic Equation
0:8(u)=Au+f(u) in a Ball

Dedicated to Professor Mutsuhide Matsumura on his sixtieth birthday
by

Takashi IMAT*, Kiyoshi MOCHIZUKI and Ryuichi SUZUKI**

Department of Mathematics, Faculty of Science, Shinshu University
Matsumoto 390, Japan
(Received Dec. 25, 1990

Abstract : Radially symmetric solutions of nonlinear degenerate parabolic
equations are considered in a ball, under some blow-up conditions on B(&), F(&) and
the initial date, Blow-up sets of solutions are classified by the increasing order of the
heat source f(&) as & — oo,
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1. Introduction and Results

The present paper is a continuation of the previous one [7] of the first two
authors, and deals with some blow-up probloms for the parabolic intial-boundary
value problem

(1.1) B =Au+f(u) in B(R) X0, T),
(1.2 Bulx, t)=0 on 0B(R) X (0, T,
(1.3) ulx, V=u(r), r = | x|, in B(R).

Here B(R) = {x&R"; |x|<R), 0 < T < o, d=-2, A is the N-dimensional

Laplacian and (1 . 2) stands for the Dirichlet, Neumann or Robin condition :

ulx, t) (Dirichlet) or
Bu(x, t) = § dulx, t) (Neumann) or
Gr+odulx, t), o > 0. (Robin).

Throughout this paper we assume the following conditions.
(A B(&), F(&) & C=((0,0)) N C([0,00)); B(E) >0, (&) >0, B"(&) <0and
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f(& > 0for &€ >0, where’ = a%; léiqrg B(E) =0 foff~ is is locally Lipschitz
continuous in [B(0), co).
(A2) w(r) e C(BR)) and = 0; u(0) > 0.
These conditions guarantee the unique existence of local weak solutions (see e.g.,
Oleinik et al [11]), and as a consequence of the uniqueness we have # = u(r, ). If u
does not exist globally in time, its existence time T <co is defined as

(1.4) T =sup {r >0; u(r, t) is bounded in [0, R]X[0, r]}.

In this case we say that « is a blow-up solution and T is the blow-up time.

In order to state a blow-up condition, let (s(#), A) be the principal eigensolution
of -A in B(R) with boundary condition (1.2 ) (s is normalized: s > 0 and j;(m s()
dx = 1), and let

(1.5)  J@O = [ Bulr, 1) sdx for t €0, T.
(A3) There exist a continuous funcion g(&) of £ = 0 and a & = 0 such that

(1.6) g <f& —Ain£=20;
(1.7 "= gof~!is convex in (F(0), o) ;

A €)) oo : )
(1.8) g(é)>0and/; Ty < 0 if & > &;
(1.9) JO > B(&).

We have proved in [7] (cf., also Itaya [8] and Galaktionov [6]) that under (A3)
every nontrivial solution blows up in finite time:

(1.1 J)»ooast t T.
The blow-up set of « is defined as

(1.1D S. = {x € B(R) ; there exists a sequence (x;, L) B(R) X0, T)
such that x: > x, # * T and u(x;, &) — o0 as 7 — o0},

Clearly S, is closed and is nonempty under (A3). Moreover, in the present case (since
u=u(r, t)), we have {x; r=1x0|} C Sy if % € Sa.
To characterize S, more precisely we require
(A4) u(») € C(B(R)) in the Dirichlet case [or € C'(B(R)) inthe Neumann and
Robin case] and is nonincreasing in » € (0, R); %(0) > 0 and Buo(R) = 0.
(A5 w(r) € CHBR)) and Auo(r) + f(uo(#)) = 0 in (0, R).
For each p > 0 we denote by Ap in B(p) the Laplacian with zero Dirichlet
boundary condition on dB(p). For ¢ > 0 let R. > 0 be chosen so that the principal
eigenvalue of -Ap in B(R,.) is given by g. On the other hand, for o > 0 let 4, > 0 be
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the principal eigenvalue of -Ap in B{p). Our main results are:

Theorem 1. (1) Assume (A3), (Ad) and
(1.12 f(&) = A& + o(&) as & > o,
Then we have

Moreover, u blows up locally uniformly in B(R):

(1.14) ltITII;I Oinfp ulr, t) =00 for any 0 < p < R.

<r<

(2) Assume (A3), (A4) and
(1.15) FE LY+ Cin&=0 for some y>Aand C > 0.
Then we have
(1.16) Se D B(Ry),

and u blows up locally uniformly in B(R,).
(3) Assume (A3), (A4), (AD) and the Friedman-McLeod conditions on f(&)
(see [4]). Then we have

(1.1D S.={0}.

In assertion (3) condition (A5) is required to ensure the inequality 2. (r, t) = 0.
With this inequality one can easily follow the method given in [7] for one dimensional
problem (see also Chen [3] or Mochizuki-Suzuki [10]) to obtain (1 .17). So, in this
paper we omit the proof of (3).

Assertions (1) is also proved in [7] for the one dimensional Neumann problem. The
proof i1s based on an energy method, and as a result we obtain the exact blow-up rate
of solutions. Thus, in [7] the uniform blow-up property automatically follows. It seems
difficult to extend the former proof directly to higher dimensional problems. So, in this
paper we give up to obtain the exact blow-up rate, and use a nonblow-up result and a
monotonicity of solutions. To ensure the monotonicity we require (A4). Cf., Friedman
-McLeod [5], where is studied the Dirichlet problem for the equation

(1.18) O = u®{Au + u} in a bounded domain in R".

Our nonblow-up result is given to the inhomogeneous Dirichlet problem (1.1),
(1.3) and
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(1.19 u(R, ) = b(t) on (0, 7).

(A6) fE)<yYE+Ciné=>0forsome0<y<Aand C>0.
(AT bt e C(0, ) and wlr) e CUO, RD; 0< b(t) £ M in [0, ©) and
u(r) =20 in [0, R]; b(0) = we(R).

Theorem 2. Assume (AB) and (AT). Then the initial-boundary value problem
(1.1), (1.3) and (1.19) has a uniqgue global solution u, which is uniformly
bounded in B(R) X0, co0),

This extends the corresponding result of [7] for N = 1. The main reason that we
had to restrict ourselves to the case N = 1 is also in the use of energy estimates. In
this paper we shall compare the solution «(x, ¢) directly with a steady state
supersolution of (1.1).

Finally, we note that the Cauchy problem for (1. 1) has been studied in Suzuki
[12] for N = 1 and in [10] for N > 2, where asymptotic behaviors of the free boundary
are discussed near the blow-up time.

2. Proof of Theorems
We begin with the definition of the weak solutions of (1.1).

Definition 2.1. By a solution of (1.1) and (1.2) [or (1.19)] we mean a
function # = wu(x, ¢) such that
D ulx, ) € CBWRYX[0, TO) and = 0 in B(R)Y X, T).
(i) For 0 < t < T and nonnegative o(x, t) € CHB(R)X[0, T)) which
satisfies the condition Be(x, t) [or ¢(x, £)] = 0 on dB(R) X(0, T),

(2.1 [ Bule, D)o, e [ Blule, )90, 0)dx
= [ [, (B oetubo+7 o) )it

[or:[A(m{ﬁcumﬁuA<a+f<u><o}dxdz - [ ua,¢d5dt].

A supersolution of (1.1)and (1.2) [or (1.19)]is defined by (i) and (ii) with
equality (2. 1) replaced by =. A subsolution of (1.1) and (1.2) [or (1.19] is
similarly defined with equation (2 . 1) replaced by <.

Lemma 2.2 (Comparison principle). (i) Let u [or v] be a supersolution [or
subsolution] of (1.1) and (1.19). If u = v on the parabolic boundary of {B(R)
X{0HBU{8B(R) X (0, T}, then u = v in the whole B(R)X[0, T).

(i) Let u [or v] be a supersolution [or subsolution) of (1.1) and the



On Blow-up Sets for the Parabolic Equation 55
Neumann or Robin condition (1.2). If u = v on the initial domain B(R) x{0},
then u = v in the whole QX[0, T].
Proof. See Aronson et al [1] and Bertsch et al [2]. O
Next, let 2 be a solution of (1.1), (1.2) [or (1.19]and (1.3).

Lemma 2.3. If u(#, t) >0 for some (7, 1) € 0, R) X0, T), then u is smooth
n a neighborhood of (7, t) and becomes a classical solution there.

Proof. Note that (&), f(&) &€ C*((0, ) and B(&) > 0 for & > 0. Then the
proposition follows from the usual parabolic regularization method (see e.g.
Ladyzenskaja et al [9]). O

Let w={x; Ri < r < Re} for 0 < Ri < B, < R, and let (su(#), Aw) be be the
principal eigensolution of -Ap in w, where s is normalized as sup so(#) = 1. For some
t =0, T) and a > 0 let = (¢) be the solution to

(2.2) U'Z—AmBT%int>fWithﬂ(f)=a.
Integrating this, we have
(2.3) 2 = WHW(a) — d(t — D}, where W(s) = fﬂ—é‘i dt.

Since (&) > 0and B7(£) <0in &€ > 0, W(s) is increasing in s > 0 and W(s) » —co
as s 1 0. Thus, we have 7(¢) >01in ¢t = ¢.

Lemma 2.4. Assume u(r, t) = a >0 in 0. Then we have
(2.4) ulr, ) = p(Ose(r) in ox(t, T).

Proof. Cf. [7] or [12]. We put v(#, £) = 7(t)s.(»). Since 0 < so(7) <1, we
then have 8’(») < () and hence

0B() = — B pusa < Do+ () in wx (T, T,

This shows that v is a subsolution of (1.1) and (1.19) in wX (£, 7). Since
vir, ) <a<ulr, ) onwand
vir, ) =0< u(r, t) ondox(t, T),

Lemma 2.2 (1) shows (2.4). O

Lemma 2.5. Assume (Ad). Then the corresponding solution u is nonincreasing
n v for fixed any 0 < t < T. Moreover,

(2.5) oru(r, t) <0 in the domain in (0, R)X 0, T) where u > 0.

Proof. First consider the Dirichlet problem. In this case a reflection principle (cf.
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[4] or [10]) will play an important role. For 0 < @ < R put Q." = B(R) N{x=Cx1, x7) ;
x> o} and Qo” = {Cr, 57 ; Qa—x1, x)EQLT}. We compare two solutions #(x, ¢) and
v, ) = uQa—xi, x,t) of (1.1)in Q. X0, T). Noting # =0 in B(R) X, T)
and # = 0 on 0B(R) X0, 7)), we have u = v on Q. X (0, T). On the other hand,
(A4) implies that % > v on Q.” x{0}. Thus, it follows from Lemma 2.2 (i) that

(2.6) ulx, t) = v(x, £) in the whole Q. X (0, 7).
Morever, if #(a, x', t) > 0, then the inequality
(2.7) Oviula, x', 1) <0

follows from a strong maximum principle. (2. 6) and (2. 7) show the assertions of
the lemma.

Next consider the Neumann or Robin problem. In this case we have only to
consider the problem in the domain B(R) X (r, T), where r = sup{¢; u(R, t) = 0}.
For our problem is reduced to the above Dirichlet problem in B(R) X (0, r). We note
that

(2.8) ulr, ) >0in [0, R] x (r, T).

In fact, if #(#, £) = 0 for some (#, ) € (0, R) X (z, ), then u(#, t) = 01in (0, ¢)

by Lemma 2 . 4. Hence, we can apply a uniqueness theorem in {7 < | x| < R} X (z,

t) to obtain #(», t) = 0in [7, R] x (0, #). This is a contradiction since we have u (R,
£ >0in (r, T,

Now, (2 .8) and Lemmas 2 . 3 show that «(r, ¢) is smooth in the whole [0, R]

X (r,T). Putting w = 3%, we then have the initial-boundary value problem (cf. [3])

N1 orw — i_gl

r vt 7

+ (=87 0+ tw, (r, HEW, R) X (z, T,

B Cu)daw = 02w + w
w0, 1) = wR, t)+6u(R, 1) =0, te(r, T,
w(r, 0) = du(r, 1) <0, re0, R),

where & = 0 in the Neumann problem and 6 = ¢ in the Robin problem. Since u (R,
t) = 0, a maximum principle shows that w(r, ¢) = du(r, t) < 0in (0, R)X(r, T)
and the lemma is proved. 0O

Proof of Theorem 2. Since y < « in (A6), we have R, > R. Let 5,(») > 0 be
the principal eigenfuncthon of —Ap in B(R,) corresponding to y. Put

on(r) = hsy(r) — —f for > 0.

Since s,{7) = ¢ > 0 in B(R), noting (A7), we have
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(2.9 () = u(#) in B(R) and V,(R) = b(t) on [0, )
if we choose # > 0 sufficiently large. Moreover, it follows from (A6) that
(2.100 —Avn = —hAsy = yon + C = f(vn).

Hence, vs is a supersolution of (1.1) and (1 .19) in B(R). With (2 .9) and (2 .10)
we can apply Lemma 2.2 (i) to obtain the a-priori estimate

(2.1D val7r) = ulr, t) for any » €0, R) and t = 0,

which ensures simultaneously the global existence and the boundedness of solutions. O

Proof of Theorem 1. (1) [or (2)] Let T > 0 be the blow-up time of #. Contrary
to (1.13) [or (1 .16)] suppose that « (o, £) < M in (0, T) forsome 0 < p < R [or R;).
Then since A [or 7] < A,, we see that # in B(p) x (0, T) satisfies the conditions of
Theorem 2. Thus, # stays bounded in B(p) X[0, 7). On the other hand, #(», ) < M
in (o, R1x[0, T) by Lemma 2. 5. Thus, Sup. u (7, t) remains bounded as ¢ * 7. This
is a contradiction, and we conclude (1 .13) [or (1 .16)].

Next, we shall show (1 .14). The corresponding result in (2) is similarly proved.
Put 0 < o < R" <R” <R.Since {x; »=R"} C S., there exist sequences {7} and {¢x}
such that

(2.12) ¥m = R, tn * T and aw = u(rm, tn) = 0 as m — O,

Without loss of generality, we can assume {r»} C (R’, R). Since u#(7, t») = an-in
B(R") by Lemma 2.5, we can apply Lemma 2.4 with w = B(R"), { = ta and

(2.13) ”<t> = ”m(t> = W_I{W<am)_/1m<t_‘tm>}.
We then have
(2.14) ulr, £ = gu(t)se(r) in X U, T).

As is shown above, 7.(f) > 0 and is decreasing in ¢ > tn. Thus, 7.(¢) = 7.(T). On
the hand, it follows from (2 .12) and (2 .13) that 7,(7T) - o0 as m — ©°. Hence,
(2.14) shows (1.14). O
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