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Among lower dimesional Lie algebras, there exist some overlaps as in the follow-
ing left side table (Helgason [1} 519-520). Now we give global explicit isomorphisms
between linear Lie groups corresponding these Lie algebras. Our results are the
following right side table which is a global answer of Helgason [1] 521-522.

3p(l) = 3u(2) = 30(3), Sp(1) = SUE), Sp(1)/Z, = SO@),
ap(1, R) = 3l(1, R) = 8p(1, 1) = 80(2, 1),
Sp(l, R) = SL(2, R) = SU(, 1), S, R)/Z, = 02, 1),,

ap(1) X 8p(l) = 8o(4), (Sp(1) X Sp(1))/ Z, = SOWH),
8l(2, R) X 81(2, R) = 20(2, 2), (Sp(1, B) X Sp(1, R)/ Z, = O(2, 2),,
8l(2, R) X 3u(2) = 30*(4), (Sp, R) X Sp(1))/ Z, = SO*(4),
81(2, C) = 8o(3, 1), SL2, C)/Z, = O3, 1),

3p(2) = 8o(b), Sp(2)/ Z, = SO(),

3p(2, R) = 8o(2, 3), Sp2, R)/Z, = 02, 3),

ap(l, 1) = 3o(4, 1), S, 1)/ 2, = O, 1),

3u(4) = so(6), SUM4)/ Z, = SO(6),

8l(4, R) = 80(3, 3), SL{4, R)/Z, = O(3, 3),

au(2, 2) = 8o(2, 4), SU@2, 2)/ Z, = 02, 4),,

3u*(4) = go(l, 5), SU*4)/Z. = O(1, 5),

au(l, 3) = g0*(6), SU(, 3)/Z, = SO*(6),

80*(8) = 8o(6, 2),
where Z, = {E, —E} in any case.
Almost all of them might be known (e.g. [2]) except the the last several ones, but
we will give their proves for all cases.

1. Notations and preliminaries

Let R, C=RDRi, H=R P Ri ® Rj D Rk be the fields of real, complex,
quaternionic numbers, and €’ (i"* = 1), H' = C @ Cj’ (j”* = 1) be the algebras of split
complex, split quaternionic numbers, respectively. Let C = R, €C¢ H°¢ be the
complexifications of R, C, H, respectively, and their complex conjugations are
denoted by z:z(x+v)=x—yi,x,y EK=R, C, H.
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We arrange the groups used in this paper, although they are familiar.
SO(n) ={A€ M(n, R)|'AA = E, detA = 1},
Om, n)={A€ Mm+n, R |'AlLA = I}, O(m, n) is the identity connected
componect of O(m, n).
SO*@2n) ={A€ M@2n, C)|'AA = E, J.A = AJ,, detA =1},
Un)y={A€Mn, C)|A*A=E}, SUn ={Ac Un)|detA = 1},
SL{n, K={A€ M@, K)|detA=1}, K=R, C,
SU(m, n) ={A€Mm+n, C)| A*I.A = I, detA = 1},
SU*@2n) = {A€ M2n, C)|J.A = AJ» detA = 1},
Spn)y={AE€M(n, H| A*A = E},
Sp(n, R) = (A€ MQ@n, R)|'AT.A = T},
Spim, n) ={A€ M(m+n, H)| A*L.A = I}
where I, = diag (—1, -+, =1, 1, -~ , 1), Jn=diag(J, -+, J), ] = [ 2 (1)] .

_— ;__V_/
m n

LEMMA 1. Define SU(n, C)={A€M(n, CY| A*A=E, detA =1}, Spin,
={AeMn, H)| A*A = E}. Then we have

 SU(n, €)= SL(n, R),  Sp(n, H') = Sp(n, R).
PrOOF. See Yokota [3], Propositions 0.2 and 0.4.

2. Explicit global isomorphisms

THEOREM 2. (1) Sp(l) = SUER), Spl)/Z, = SO(3).
ProoOF. (1) The natural embedding k: H=C @ Cj - M2, C), kla+bj) =
b

[ ; _] induces the isomorphism k: Sp(l) — SU(2). Next let H, be all pure
— a
quaternionic numbers with the norm N(x) = xx and put SO(3) = SO(H,). Then f : Sp
(1) = SO®), f(p)x = pxd, x € H, induces the isomorphism Sp(1)/Z, = SO(3).

(2) Sp(1, R) = SL(2, R) by the definition. The natural embedding #': H' = C @ Cj’

b
—- M@2,0), F'(a+bj) = [ g _] induces the isomorphism £ : Sp(l, H') — SU(1, 1)
a

(note that Sp(1, H') = Sp(1, R) (Lemma 1)). Next let H’, be all pure split quaternionic
numbers with the norm N(x) = x% and put O@2, 1) = O(H',). Then f: Sp(1,H) — O
(2, 1)o, F(P)x = pxp, x = H', induces the isomorphism Sp(l, H')/Z, = 0(2, 1),.

THEOREM 3. (1) (Sp(1) X Sp(1))/Z. = SO4).
(2) Sp(1, R) X Sp(1, R))/Z, = 02, 2),. (3) (Sp(1, B) X Sp(1))/ Z, = SO*(4).
PROOF. (1) Consider H with the norm N(x) = xx and put SO(4) = SO(H). Then
£ SpA) X Sp(1) — SOW@), f(p, )x = pxd, x € H induces the required isomorphism.
(2) Use H' instead of H of (1) and put O(2, 2) = O(H’). Then we have the required
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isomorphism as similar to (1) (note that Sp(1, H') = Sp(1, R) (Lemma 1)).

(3) Let H€ be the complexification of H with the norm N(x) = x% and the
Hermitian inner product <x, y> = (zx, iy) (where (x, v) is the usual inner product of H¢
defined by % (Zv + yx)) and put SO*(4) = {a E Is0H) | N(ax) = N(x), {ax, ay) =
{x, v>, deta = 1}. (This group SO*{4) is isomorphic to the ordinary group SO*(4). In
fact, the matrix A € M, C) of &« € SO*(4) with respect to the basis {1, i, j, &} of H®
satisfies ‘AA = E, LA = (zA)}, detA = 1). Since {a + bi + cij + dik|a, b, ¢, dE
R} is isomorphic to H’, we identify these algebras. Then f: Sp(l, H') X Sp(1) - SO*
@), f(p, @)x = pxq, x € H° induces the required isomorphism.

THEOREM 4. SL2, C)/Z, = O3, 1),.
PRrOOF. Consider the 4-dimesional R-vector space J(2, C) = {X € M©2,C)| X* =
3

X} ={X '—“[ J | &, € R, x € C} with the norm N(X) = detX = &y — x% and

x
7
put O3, 1) = 02, €). Then f: SL2, C) — 03, 1), f(A)X = AXA*, XE3(2, C)
induces the required isomorphism.
THEOREM 5. (1) Sp(2)/Z, = SOB). 2) Sp2, R)/ Z,
(B) Sp, 1)/ Z, = 04, 1),.
ProoF. (1) Consider the 5-dimensional R-vector space 32, H), = {X € M(2, H)

& x
—&

1

012, 3),.

| €€ R, x = H} with the norm N(X) = —det

IX*:X,tr(X)zo}:{X:[

X = —é— tr(X?* = &* 4+ xx and put SO(5) = SOX(2, H,)). Then f: Sp(2) — SO(5), F(A)
X = AXA*, X €32, H), induces the required isomorphism.

(2) Use 32, H'), instead of 32, H), of (1) and put 02, 3) = O(2, H'),). Then we
have the required isomorphism as similar to (1) (note that Sp2, H) = Sp(2, R)(Lemma
I)).

(3) Consider the 5-dimensional R-vector space 2, H), = {XE M2, H)| X =1,
i _z] | £€ R, x € H} with the norm N(X) = —detX =
% tr(X? = &* — x% and put O, 1) = OS2, H),). Then f: Sp(1, 1) — 04, 1)y, F(A)
X = LALXA* X €32, H), induces the required isomorphism.

THEOREM 6. (1) SU4)/Z, = SO(6). (2) SL4, R)/Z, = O3, 3).

(2) SU@, 2)/Z, = 02, 4),. (4) SU*4)/Z, = 0Q, 5),.

() SUQ, 3)/Z, = SO*6).

ProOF. (1) Consider the 6-dimensional R-vector space
0 & —b  a
— 5 5

X, tr(X) = 0} = {X = [_

<

—a —b

NC)={X = 4 s 0 —z | &, a be C)
—a b £ 0
with the norm N(X) = — - tr(XX*) = & & + aa + b and put SO®6) = SOG(C)).

4
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Then f: SU@) — SOB6), f(A)X = AX'A & J(C) induces the required isomorphism.
(2) Use 3(C") instead of HC) of (1) and put O3, 3) = O(S(C")). Then we have the

required isomorphism as similar to (1) (note that SU4, €’) = SL{4, R) (Lemma 1)).
(3) Consider the 6-dimensional E-vector space

0 & —b a
—& 0 a b
R ={X = — be
’\SZ(C) { b _ d_ 0 _ g | g» (Z, C}
-a —b £ 0
with the norm N(X) = — —i~tr([2X12X*) = — &&+ aa + bb and put 02, 4) = O,

(). Then f: SU@2, 2) — 02, 4),. fLA)X = AX'A, X €X(C) induces the required
isomorphism.

(4) Consider 3,(C) = J(C) with the norm N(X) =+ tr(XLXT) = 4 (82 + &9 +
ad + bb and put O(1, 5) = O(X,(C)). Then f: SU*E) — O(1, 5), f(A)X = AXA™, X
€ 3,(C) induces the required isomorphism.

(5) Let I(C)° be the complexification of J(C) with the norm N(X) = — % tr(XX*)
and the Hermitian inner product <X, ¥> = %tr((rX)L Y*1) and put SO*(6) = {a €
Is0((C)) | N(aX) = N(X), <aX, aY) = <X, YD, deta = 1}. (This group SO*(6) is
isomorphic to the ordinary group SO*(6). In fact, the matrix A€ M(6, C) of a & SO*
(6) with respect to the basis

0 1 0 0 0 7 0 0 0 0-1 0
-1 0 0 0 -7 0 0 0 0 0 0-—1
0 0 0—-1L 0 0 0 ' 1T 0 0 Of
06 0 1 0 0 0 —2 O 06 1 0 0
0 0—7¢ 0 6 0 0 1 0 0 0 ¢
0 0 0 0 0-1 90 0 0 ¢ 0
i 0 0 Oo'f 0 1 0 0] 0—¢i 0 0
0—72 0 0 -1 0 0 0 -7 0 0 0

of J(C)° satisfies ‘AA = E, LA = (zA)fs, detA = 1). Then f: SU(1, 3) — SO*(6), /(A)
X =, TAT)XHT, AT, X € X O)° (where Ty = diag(s, 1, 1, 1Y€ M4, C)) induces
the required isomorphism.

3. Explicit local isomorphism between 30*(8) and 30(6, 2)

The centers of SO*@8) and SO(6, 2) are both Z,, but the maximal compact
subgroups of SO*(8) and SO, 2) are U(4) and SO(6) X SO(2), respectively. Hence
there exists no epimorphism between SO*(8) and SO(6, 2). So we will only give an
isomorphism between their Lie algebras.

THEOREM 7. 80*(8) = 80(6, 2).

Proor. The mapping fx: 80*(8) — 80(6, 2),
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0 —4 & —F @m —B. @ —f
Ay 0 B a B &, B as
—a B 0 -2 a — B @ —fs
ﬂ_1 —a Az 0 B ay B as
—a — P —a — S 0 — 1 Qe _Ea
Ez — @, ﬁ_4 —a As 0 ﬁe s
—as —f s —f —a —fs 0 — A
Ba —a& B —& B —& A0

I+

(where ax = ar + pui, fr = bx + qui, ar, be, Pr, qr, and 1z € R)

0 —Ae @ b @ bu G —bus
Lz 0 bis — @i bu — @ — P — G
—@s —bs 0 —Ay —&e —bis G —Du
I b dss A 0 — b s — P T G
=@ —buw  @s b 0 —Xs —@s D
— by Qa4 bis — aus At 0 bas d2s
Gwe — Die Gsa  — Dss — s 525 0 —1/2

“‘”1516 — e _534 — 34 Des Goas r/2 0

(where aw = ar + as, Gre=ar — acetc, and A = Ar + 1) — 1/2, L =4, + 2, +
As + 4,) is an isomorphism.
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