Global Isomorphisms of Lower Dimensional Lie Groups

By Ichiro Yokota and Toshikazu Miyashita
Department of Mathematics，Faculty of Science， Shinshu University

（Received December 3，1990）
Among lower dimesional Lie algebras，there exist some overlaps as in the follow－ ing left side table（Helgason［1］519－520）．Now we give global explicit isomorphisms between linear Lie groups corresponding these Lie algebras．Our results are the following right side table which is a global answer of Helgason［1］521－522．

$$
\mathfrak{S o}^{*}(8) \cong 50(6,2)
$$

where $\mathbb{Z}_{2}=\{E,-E\}$ in any case．
Almost all of them might be known（e．g．［2］）except the the last several ones，but we will give their proves for all cases．

1．Notations and preliminaries

Let $\boldsymbol{R}, \boldsymbol{C}=\boldsymbol{R} \oplus \boldsymbol{R} \boldsymbol{i}, \boldsymbol{H}=\boldsymbol{R} \oplus \boldsymbol{R i} \oplus \boldsymbol{R} \boldsymbol{j} \oplus \boldsymbol{R} \boldsymbol{k}$ be the fields of real，complex， quaternionic numbers，and $\boldsymbol{C}^{\prime}\left(\boldsymbol{i}^{\prime 2}=1\right), \boldsymbol{H}^{\prime}=\boldsymbol{C} \oplus \boldsymbol{C} \boldsymbol{j}^{\prime}\left(\boldsymbol{j}^{\prime 2}=1\right)$ be the algebras of split complex，split quaternionic numbers，respectively．Let $C=\boldsymbol{R}^{c}, \boldsymbol{C}^{c}, \boldsymbol{H}^{c}$ be the complexifications of $\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$ ，respectively，and their complex conjugations are denoted by $\tau: \tau(x+y i)=x-y i, x, y \in K=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$ ．

$$
\begin{aligned}
& \mathfrak{b p}(1) \cong \mathfrak{h u}(2) \cong \mathfrak{s o}(3), \quad \quad S p(1) \cong S U(2), \quad S p(1) / \mathbb{Z}_{2} \cong S O(3), \\
& \mathfrak{z p}(1, \boldsymbol{R}) \cong \mathfrak{g l}(1, \boldsymbol{R}) \cong \mathfrak{g p}(1,1) \cong \mathfrak{g o}(2,1), \\
& S p(1, \boldsymbol{R}) \cong S L(2, \boldsymbol{R}) \cong S U(1,1), \quad S p(1, \boldsymbol{R}) / \mathscr{Z}_{2} \cong O(2,1)_{0}, \\
& \mathfrak{\xi p}(1) \times \xi_{p}(1) \cong \xi 0(4), \quad(S p(1) \times S p(1)) / \mathbb{Z}_{2} \cong S O(4) \text {, } \\
& \mathfrak{s l}(2, \boldsymbol{R}) \times \boldsymbol{g}(2, \boldsymbol{R}) \cong \boldsymbol{s o}(2,2), \quad\left(S p(1, \boldsymbol{R}) \times S p(1, \boldsymbol{R}) / \mathbb{Z}_{2} \cong O(2,2)_{0},\right. \\
& \mathfrak{g l}(2, \boldsymbol{R}) \times \mathfrak{S u}(2) \cong S \mathrm{O}^{*}(4), \quad(S p(1, \boldsymbol{R}) \times S p(1)) / \boldsymbol{Z}_{2} \cong S O^{*}(4), \\
& \mathfrak{g l}(2, \boldsymbol{C}) \cong \operatorname{Bo}(3,1), \quad S L(2, C) / Z_{2} \cong O(3,1)_{0}, \\
& 马 p(2) \cong 30(5), \quad S p(2) / Z_{2} \cong S O(5), \\
& \xi_{\mathfrak{p}}(2, \boldsymbol{R}) \cong \xi_{0}(2,3), \quad S p(2, \boldsymbol{R}) / \boldsymbol{Z}_{2} \cong O(2,3)_{0}, \\
& \operatorname{sp}(1,1) \cong \operatorname{so}(4,1), \quad \quad S p(1,1) / \mathbb{Z}_{2} \cong O(4,1)_{0}, \\
& \mathfrak{S u}(4) \cong \mathfrak{S o}(6), \quad S U(4) / \mathbb{Z}_{2} \cong S O(6), \\
& \mathfrak{\xi}(4, \boldsymbol{R}) \cong 30(3,3), \quad \operatorname{SL}(4, \boldsymbol{R}) / \boldsymbol{Z}_{2} \cong O(3,3)_{0} \text {, } \\
& \mathfrak{s u}(2,2) \cong \mathfrak{s o}(2,4), \quad S U(2,2) / \mathbb{Z}_{2} \cong O(2,4)_{0}, \\
& \mathfrak{S u}{ }^{*}(4) \cong ら 0(1,5), \quad S U^{*}(4) / \mathscr{Z}_{2} \cong O(1,5)_{0} \text {, } \\
& \mathfrak{B u}(1,3) \cong\left\{0^{*}(6), \quad S U(1,3) / \mathbb{Z}_{2} \cong S O^{*}(6),\right.
\end{aligned}
$$

We arrange the groups used in this paper, although they are familiar.
$S O(n)=\left\{\left.A \in M(n, R)\right|^{t} A A=E, \operatorname{det} A=1\right\}$,
$O(m, n)=\left\{\left.A \in M(m+n, \boldsymbol{R})\right|^{t} A I_{m} A=I_{m}\right\}, O(m, n)_{0}$ is the identity connected componect of $O(m, n)$.

$$
\begin{aligned}
& S O^{*}(2 n)=\left\{\left.A \in M(2 n, C)\right|^{t} A A=E, J_{n} A=\bar{A} J_{n}, \operatorname{det} A=1\right\}, \\
& U(n)=\left\{A \in M(n, \boldsymbol{C}) \mid A^{*} A=E\right\}, \quad S U(n)=\{A \in U(n) \mid \operatorname{det} A=1\}, \\
& S L(n, K)=\{A \in M(n, K) \mid \operatorname{det} A=1\}, K=\boldsymbol{R}, \boldsymbol{C}, \\
& S U(m, n)=\left\{A \in M(m+n, C) \mid A^{*} I_{m} A=I_{m}, \operatorname{det} A=1\right\}, \\
& S U^{*}(2 n)=\left\{A \in M(2 n, \boldsymbol{C}) \mid J_{n} A=\bar{A} J_{n}, \operatorname{det} A=1\right\}, \\
& S p(n)=\left\{A \in M(n, \boldsymbol{H}) \mid A^{*} A=E\right\}, \\
& S p(n, \boldsymbol{R})=\left\{\left.A \in M(2 n, \boldsymbol{R})\right|^{t} A J_{n} A=J_{n}\right\}, \\
& S p(m, n)=\left\{A \in M(m+n, \boldsymbol{H}) \mid A^{*} I_{m} A=I_{m}\right\}
\end{aligned}
$$

Lemma 1. Define $S U\left(n, C^{\prime}\right)=\left\{A \in M\left(n, C^{\prime}\right) \mid A^{*} A=E, \quad \operatorname{det} A=1\right\}, \quad S p(n$, $\left.H^{\prime}\right)=\left\{A \in M\left(n, H^{\prime}\right) \mid A^{*} A=E\right\}$. Then we have

$$
S U\left(n, \boldsymbol{C}^{\prime}\right) \cong S L(n, \boldsymbol{R}), \quad S p\left(n, \boldsymbol{H}^{\prime}\right) \cong S p(n, \boldsymbol{R})
$$

Proof. See Yokota [3], Propositions 0.2 and 0.4.

2. Explicit global isomorphisms

Theorem 2. (1) $S p(1) \cong S U(2), \quad S p(1) / \mathscr{Z}_{2} \cong S O(3)$.
(2) $S p(1, \boldsymbol{R})=S L(2, \boldsymbol{R}) \cong S U(1,1), \quad S p(1, \boldsymbol{R}) / \mathbb{Z}_{2} \cong O(2,1)_{0}$.

Proof. (1) The natural embedding $k: \boldsymbol{H}=\boldsymbol{C} \oplus \boldsymbol{C} \boldsymbol{j} \rightarrow M(2, \boldsymbol{C}), k(a+b \boldsymbol{j})=$ $\left(\begin{array}{rr}a & b \\ -\bar{b} & \bar{a}\end{array}\right)$ induces the isomorphism $k: S p(1) \rightarrow S U(2)$. Next let H_{0} be all pure quaternionic numbers with the norm $N(x)=x \bar{x}$ and put $S O(3)=S O\left(\boldsymbol{H}_{0}\right)$. Then $f: S p$ (1) $\rightarrow S O(3), f(p) x=p x \bar{p}, x \in \boldsymbol{H}_{0}$ induces the isomorphism $S p(1) / \boldsymbol{Z}_{2} \cong S O(3)$.
(2) $S p(1, \boldsymbol{R})=S L(2, \boldsymbol{R})$ by the definition. The natural embedding $k^{\prime}: \boldsymbol{H}^{\prime}=\boldsymbol{C} \oplus \boldsymbol{C j}^{\prime}$ $\rightarrow M(2, C), k^{\prime}\left(a+b \boldsymbol{j}^{\prime}\right)=\left(\begin{array}{cc}a & b \\ \bar{b} & \bar{a}\end{array}\right)$ induces the isomorphism $k^{\prime}: \operatorname{Sp}\left(1, \boldsymbol{H}^{\prime}\right) \rightarrow \operatorname{SU}(1,1)$ (note that $S p\left(1, \boldsymbol{H}^{\prime}\right) \cong S p(1, \boldsymbol{R})$ (Lemma 1$)$). Next let $\boldsymbol{H}_{0}^{\prime}$ be all pure split quaternionic numbers with the norm $N(x)=x \bar{x}$ and put $O(2,1)=O\left(\boldsymbol{H}_{0}^{\prime}\right)$. Then $f: S p\left(1, \boldsymbol{H}^{\prime}\right) \rightarrow O$ $(2,1)_{0}, f(p) x=p x \neq, \mathrm{x} \in \boldsymbol{H}_{0}^{\prime}$ induces the isomorphism $S p\left(1, \boldsymbol{H}^{\prime}\right) / \mathbb{Z}_{2} \cong O(2,1)_{0}$.

THEOREM 3. (1) $(S p(1) \times S p(1)) / \mathbb{Z}_{2} \cong S O(4)$.
(2) $S p(1, \boldsymbol{R}) \times S p(1, \boldsymbol{R})) / \boldsymbol{Z}_{2} \cong O(2,2)_{0}$. (3) $\quad(S p(1, \boldsymbol{R}) \times S p(1)) / \boldsymbol{Z}_{2} \cong S O^{*}(4)$.

Proof. (1) Consider \boldsymbol{H} with the norm $N(x)=x \bar{x}$ and put $S O(4)=S O(\boldsymbol{H})$. Then $f: S p(1) \times S p(1) \rightarrow S O(4), f(p, q) x=p x \bar{q}, x \in \boldsymbol{H}$ induces the required isomorphism.
(2) Use \boldsymbol{H}^{\prime} instead of \boldsymbol{H} of (1) and put $O(2,2)=O\left(\boldsymbol{H}^{\prime}\right)$. Then we have the required
isomorphism as similar to (1) (note that $S p\left(1, H^{\prime}\right) \cong S p(1, R)$ (Lemma 1)).
(3) Let \boldsymbol{H}^{c} be the complexification of H with the norm $N(x)=x \bar{x}$ and the Hermitian inner product $\langle x, y\rangle=(\tau x, i y)$ (where (x, y) is the usual inner product of \boldsymbol{H}^{c} defined by $\frac{1}{2}(\bar{x} y+\bar{y} x)$) and put $S O^{*}(4)=\left\{\alpha \in \operatorname{Iso}_{c}\left(H^{c}\right) \mid N(\alpha x)=N(x),\langle\alpha x, \alpha y\rangle=\right.$ $\langle x, y\rangle$, $\operatorname{det} \alpha=1\}$. (This group $S O^{*}(4)$ is isomorphic to the ordinary group $S O^{*}(4)$. In fact, the matrix $A \in M(4, C)$ of $\alpha \in S O^{*}(4)$ with respect to the basis $\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$ of \boldsymbol{H}^{c} satisfies ${ }^{t} A A=E, J_{2} A=(\tau A) J_{2}$, $\operatorname{det} A=1$). Since $\{a+b \boldsymbol{i}+c i \boldsymbol{j}+d i \boldsymbol{k} \mid a, b, c, d \in$ $\boldsymbol{R}\}$ is isomorphic to \boldsymbol{H}^{\prime}, we identify these algebras. Then $f: S p\left(1, H^{\prime}\right) \times S p(1) \rightarrow S O^{*}$ (4), $f(p, q) x=p x \bar{q}, x \in H^{c}$ induces the required isomorphism.

THEOREM 4. $S L(2, C) / \mathscr{Z}_{2} \cong O(3,1)_{0}$.
Proof. Consider the 4 -dimesional \boldsymbol{R}-vector space $\Im(2, C)=\{X \in M(2, C)\} X^{*}=$ $X\}=\left\{\left.X=\left(\begin{array}{ll}\xi & x \\ \bar{x} & \eta\end{array}\right) \right\rvert\, \xi, \eta \in \mathbb{R}, x \in \boldsymbol{C}\right\}$ with the norm $N(X)=\operatorname{det} X=\xi \eta-x \bar{x}$ and put $O(3,1)=O(\Im(2, C))$. Then $f: S L(2, C) \rightarrow O(3,1)_{0}, f(A) X=A X A^{*}, X \in \Im(2, C)$ induces the required isomorphism.

THEOREM 5. (1) $S p(2) / \boldsymbol{Z}_{2} \cong S O(5)$. (2) $S p(2, \boldsymbol{R}) / \boldsymbol{Z}_{2} \cong O(2,3)_{0}$.
(3) $\operatorname{Sp}(1,1) / \mathscr{Z}_{2} \cong O(4,1)_{0}$.

Proof. (1) Consider the 5 -dimensional \boldsymbol{R}-vector space $\Im(2, \boldsymbol{H})_{0}=\{X \in M(2, \boldsymbol{H})$ $\left.\mid X^{*}=X, \operatorname{tr}(X)=0\right\}=\left\{\left.X=\left(\begin{array}{rr}\boldsymbol{\xi} & x \\ \bar{x} & -\boldsymbol{\xi}\end{array}\right) \right\rvert\, \xi \in \boldsymbol{R}, x \in \boldsymbol{H}\right\}$ with the norm $N(X)=-\operatorname{det}$ $X=\frac{1}{2} \operatorname{tr}\left(X^{2}\right)=\xi^{2}+x \bar{x}$ and put $S O(5)=S O\left(\Im\left(2, H_{0}\right)\right)$. Then $f: S p(2) \rightarrow S O(5), f(A)$ $X=A X A^{*}, X \in \Im(2, H)_{0}$ induces the required isomorphism.
(2) Use $\mathfrak{J}\left(2, \boldsymbol{H}^{\prime}\right)_{0}$ instead of $\mathfrak{\Im}(2, \boldsymbol{H})_{0}$ of (1) and put $O(2,3)=O\left(\Im\left(2, \boldsymbol{H}^{\prime}\right)_{\mathbf{0}}\right)$. Then we have the required isomorphism as similar to (1) (note that $S p\left(2, \boldsymbol{H}^{\prime}\right) \cong S p(2, \boldsymbol{R})($ Lemma I)).
(3) Consider the 5 -dimensional \boldsymbol{R}-vector space $\mathfrak{F}_{1}(2, \boldsymbol{H})_{0}=\left\{X \in M(2, \boldsymbol{H}) \mid X=I_{1}\right.$ $\left.X I_{1}, \operatorname{tr}(X)=0\right\}=\left\{\left.X=\left(\begin{array}{rr}\xi & x \\ -\bar{x} & -\xi\end{array}\right) \right\rvert\, \xi \in \boldsymbol{R}, x \in \boldsymbol{H}\right\}$ with the norm $N(X)=-\operatorname{det} X=$ $\frac{1}{2} \operatorname{tr}\left(X^{2}\right)=\xi^{2}-x \bar{x}$ and put $O(4,1)=O\left(\Im_{1}(2, H)_{0}\right)$. Then $f: S p(1,1) \rightarrow O(4,1)_{0}, f(A)$ $X=I_{1} A I_{1} X A^{*}, X \in \Im_{1}(2, H)_{0}$ induces the required isomorphism.

THEOREM 6. (1) $S U(4) / \mathbb{Z}_{2} \cong S O(6)$. (2) $S L(4, \boldsymbol{R}) / \mathbb{Z}_{2} \cong O(3,3)_{0}$.
(2) $S U(2,2) / \mathbb{Z}_{2} \cong O(2,4)_{0}$.
(4) $S U^{*}(4) / Z_{2} \cong O(1,5)_{0}$.
(5) $S U(1,3) / Z_{2} \cong S O^{*}(6)$.

Proof. (1) Consider the 6 -dimensional \boldsymbol{R}-vector space

$$
\mathfrak{J}(\boldsymbol{C})=\left\{\left.X=\left(\begin{array}{rrrr}
0 & \xi & -b & a \\
-\xi & 0 & -\bar{a} & -\bar{b} \\
b & \bar{a} & 0 & -\bar{\xi} \\
-a & \bar{b} & \bar{\xi} & 0
\end{array}\right) \right\rvert\, \xi, a, b \in \boldsymbol{C}\right\}
$$

with the norm $N(X)=-\frac{1}{4} \operatorname{tr}\left(X X^{*}\right)=\xi \bar{\xi}+a \bar{a}+b \bar{b}$ and put $S O(6)=S O(\Im(\boldsymbol{C}))$.

Then $f: S U(4) \rightarrow S O(6), f(A) X=A X^{t} A \in \mathscr{G}(C)$ induces the required isomorphism.
(2) Use $\mathfrak{\Im}\left(\boldsymbol{C}^{\prime}\right)$ instead of $\mathfrak{F}(\boldsymbol{C})$ of (1) and put $O(3,3)=O\left(\Im\left(\boldsymbol{C}^{\prime}\right)\right.$). Then we have the required isomorphism as similar to (1) (note that $S U\left(4, \boldsymbol{C}^{\prime}\right) \cong S L(4, \boldsymbol{R})$ (Lemma 1)).
(3) Consider the 6-dimensional \boldsymbol{R}-vector space

$$
\Im_{2}(C)=\left\{\left.X=\left(\begin{array}{rrrr}
0 & \xi & -b & a \\
-\xi & 0 & \bar{a} & \bar{b} \\
b & -\bar{a} & 0 & -\bar{\xi} \\
-a & -\bar{b} & \bar{\xi} & 0
\end{array}\right) \right\rvert\, \xi, a, b \in \boldsymbol{C}\right\}
$$

with the norm $N(X)=-\frac{1}{4} \operatorname{tr}\left(I_{2} X I_{2} X^{*}\right)=-\xi \bar{\xi}+a \bar{a}+b \bar{b}$ and put $O(2,4)=O\left(\Im_{2}\right.$ (C)). Then $f: S U(2,2) \rightarrow O(2,4)_{0} . f(A) X=A X^{t} A, X \in \Im_{2}(C)$ induces the required isomorphism.
(4) Consider $\Im_{1}(C)=\Im(C)$ with the norm $N(X)=\frac{1}{4} \operatorname{tr}\left(X J_{2} X J_{2}\right)=\frac{1}{2}\left(\xi^{2}+\bar{\xi}^{2}\right)+$ $a \bar{a}+b \bar{b}$ and put $O(1,5)=O\left(\Im_{1}(C)\right)$. Then $f: S U^{*}(4) \rightarrow O(1,5)_{0}, f(A) X=A X \bar{A}^{-1}, X$ $\in \Im_{1}(C)$ induces the required isomorphism.
(5) Let $\mathfrak{\Im}(C)^{c}$ be the complexification of $\Im(C)$ with the norm $N(X)=-\frac{1}{4} \operatorname{tr}\left(X X^{*}\right)$ and the Hermitian inner product $\langle X, Y\rangle=\frac{1}{4} \operatorname{tr}\left((\tau X) I_{1} Y^{*} I_{1}\right)$ and put $S O^{*}(6)=\{\alpha \in$ $\left.\mathrm{Iso}_{c}\left(\mathfrak{F}(C)^{c}\right) \mid N(\alpha X)=N(X),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle, \operatorname{det} \alpha=1\right\}$. (This group $S O^{*}(6)$ is isomorphic to the ordinary group $S O^{*}(6)$. In fact, the matrix $A \in M(6, C)$ of $\alpha \in S O^{*}$ (6) with respect to the basis

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{rrrr}
0 & i & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & i \\
0 & 0 & -i & 0
\end{array}\right),\left(\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \\
& \left(\begin{array}{rrrr}
0 & 0 & -i & 0 \\
0 & 0 & 0 & i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right),\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{rrrr}
0 & 0 & 0 & i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

of $\Im(C)^{c}$ satisfies ${ }^{t} A A=E, J_{3} A=(\tau A) J_{3}$, $\operatorname{det} A=1$. Then $f: S U(1,3) \rightarrow S O^{*}(6), f(A)$ $X=\left(\Gamma_{1}^{-1} A \Gamma_{1}\right) X^{t}\left(\Gamma_{1}^{-1} A \Gamma_{1}\right), X \in \Im(C)^{c}$ (where $\left.\Gamma_{1}=\operatorname{diag}(i, 1,1,1) \in M(4, C)\right)$ induces the required isomorphism.

3. Explicit local isomorphism between $\mathfrak{S O}{ }^{*}(8)$ and $\mathfrak{S o}(6,2)$

The centers of $S O^{*}(8)$ and $S O(6,2)$ are both \mathscr{Z}_{2}, but the maximal compact subgroups of $S O^{*}(8)$ and $S O(6,2)$ are $U(4)$ and $S O(6) \times S O(2)$, respectively. Hence there exists no epimorphism between $S O^{*}(8)$ and $S O(6,2)$. So we will only give an isomorphism between their Lie algebras.

THEOREM 7. $\quad \overline{\mathrm{B}}{ }^{*}(8) \cong \bar{g}(6,2)$.
Proof. The mapping $f_{*}: \mathfrak{S O}^{*}(8) \rightarrow \operatorname{So}(6,2)$,

$$
f_{*}\left(\begin{array}{rrrrrrrr}
0 & -\lambda_{1} & \alpha_{1} & -\bar{\beta}_{1} & \alpha_{2} & -\bar{\beta}_{2} & \alpha_{3} & -\bar{\beta}_{3} \\
\lambda_{1} & 0 & \beta_{1} & \bar{\alpha}_{1} & \beta_{2} & \bar{\alpha}_{2} & \beta_{3} & \bar{\alpha}_{3} \\
-\alpha_{1} & -\beta_{1} & 0 & -\lambda_{2} & \alpha_{4} & -\bar{\beta}_{4} & \alpha_{5} & -\bar{\beta}_{5} \\
\bar{\beta}_{1} & -\bar{\alpha}_{1} & \lambda_{2} & 0 & \beta_{4} & \bar{\alpha}_{4} & \beta_{5} & \bar{\alpha}_{5} \\
-\alpha_{2} & -\beta_{2} & -\alpha_{4} & -\beta_{4} & 0 & -\lambda_{3} & \alpha_{6} & -\bar{\beta}_{6} \\
\bar{\beta}_{2} & -\bar{\alpha}_{2} & \bar{\beta}_{4} & -\bar{\alpha}_{4} & \lambda_{3} & 0 & \beta_{6} & \bar{\alpha}_{6} \\
-\alpha_{3} & -\beta_{3} & -\alpha_{5} & -\beta_{5} & -\alpha_{6} & -\beta_{6} & 0 & -\lambda_{4} \\
\bar{\beta}_{3} & -\bar{\alpha}_{3} & \bar{\beta}_{5} & -\bar{\alpha}_{5} & \bar{\beta}_{6} & -\bar{\alpha}_{6} & \lambda_{4} & 0
\end{array}\right)
$$

(where $\alpha_{k}=a_{k}+p_{k} i, \beta_{k}=b_{k}+q_{k} i, a_{k}, b_{k}, p_{k}, q_{k}$, and $\lambda_{k} \in \boldsymbol{R}$)

$$
=\left(\begin{array}{cccccrrr}
0 & -\lambda_{12} & a_{25} & \tilde{b}_{25} & \tilde{a}_{34} & b_{34} & \tilde{q}_{16} & -\tilde{p}_{16} \\
\lambda_{12} & 0 & b_{25} & -\tilde{a}_{25} & \widetilde{b}_{34} & -a_{34} & -p_{16} & -q_{16} \\
-a_{25} & -b_{25} & 0 & -\lambda_{14} & -\tilde{a}_{16} & -\tilde{b}_{16} & \tilde{q}_{34} & -\tilde{p}_{34} \\
-\tilde{b}_{25} & \tilde{a}_{25} & \lambda_{14} & 0 & -b_{16} & a_{16} & -p_{34} & -q_{34} \\
-\tilde{a}_{34} & -\tilde{b}_{34} & \tilde{a}_{16} & b_{16} & 0 & -\lambda_{13} & -q_{25} & p_{25} \\
-\sigma_{34} & a_{34} & \tilde{b}_{16} & -a_{16} & \lambda_{13} & 0 & \tilde{p}_{25} & \tilde{q}_{25} \\
\tilde{q}_{16} & -p_{16} & \tilde{q}_{34} & -p_{34} & -q_{25} & \tilde{p}_{25} & 0 & -\lambda / 2 \\
-\tilde{p}_{16} & -q_{16} & -\tilde{p}_{34} & -q_{34} & p_{25} & \tilde{q}_{25} & \lambda / 2 & 0
\end{array}\right)
$$

(where $a_{k \ell}=a_{k}+a_{\ell}, \tilde{a}_{k \ell}=a_{k}-a_{\ell}$ etc., and $\lambda_{k \ell}=\left(\lambda_{k}+\lambda_{\ell}\right)-\lambda / 2, \lambda=\lambda_{1}+\lambda_{2}+$ $\lambda_{3}+\lambda_{4}$) is an isomorphism.

References

[1] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978.
[2] I. Yokota, Explicit isomorphism between $S U(4)$ and $\operatorname{Spin}(6)$, J. Fac. Sci., Shinshu Univ., 14 (1979), 30-34.
[3] I. Yokota, Realizations of involutive automorphims σ and G^{σ} of exceptional linear Lie groups G, part I, $G=G_{2}, F_{4}$ and E_{6}, Tsukuba J. Math., 14 (1990), 185-223.

