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   Abstract: Radiaily symmetric solutions of nonlinear clegenerate parabolic

equations are considered in a ball, under some blow-up conditions on B(S), f(8) and

the initial date, Blow-up sets of solutioRs are classified by the increasing order of the

heat source f(e) as 6 . oo.
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   1. Introduction and Results

   The present paper is a continuation of the previous one [7] of the first two

authors, and deals with some blow-up probloms for the parabolic intial-boundary

value problem

(1.1) 0tB(u)-:Au+f(u) in B(R)×(O, T),
(1.2) Bu(x, t)=O on OB(,l{])×(O, T),
(1.3) u(x, O) == uo(r), r -: lx l, in B(R).

Here B(,l?) = {x(IIIR"; lxl<R}, O < Tsg oo, 0t=-Eilt-, A is the N-dimensional

Laplacian and ( 1 . 2 ) stands for the Dirichlet, Neumann or Robin condition :

           Bu(x,t)-(Xt.xixi,it£,.,,,,,.,. ,k/i.i./'c,hal/i"i.gl

   Throughout this paper we assume the following conditions.

  (Al) B(e),f(o (ii cco((o, oo)) n c([o, oo)) l B(o > o, B'(e) > o, B"(e g o and
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     f(S) > O for 6 > O, where ' =: zili ; 1,i-m.. /9(8) =:: oo ; foB-i is is Iocally Lipschitz

     continuous in [B(O), oo).

  (A2) uo(r) E C(B(R)) and 2) O; zao(O) > O.

    These conditions guarantee the unique existence of locai weak solutions (see e.g.,

Oleinik et al [11]), and as a consequence of the uniqueness we have u =: u(r, t). If u

does not exist globally in time, its existence time T <oo is defined as

(1.4) T = sup {r > O; u(r, t) is bounded in [O, I?]×[O, r]}.

In this case we say that u is a blow-uP solation and T is the blow-uP time.

    In order to state a blow-up condition, let (s(r), A) be the principal eigensolution

of -A in B(R) with boundary condition (1.2) (s is normalized:s > O and ,4{.) s(r)

du = 1), and let

(1.5) J(t) - .lg,., B(u(r, t)) s(r)du for tE [o, T).

  (A3) There exist a continuous funcion g(e) of S }i O and a & }) O such that

(1.6) g(8) s; f(6) - Ae in 8 i2 O;

(1.7) I" i goB-i is convex in (B(O), oo);
            g(s) > o and fco B.'((,rp)) drp < oo if g > &;
(1.8)

(1.9) f(O) >B(gb).

    We have proved in [7] (cf., also Itaya [8] and Galaktionov [6]) that under (A3)

every nontrivial solution blows up in finite time :

(1.10) J(t).oo as tT T.

    The blow-up set of u is defined as

(1 .11) Su == {x EB(R); there exists asequence (xi, ti)EB(R)×(O, T)
                       such that xi - x, ti t T and u(xi, ti) ---> oo as i- oo}.

Clearly Su is closed and is nonempty under (A3). Moreover, in the present case (since

u = u(r, t)), we have {x ; r= 1 xo I} C Su if xo E Su.

    To characterize Su more precisely we require

  (A4) uo(r) (Eil C(B(R)) in the Dirichlet case [or E Ci(B(R)) in the Neumann and

      Robin case] and is nonincreasing in r E (O, R) ; uo(O) > O and Buo(R) = O.

  (A5) oro(r) EII C2(B(R)) and Auo(r) +f(uo(r)) >O in (O, R).

    For each p>O we denote by AD in B(p) the Laplacian with zero Dir'ichlet

boundary condition on aB(p). For pt >O let Iep >O be chosen so that the principal

eigenvalue of -AD in B(R") is given by u. On the other hand, for p >O let Ap >O be
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the principai eigenvalue of -AD in B(p). Our main results are :

   Theorem 1. (1) Assume (A3), (A4) and

(1.12) f(6) == A8+o(8) as 8- oo.

T7zen we have

(1 .13) S. -B(R).

Moreover, u blows uP locally unzlformly in B(R) :

(1.14) lim inf u(r, t)=oo for anyO<p<R.
            tTT               O<r<p

  (2) Assorme (A3),(A4) and

(1.15) f(6) sg rf+C in g2Ofor some 7>A and C>O.

T72en we have

(1 .16) Su DB(Rr),

and u blozas uP locally un21formly in B(Rr).

  (3) Assume (A3), (A4), (A5) and the Frieciman-MtLeod conditions on f(S)

(see [4]). T72en we have

(1.17) s. =- {o}.

    In assertion (3) ･condition (A5) is required to ensure the inequality 0tu(r, t) 2 O.

With this inequality one can easiiy follow the method given in [7] for one dimensional

problem (see also Chen [3] or Mochizuki-Suzuki [10]) to obtain (1.17). So, in this

paper we omit the proof of (3),

    Assertions (1) is aiso proved in [7] for the one dimensional Neumann probiem. The

proof is based on an energy method, and as a result we obtain the exact blow-up rate

of solutions. Thus, in [7] the uniform blow-up property automatically follows. It seems

difficult to extend the former proof directiy to higher dimensional problems. So, in this

paper we give up to obtain the exact blow-up rate, and use a nonblow-up result and a

monotonicity of solutions. To ensure the monotonicity we require (A4). Cf., Friedman

-McLeod [5], where is studied the Dirichlet problem for the equation

(I.18) 0tu =: u? {Au + u} in abounded domain in R".

    Our nonblow-up result is given to the inhomogeneous Dirichlet problem (1.1),

(1.3)and
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(1.19) u(R, t)-b(t) on (O, T).

  (A6) f(4) E{ 7'(l + C in 6 ;}i O for some O K 7< A and C > O.

  (A7) b(t) E C([O, oo)) and uo(r) EE C([O, R]) ; O sg b(t) :{g M in [O, oo) and

     uo(r) 2 O in [O, R] ; b(O) - uo(R).

   Tkeorem 2. Assume (A6) and (A7). T;l2en the initial-bounclary vadaee Probiem

(1.1), (1.3) and (1.19) has a zanique global solution u, which is un2formly

bouncied in B(R)×(O, oo).

   This extends the corresponding result of [7] for Ar =: 1. The main reason that we

had to restrict ourselves to the case AI = l is also in the use of energy estimates. In

this paper we shall compare the solution u(x, t) directly with a steady state

supersolution of ( 1 . 1 ).

   Finally, we note that the Cauchy problem for (1.1) has been studied in Suzuki

[12] for N == 1 and in [10] for Ar 2}i 2, where asymptotic behaviors of the free boundary

are discussed near the blow-up time.

   2. Proof of Theorems

   We begin with the definition of the weak solutions of ( 1 . 1 ).

   Definition 2. 1. By a solution of (1.1) and (1.2) [or (1.19)] we mean a

function u = u(x, t) such that

       (i) u(x, t) E C(B(R)×[O, T)) and 2 O in B(R)×(O, T).

      (ii) For O < T < T and nonnegative q(x, t) E C2(B(R)×[O, T)) which

satisfies the condition Bq(x, t) [or q(x, t)] == O on 6B(R)×(O, T),

           .4,., B(u(x, r))q(x, r) du-Xi,., B(u(x, o))ep(x, o)du
(2.1)

                = .(1r Z[i,., {I9 (u) ept+ uA g) +f(u) q)} dudt

             [or == ygr.lg(.){B(za)gt+uAq)+f(u)op}dudt - .(I'r.,(il,.) u0rq(lgdt].

    A supersolution of (1.1) and (1.2) [or (1.19)] is defined by (i) and (ii) with

equality (2.1) replaced by ;}t. A subsolution of (1.1) and (1.2) [or (1.19)] is

similarly defined with equation (2 . 1) replaced by f{.

    Lemma 2.2 (ComParison Principie). (i) Let u [or v] be a suPe7'soimtion [or

subsointion] of (1.1) and (1.19). U u 2 v on the Parabotic bounclazy of {B(R)

×{O}}U{0B(R)×(O, T)}, then u }t v in the whoie B(R)×[O, T).

     (ii) Let u [or v] be a suPersoltztion [or subsolZttion] of (1.1) and the
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AJI2umann or Robin condition (1 . 2). U u ;}) v on the initial domain B(R)×{O},

then u 2 v in the whole st×[O, T].

   Proof. See Aronson et al [1] and Bertsch et al [2]. M

   Next, let u be a solution of (1.1), (I.2) [or (1.19)] and (1.3).

   Lernma 2. 3. 1;f u(fi, t) >O for some (fi, t) E (O, R)×(O, T), then u is snzooth

in a neigl2borlzood of (fi, t) and becomes a classical sointion there.

   Proef. Note that B(6), f(S) Ei Cee((O, oo)) and B(6) >O for 6 > O. Then the

proposition follows from the usuai parabolic regularization method (see e.g.

Ladyzenskaja et al [9]). D

   Let to == {x; Ri < r< R2} for O< Ri < R2 f{ R, and let (sto(r), Ato) be be the

principal eigensolution of -AD in to, where sto is normalized as sup sto(r) == 1. For some

                                                 XEtot (SI (O, T) and a>O let rp = rp(t) be the solution to

(2.2) rp'- -Ato B,(rprp) in t> t'-  with op(t- ) - a.

Integrating this, we have

(2.3) rp(t) = W-'{W(a) - Aw(t - t-)}, where W(s) :" .LS B'(erS) dle9-

Since B'(8) > O and B"(4) {; O in 6 > O, PV(s) is increasing in s > O and va7(s) - -oo

as s J O. Thus, we have rp (t) > O in t 2 t.

   Lernma 2.4. Assume u(r, t) ;) a>O in to. 71hen we have

(2.4) u(r, t) -> rp(t)s.(r) in to×(t, T).

   Proof. Cf. [7] or [12]. We put v(r, t) = rp(t)sto(r). Since O< sto(r) sg 1, we

then have B'(rp) s; B'(v) and hence

           a,3(v) - - Bfi',((Vrpi 7i,a.s. <rm Av+f(v) in wx(t-, T).

This shows that v is a subsolution of (1.1) and (1.19) in wX(t, T). Since

           v(r, t) f{g a E{; u(r, t) on to and

           v(r, t) =O f{g u(r, t) on 0to×(t, T),

Lemma 2.2 (i) shows (2. 4). a

   Lemma2.5. Assume (A4). CZIPzen the corresPoncting soimtion u is noninc7easing

in r for fued any O < t < T. Mbreover,

(2.5) 0ru(r, t) <O in the domain in (O, R)×(O, T) where u>O.

   Proof. First consider the Dirichlet problem. In this case a reflection principle (cf.
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[4] or [10]) will play an important role. For O < a < R put fla' = B(R) n{x == (xi, x') ;

xi > a} and sta- :== {(xi, x') ; (2a-xi, x') EIifla'}. We compare twosolutions u(x, t) and

v(x, t) :u(2a-xi, x', t) of (l.1) in na-×(O, T).Noting u2O in B(R)×(O, T)

and u =O on OB(R)×(O, T), we have u 2 v on 0fla-×(O, T). On the other hand,

(A4) impiies that u 2 v on fl.-×{O}. Thus, it follows from Lemma 2. 2 (i) that

(2.6) u(x, t) 2}i v(x, t) in the whole sta-×(O, T).

Morever, if u(ev, x', t) > O, then the inequality

(2.7) 0.,u(ev, x', t) <O

follows from a strong maximum principle. ( 2 . 6 ) and ( 2 . 7 ) show the assertions of

the lemma.

   Next consider the Neumann or Robin problern. In this case we have only to

consider the problem in the domain B(R) × (r, T), where r= sup{t; u(R, t) == O}.

For our problem is reduced to the above Dirichiet problem in B(R) × (O, r). We note

that

(2.8) u(r, t) >O in [O, R] × (r, T).

In fact, if u(fi, t) == O for sorrie (fi, t) E (O, R) × (r, t), then u(fi, t) =O in (O, t)

by Lemrna 2.4. Hence, we can apply auniqueness theorem in{fi < Ix1< R} × (T,
t) to obtain u(r, t) = O in [fi, R] x (O, t). This is a contradictionsince we have u(R,

t) >O in (T, T),

   Now, (2.8) and Lemmas 2.3 show that u(r, t) is smooth in the whole [O, R]

× (r,T). Putting w := Oru, we then have the initial-boundary value problem (cf. [3])

           B'(u)Otw = o,2w + Ai'-1 o.w - Arsl w

                              rr
                    +{-B"(u)o,za+f'(u)}w, (r, t5E(o, R)×(r, T),

           w(O, t) = w(R, t)+ d-u(R, t) == O, tEI(r, T),

           w(r, O) =O,u(r, r) {O, rEI(O, R),
where tf- m- O in the Neumann problem and oN un- o in the Robin problem. Since oNu(R,

t) l) O, a maximum principle shows that w(r, t) := 0ru(r, t) < O in (O, R)×(r, T)

and the lemma is proved. -

   Proof of Theorem 2. Since 7 < ev in (A6), we have Rr > R. Let sr(r) >'O be

the principal eigenfuncthon of -AD in B(Rr) corresponding to 7. Put

           vh(r) = hsr(r) - -C for h > O.

                           7

Since sr(r) l) c > O in B(R), noting (A7), we have
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(2.9) vh(r) -> zao(r) in B(R) and lxZ(R) }i b(t) on [O, oo)

if we choose h > O sufficiently Iarge. Moreover, it follows from (A6) that

(2.10) -Avh .= -hAsr = 7vh +C2f(vh).

Hence, vh is a supersolution of (1.1) and (1.19) in B(R). With (2.9) and (2.10)

we can apply Lemma 2.2 (i) to obtain the a-priori estimate

(2.11) vh(r) 2 u(r, t) for any rE[O, R) and t2 O,

which ensures simuitaneously the global existence and the boundedness of solutions. Z

    Proof of Tkeorexn 1. (1) [or (2)l Let T > O be the blow-up time of u. Contrary

to (1 .13) [or (1 .16)] suppose that u(p, t) f{g M in (O, T) for some O < p < R [or Rr].

Then since A [or r] < Ap, we see that u in B(p)×(O, T) satisfies the conditions of

Theorem 2. Thus, u stays bounded in B(p) ×[O, T). On the other hand, u(r, t) Eg M

in (p, R]×[O, T) by Lemma2. 5. Thus, sup u(r, t) remains bounded astT T. This
                                  O<r<R
is a contradiction, and we conclude (1.13) [or (1.16)].

   Next, we shall show ( 1 .14). The corresponding result in (2) is similarly proved.

Put O < p < R' <R" <R. Since {x ; r =R"} CI Su, there exist sequences {rm} and {tm}

such that

(2.12) rm --> R", tm T Tand am=u(rm, tm).oo as m--, oo.

Without ioss of generality, we can assume {rm} (: (R', R). Since u(r, tm) 2 a,n･in

B(R') by Lemma 2.5, we can apply Lemma 2.4 with to = B(R'), t = tm and

(2 .13) rp(t) -- rpm(t) = W-i{ Vll(am)-Ato(t-tm)}.

We then have

(2.14) u(r, t) 2 opm(t)stu(r) in to×(tm, T).

As is shown above, rpm(t) > O and is decreasing in t > tm. Thus, rpm(t) ;}i vm(T). On

the hand, it follows from (2.12) and (2.13) that rpm(T) - oo as m . oo. Hence,

(2.14) shows (1.14). o
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