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Abstract Let G be GL (n,c) and 9G the based loop group over G. Then the

(stable) first and second non abelian de Rham sets with respect to G and 9G are

related by the diagram

                             Ho (9Mk, Mi2g..)/de(HO(9MA, 9g., d))

                         g*/ 1 ))>x
  Ho(M, fi..)1de(HO(M, g., d))････････--･･･-･･･････p'i -････t････-･ B････ny････-->                                                            H' (M, figg co)

                                           ･                             Bo Hi(gME,xi..) Bi

Here, 9Me is the space of zero homotopic loops over M, 9 is the Lie algebra of

G, 9g is the loop algebra over g, and "' and aimg are the sheaves of germs of

g- and 9g-valued integrable forms on M, a smooth Hilbert manifold. The maps

p*i, Bo and Bi are defined by using Grassmanhian model of loop qroups (B is

defined with some additional assumptions at this stage). Geometric characterization

of the map from M into 9G, the basic centrat extension of 9G, together with its

quantization condition and relations of several characteristic classes of non abelian

de Rham sets, including string classes, and the above maps are also given.

Imtroduction

    In our previous papers [3], [4], a G-bundle 6 over a smooth Hi}bert manifold

M is related to an integrable form e=l(6) on 9M or an LG-bundle L!(6) on

S?Mb. Here G is a Lie group with the Lie algebra g (in the rest, we assume G==GL

(n,C)), LG is the Ioop group over G and 9M is the space of zero-homotopic based

loops over M. By using notations and terminologies in non abelian de Rham theory

([1], [2]), l and L! give maps
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          l : Hi (M, fi)---Ho (9na, Mi)/de(HO (9Mh,gd)),

          L! : Hi (M, fi) ,H' (9ua, X'Lg).

Here, g is the Lie algebra of G, Lg is the loop algebra overg and de is given by

         dif = e-fd (ef) = clyr + ;, k=, ((i+iil! (ad f)" (dyc),

where (adf) (df)==f(cif)-(df)f(cf.[1]). We have also defined characteristic

classes PP(0) G H2P-'(M, C), for 0E HO (M, .ut'a) and 5P (<op)E H2P'i(M, C) for <w>E

Hi(M,fiLg> ([3], [4]). PP(e) is deflned as the de Rham class of

          '
                      (P-1)!         (-i)P'`i (2..v,-i)p(2p - i.)! tr (e2P'"i), ipq == g6Ar'9'r.ip.

Definition of cP(<tu>) is given in [4] and reviewed in Appendix. For these character-

istic classes, the followings are shown ([3], [4])

                         p! (P -1)!
         ChP(<bl>) = (-1)P                                  r(BP (l (<fD>)),
                         (2P-1)!

                             1
         ChP(<O>)= (2.v-opcp-1)! T(cP-i(L!(<cti>)).

Here ChP(<o>) is the P-th Chern character of <to> (cf. [1], [2]), and r:H2P" (M,C)

-H2P (9ua,C) is the transgression map (cf. [5], [6]). In [4] the relation between

c' (<bl>) and the string class (and string structure) of Killingback and Pilch-Warner

([9], [13]) is discussed.

    These results suggest that there may exist some map between HO (M,fi)1

de(HO(M, gd)) and Hi(M,XiLg). In this paper, we construct such map by using

Grassmannian model of loop groups ([14], [16]). This study also shows that

[M, 9G], the space of homotopy equivalence classes of based maps from M into
3i?G, the basic centrai extension of the based loop group 9G, is

         [M, 9NG] == {Stable C-bzandlese such that ci (6) = O) × Hi (M, C).

Here, ci(e) is the first integral Chern class of g. If the map g: M-9G is realized

as an SGL(n,C)-bundle, then the Hi (M,C)-part of gin the above correspondence

is an integral class.

    The outline of this paper is as follows; In Section 1, we give some basic
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definitions of sheaf and its cohomology sets of germs of Ioop algebra valued integrable

forms (cf. [4]). In Section 4, first we investigate the relation between Ioop algebra

valued integrable forms and G-bundles. The relation between integrable forms and

9G-bundles is also studied. Then the relation between several characteristic classes

of integrable forms and bundles via the obtained maps are shown. In Appendix,

we review differential geometric and topological definitiohs of c-'P(<o>). Topological

definition of characterisitic class of a Mmp(X, G)-bundle is also given. To get

differential geometric defini-tion of this class seems to relate the theory of anomaly

and its cancellation (cf. [11], [10], [12], [15]). We note that, although we work in

smooth category in this paper, it seems interesting to treat similar problem in

holomorphic category. Such study may relate to the theory of soliton equations

(cf. [16]).

gl Sheaves of Germs of Loop Algebra valued Integrable Forms

   1. LetG beaLie group with the Lie algebrag(We assume G=GL(n, C) in

the rest). The free and based Ioop groups and loop algebras over G and g are

denoted by LG, 9G, Lg and 9g, respectively. Their basic (complexified) central
extensions are denoted by ZG, thG, Zg and 9Ng, respectively. By defintions, regar-

ding G and g to be the spaces of constant loops, we have the following commutative

diagram with exact lines and columns (as sets). ( 1)

               ooo ooo         o"-6* !fu 2e. rm7., ,-b a6, g6, -,
  (i) o J*=gLiG g2G o o-L=gig i2, -,

               1i.-1 i1=i
               o-G-G-o o-g -g -o                      tt TT                      oo oo
   A smooth Lg-valued 1-form e == 0(t), Of{t:lll is the Ioop variable, defined on a

smooth Hilbert manifold M, is said to be integrable if it satisfies

         de + oAo = o.

In this case, 0 is locally written as g-' dgl where g is a smeoth LG-valued function

([4]). If 0 is a 9g-valued form, then we can take this g to be a 9G-valued func-

tion, If ¢ is an Lg-valued 1-form, then we can set ¢== (ip, P), where ip is an Lg-

valued 1-form and P is a usual 1-form. An Z--g-valued 1-form ¢ is said to be

integrabie if it satisfies de + '/2 [¢, ¢] = O, that is, if e =: (e,a) satisfies･

         db + bAb= o, dtu + -l}-i: t2J (eAO') dt =7 o.
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Here 0' means dO/dt ([4]). e also has 'a local integration ([4]).

   On M, we consider the following sheaves;

C"tt Gt･ LGtt 9Gtr LGt and 9Gt: The sheaves of germs of constant C", etc., valued

                               maPs over ML
C"dr Gdt LGdt 9Gdt ZGd and MGd: The sheaves of germs of smooth C', etc., valued

                               mmps over M.

Mi, a'Lg,M'iggrM'izg andM'kig : The sheaves of germs of integrable g, etc., valued

                               1-forms over M.
CP, gP, LgP, 9gP, ZgP and 9gP: The sheaves of germs of smooth Prforms and g,

                               etc., valued P-forms over M.

eP: The sheaf of germs of closed P-forms over M

If G == GL (1,C), then we have "' == 0i.

   If g is an LG-valued function, then we define a G-valued function gb on MxSi

by

        gb (x, t) = (g(x)) (t).

Similarly, for an Lg-valued form ¢, we define a g-valued form ¢b on MxS'. In

the rest, we assume that g is smooth means gb is smooth (¢ is smooth means ¢b is

smooth). If g is an LG-valued function (if ip is an Lg-valued form), then gis smooth

means gis smooth in the usual sense and 7' (g) is smooth in the above sense (ip is

smooth in the usual sense and 7' (¢) is smooth in the above sense).

   2. In [4], commutativity and exactness of each line and column of the following

diagram is proved.

                                     '
              ooo                                                        '         ,-6i a2ia2i-,
 ,,) ,m rJ,,!･2.Ll=p･2.Lg,-,

         ,---J*, k-L"1G,2LGt-o

              ttt
              ooo
                                                               '
p is defined by p(g)= gMidg. Since LG has no cannonical coordinate, p does not

have cannonical expression. But it takes the following local form ([4])

        p(g) c) == (g-idg) a + dc), dtt + Slg tr (g-idgA(g-idg)') dt = o



         Remarks on the Relations between Non Abeliande Rham Theories 81

Here (g) c), gELG, cEi!C', isalocal expression of LG.. ･
   (2) follows from the first diagram of (1). By the second diagram of (1), we

have the following commutative diagram with exact lines and columns

              oo o'              t it ]'t
         o-el -.aignyg sxi2g -o
  (3) o-eii8!.L"z,2L'Lg "o

              1 1 =I
              o-xi --xi -o
                     tt
                     oo

By diagrams (2) and (3), we have the followlug commutative diagrams with exact

lines and columns of non abelian cohomology sets (cf., [1],[2] [4]).

     o--･Hi(M;C*)-Hi(M;ZGt) -Hi(M]LGt) -H2(M)C*) .
     o -Hol(iuL ei) -sHe (IA¢ xiz,)zHoi(M miL,) -a+HJ(M, ei)aH2 (iuc c)

     o -Hoi( M, c*d);Ho IM, zGd) -2･Hol(itc LGd) aH ii( A¢ c*d)=H2 (u z),

          O ,Hi(M]Mi)-Hi(M;xi) -O
          1 1 l ,- ,.,
     o -HO (A¢ 0') -HO (M aiki,)-HO (1tzC M'isa'", ) -H' (M, ei)-:1.H2 (Al C)

          i== lj ij bi== c>t
     O-HO (M] 0') -HO(M] MiZg)-HO(M, M'Zg) -Hi (M] @i)-ZH2 (M] C)
          g ,.,,Ik,,e..,, =.,i,,,i.,, '-g

This second diagram shows

 (4) 6(HO (M; aing )) = ti (HO (M) a'Lg )).

                                                            tt
   In [4], we have shown that the representing closed 2-form of 6 (e), 0E
HO(M;f'Lg), is given by f: tr(eAO')dt. It is also shown that to define IP(e)

EH2P (M; C) as the de Rham class of ,

  (5) ( 2.£i7::-i)PSi tr (e2P-iAe') dt, oEHo(M; MiL, ),

we have
                       '
 (6) IP (g-'dg) = Cpg* (ep), CplO is a constant.
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Here sp is the 2P-th generator of H* (9G, C) (cf. [6], [7], [8], [14]). By (5), we

have

  (7) IP (0) == O if 0Ei (HO (M, fi)).

Hence we can define IP as the characteristic class of the elements of HO(M]Migg).

   3. we denote GL (n,C) by G.. Its Lie algebra is denoted by g.. Then there

are inclusions g=gM.:G.-G. and g:g.-g. if m>n. They induce inclusions

g== gMn:LGn-LGm and g:Lg.->Lg.t etc.. By definitions of g-s, the lollowing

diagrams are commutative.

         o -HO (M] e') -HO (M] a'ig.) -,･HO (M, aimg ,.)-Hi (M; @') = H2 (M] C)

 (8) tl gMni gmnl ==                                                    1

         O -HO (M) ei) .HO (M; Xiig .) -HO (M) M'gg m)'-Hi (M; e') == H2 (an C),

         o -HO (M; C*d)-HO (ML MG., d) -HO (M] 9G., d) -Hi (M] C*d) == H2 (M] Z)

(s ') =1 gmn l-. gMni ==                                                    1

         O -HO (an C"d)-'HO (M] 9Gn,d) '-'HO (M) 9Gn, d) "'H' (M; C'd) = H2 (ML Z)･

Hence we can define stable non abelian de Rham sets HO(M]ai"g..), etc., by

         He (M; fi2g .) = lim [HO (M] .di"i2g .) l gM.], etc. ･

Then by (8) and (8)', the following sequences are exact.

 (g) o-HQ(A¢ e') tLHo(?uc fith,oo)-LHo(A¢ vai.,.)-i-

          -Hi(M]Oi)=H2(M]C),

(g') o-Ho(A¢c*d)LHo(A¢bG..,d) Z-Ho(luL 9G..,d) :?-

           -Hi (ML C*d) = H2 (M) Z).

By definitions of IP : HO(M] ai2g.)- H2P(M; C) and gM., the diagram

                      IP
         HO (A¢ f'gg m)-H2P (1rz C)
          gmnl ip =1
         HO (M; X'gg n)-                        H2P(M] C)

                                  '
iS commutative. Hence IP is defined on HO (AtC M'gg.) (and on HO (M; .M"Lg..), Then

         6(0) := li (e), eEHO(M]Min,.) (or 0EHO(M)M'Lgco)).
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    Sitnilarly, we can define HO(M]f'.) by

         HO (IUC f'oo) = lim [HO (A¢ f'n) 1 9Mn]･

Here "i. is the sheaf of germs of complex (n, n) -matrix valued inte-grable forms.

Then we can define the map PP:HO(Mfi..)-H2P-'(M;C) by using the map
PP : HO(M a'.).H2Pmi(ILC C) (cf. [3]).

    In [3], it is noted that HO(M]fi)lde (HO(M;gd)) is more natural cohomology

set than HO(M;f') from the point of view of view of non abelian de Rham theory

<cf. [1]). Here de is given by

         def == e'"fd(ef) =- df+lli.il, (:-+ili (ad f)"(df).

By using HO(M] figg.)!de (He(M) 9g.)), etc., we get the exact sequence

  (10)n O -H'(M; C)-HO(M] M'men))lde(HO(M; 9g.))6-
            +HO(ML aigg .)/de(HO(M 9g.))-H'(M e') == H2(AC C).

This sequence induces the exact sequence

  (10). . O-H'(M) C)-HO(M] X'e, oo)!de(HO(M; S?gco,,, ))-

          -He(M; M'gg )lde(HO(M; 9g..,d))-H'(M; ei) =H2(M] C).

92 stg-valued Integrable Forms and G-bundles

    4, Let Gr be the universal Grassmann manifold. Then there is an inclusioni=

i.:9G.-Gi such that i.":rr. (9G.) !i! rr,(Gr), if r<2n-2 ([14], [16]). Hence if 0 e

HO (ML .di'i2g.) is integrated on M, that is, if we have

  (n) 0= gH idg3 gE HO(M; 9G., d),

then i.g gives a smooth map from M into Gr. g is determined uniquely by e if we

determine its value at a (fiexd) polnt of M. Hence we may consider e defines a based

smooth map from M into Gr. Therefore e defines a (stable) vector bundle g:=6(e) on

Ml Computations of characteristic classes of LG-bundles in [4] (cf. [6], [7], [8])

show

  (12) IP(0)==(P-1)! ChP (6(e)),

where ChP(6) is the P-th Chern character of (stable) G-bundle e,

    In (11), we assume g=j(gi, where g is a smooth map from Minto 9G, Then

we get 4'(e)=O. Hence by (12) and (8)', we have

  (13) ci(g(0)) :=O, ci(6) is the fiirst integral Cheptn class of e.

Conversely, since i.:rr,(9G.)El}i:rt.(Gr), r<2n-2, if a vector bundle satisfies ci(g)=O,



its stable class is represented by 6(y'(0)), where 0 E HO(M; X'eg.) for some m, by the

exactness of (8)'. Therefore we have the first part of the following Theorem.

    Theerern 1, There isalto'l correspondence betweenP(HO(M; 9Gco,d)) and the

set ofPairs (6, ip), where e is a (stable) G-bundle such that ci(g) = O and ¢ is a 1-fornz

on M such that

          ipIUi == tr(Ai), {Ai} is a connection of 6.

    proof. By (7)and (11), if eE p(HO(ML9Goe,d)), then to set 0 == (0,a), the 1-form

a satisfies

         tr(Fe(e)) == da,

Here Fe(e) is a curvature form of e(0). we denote {Ai} the connection of 4(e) whose

curvature is Fe(e). Then we get

         ai Ui = tr(Ai) + Pi, dPi = O,

Since Pi i's a 1-form, we set Pi = dhi' where hi isa matrix valued function. Then we

get

         alUi =tr(e -iilhi Ai e"t hi + iliPiI.), m:=rank e(e),

         I. is the unit (m, m)-matrix

Hence we have the second part of Theorem. Because if {Ai} is a connection of e(e),

then another connection {Ai'} is given by {Ai+Bi}, where Bi=giJBjgii', so

tr(Bi) defines a global 1-form on M

           By this Theorem and exactness of (10)., we have

  (14) p(HO(M] 9G.., i))lde(HO(M) 9g.. d))

          = {Stable class of G-bzandles e such that ci(6)=O} xH'(AtC C).

Since the kernel of this left hand side is the set of zero-homotopic maps from M

into ･9G, we have

  (14)' [M]3iG] == {Stabte G-bundies g with ci(S :- O} × H'(AcC C).

    If ci(e) == O, the structure group of e is reduced to SGL(n, C). Hence 6 has a

connection {Ai} such that tr(Ai) =O. Therefore, in the correspondence (14), we can

take (6, O) to be the cannonical element. Other c-s, ceHi(M C), measure the

difference between the connection {Ai}, tr(Ai) represents c by the de Rham corre-

spondence, and 6gl(n,C)-valued connections of 6. 0n the other hand, by using sheaf

exact sequences

                           det
         O FSGLd Gd sC*-O,

         o .fifg[-f-E4i ei--o,
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where SGLd and MiFgi are the sheaves of germs of smooth SGL(n, CFvalued

functions and Bgt(n, C)-valued integrable 1-forms over M] we have the following

commutative diagram.

         Hi(M] Z)-HO(M] C*d)-Hi(M] SGLd)----+Hi(M; Gd)

             ll l.
         Hi( M] C)-HO( Ml ei)-Hi(M] Mi i gl )NHi(M; "i).

Hence if e corresponds to an SGL-bundle, then c is an integral class. .

    5. In general, denoting Mthe universal covering space of Mwith the proje-

ction rr, we have

  (11)' z'(0) = g-'dg, eG HO(M] X'2g), gEHO(iilZ 9Gd).

Since rt'(0) is invariant under the action of rri(M), g is a representative function

with resopect to the action of z'(M). Hence the transition function {glj} of the

induced bundle of the universal bundle of Gr by the map i.g satisfies

         p(gii･) = p(git,･･), if x(U,) = rr(Uit).

Therefore, {p(gii･)} defines a cocycle in Zi(U, fi.). If g= e""(f), f is a smooth g-

valued function on M, then {p(gii･)} defines a coboundary in Bi(U, X'.), Hence we

have the map

         p"i:HO(M; x`2,.)ide(He(M) 9g, d.))-Hi(M] .if"i.).

On the other hand, if g==ef on M] then i.g is a zero-homotopic map from Minto

Gr. Hence we have the map

         i:HO(A(L 9G..,d)lexp (HO(M] 9g..,d))-H'(M; G..,d).

This map is a bijection, because i.*:rr,(9G.)2il T.(Gr), if r<2n -2. Therefore we

obtain the first part of the following Theorem.

   Theorem 2. we have the following commutative diagram with exact lines.

  (ls) o He(ILL 9G.,d)!exp (Ho(M, gg.,d))-e:*L.

                       il= s}"

         H'(MIGoo,t)-Hi(M)Goo,d) -

                                      6
         -HO(M;f'ggoo)!de(HO(M;9goo,a)) FH'(M;9Goe,t)==Hom(xi(M), 9Goo)

                     P*il 6 ' '
                                    -H2(Ml Goo, t)･                -Hi(MMi.)

In this diagram, we have

 (16) ip(0) = (p - 1)! ChP (p*(g(e))). 'e ci HO(M; xiw,..).

   Proof. We need only to show (16). But it follows from (12).



   By (15), if the map fi:HO(M,Mi2g.)lde(HO(M; 9g.,d))-H`(M] 9G.,t) == Hom (rri(M),

9Goo) is onto, then we can define the map

         i*:HOM (rri(M), 9Goo)'H2(M]Goe,t),

by

  (i7) i*(x)-=6(p"(6(0))), if x-=5(e).

   Note. i:9G-Gr induces the map i":HO(M]Migg.)-H' (M;G.o,d). Then by
(12), (15) and the definition of the k-group KO (M), we have the following commu･

tative diagram

                                  ChP
                                  -H2P(M) Q)                       KO(M)
                    i* 1 chp ==1

         HO(Ml M`gg oo)-                                  -H2P(Ml Q)                          (M; G.,d)                       Hi
          R'i i*                         T'l chp rt*1

                                     ,H2P(M; Q)         HO(M] 9Goo,d)-Hi(M] Goo,d)
                           1 chp :=1

                                  -H2P(ML Q)･                       KO(M)

   6. we denote by 9Mb the space of based zero-homotopic loops over M If g

is a smooth G-valued function on M] then we define a smooth 9G-valued function

g9 on 9ua by

         (g2(r)) (t)==g(*)-'gtr(t)), *=-r(o).

The correspondence g-g9 induces maps

         9! : HO(M] xi)-HO (9Mb,"igg),

         9! : HO (ML fi) 1 de (HO (A`C gd))-HO (9Mle, ai2g ) ) de (HO (9Mb, 9gd)),

(cf. [4]). Since there is the map p'i:HO(9Ml,,Migg..)/de(HO(9Ml,,9g..,d))-

Hi(9Mle,aioo), to set

         Bo -- p"i9!,

Bo gives the map

  (ls) B, : HO (an fi..) ! de (HO(?tz g.,d))-Hi (9Mb, xi..).

Bo is a kind of non abelian de Rham version of Bott mcip with respect to the space.

As for the relation between characteristic classes, we obtain by the results in [3],

[4] and (16)

                     (2P-1)!
  (lg) pp (e) == (-1)p                            T-i (ChP (Bo (0)))･
                    ((P-1)!)2
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Here, T" : H2P(M] C)-H2Pmi(A{L C) is the inverse of the transgression map.

   In [3], we have defined the map

        l : H'(M] Migg oe)-HO(9Mb, -di'i2g oe) / de(HO(9Mb, 9goo,d)).

Hence to set

        Bi = p*il,

we obtain the map

 (20) Bi : Hi(M] v4e"2g co)-H'(9Mb,Mi..).

By (20), if Bi(H'(ML .di1'segoe))DBo(HO(M,Mi..)/de(HO(M,goo,d))) and Bi-i is defined, then

we can define the map

        B : Ho(ua .di'i.) / de(HO(A¢ g×,d))-H`(M; X'wg ..)

by B=B,niB, (similarly, if Bo(HO(M,Xico)/de(HO(M;gco,.')))DBi(Hi(M] fi2g.)) and

Bi-' is defined, then BH`:H`(M;Xiggoo)-HO(MLa'Da)lde(He(Mlg.,d)) is defined by

Bo-iBi). If B is defined, we have

                   (P-2)!
 (21) pp(e)=                              cp-i (B(g)), p-l}ii2.
               (2nV-1)P (2p -1)!

                                                       '
we may consider B to be a kind of non abelian de Rham version of Bott Periodicity

maP with respect to the cocfiicients.

   We summarlize the results of this Section as the following Theorem

   Theorem 3. The following diagranz is commutative. By these mmps, characteristic

classes ChP, PP and cpHi are maPPed each other via the transgression mcip.

                        g7 HO (9Mle, aip?g,wl 1 de(HO(9Mle, 9goo,d)) N

   Ho(M; Mioo) / de(HO( M) g-･ d))k/;,i:(1:;lllIlg ' 'fi ;[g' '; di;it LJ'L;;' ' L'A; ;' ;JJJJJJ12;i;-;si' ' ' ' ' ' ' ' ' ' ' ' ' ' -Hi(M) "'9g oo)

Appendix. Characteristic Classes of 9G-buRdles and Elements of H'(M] .M'i"g),

   Let 6= {glj} be a smooth9G-bundle over a smooth Hilbert manifold M Its

connection form {0i} is a collection of 9g-valued 1-forms such that

   giti -idgii == 0j - gii'eigij･.

It is known that {e,} exists if {bli,･} = {g,ii dgii} satisfies

 (1) ct,jk -(Dik+gile'"' (tiil･ g)'le =O･

(1) is weal<er than the condition gii･ g)･k glei = 1, and we call {bliJ･} to be a 1-cocycle

with respect to "igg, if {evii･} satisfies (1). Then we can define cohomology set



Hi(M;"'gg). The cohomology class of {tui,･} is denoted by <w>. We call a collection

of 9g-valued I-forrns {ei} such that caii･=ei･-giiteigii･, caii::giiidgiJ･, to be a

connection (form) of <o>. The curvature (form) {Oi} of {ei} is defined by ei =dOi

+eiAoi.

   The characterisitic ciass cp (<w>) EH2P"(M; C) of <to>EH'(IV{L fiAg) is defined as
the de Rham class of a closed (2p+1)-form whose local form is li tr(eiPAOit) dt,

Here eiP=eiA.T?1" Aei andOit==dO/dt. But in general, Sg tr(0iPAOi')dt behaves

anomalously by the change of coordinates. To cancell this anomaly, we assume

  (2) i; tr (e,･Pg)･h'g)･k"i) dt - Ig tr (@iPgik'gik-i) dt +

         +l; tr (eiPgiJJgi,ri) dt == o.

(2) is satisfied if (dldt) (gi,･gikglei) == O. Especially, if {gi,･} defines a 9G-bundle,

then (2) is satisfied. If (2) is hold, we can set

                          '         lt tr (eiPgiiygiii) dt = Tp,j - zv'p,i.

Then, it is shown that

         f: tr (e,PAe,') dt -dlifp,i = S: tr (eiPAO/) dt -dlP'p,r

on UiAUti. Hence it defines a global closed (2P +1)-form on M and whose de

Rham class is c"p (<bl>).

    Instead of the above differential geometric definition, we can give topological

definition of Up(<to>) as follows; lf tui,･=giii dgi]･ and (d!dt)(gii･gj'kgki) == O,

then we can associate an element <w>b of H'(MxSt,Mi) for <ca>EiHi(M,Mt"g).

Especially, ife=={g}j} defines a 9G-bundle, then we can define a G-bundle eb

over MxS by

         eb = {&･,･b}, gvjb (x, t) = (gii(x)) (t),

where the coordinate system of 6b is {Ui ×S'}. We denote the integration along
the fibre S' (inH'(MxS',C)) by f,i¢ (cf. [5], [6]). Then we obtain

  ( 3 ) 'c"p (<to>) == - (2rrV-1)t¥)! j",ichp+i (<w>b).

(3) and the properties of the evaluation map ev : 9Mb × S'-M (cf. [5]) shows
the following formula on (generalized) string classes ([4])

  (4) ip (S2! (6)) = (2TV-1)P'i p!r-i (ChP+i (e)).

    Note. Topological definition of cp (6) (==cp (p' (e))) is generalized for a Mmp (X, G)-

bundle 6, X is a smooth compact manifold, as follows:Let r be a fixed generator
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of integral homology group Hq (ML Z) of X. Then we define a characteristic class

i,,p (e) ci! H2P-q (M] Q) of 6 by

  (5) Ur, p(6) =:lrCh" (6b)･

Here gb is defined similarly as above. Especially, if X=SM, a Mmp (SM,G)-bundle

has even dimensional characteristic classes if m is even, and has odd dimensional

characteristic classes if m is odd (cf. [11]). It is shown that Eb has the following

form curvature {Fi}

         Fi = eib + dMoib + Doirpi, D,ip := d¢ + [e, ¢].

Here, dX is the derivation on X, d is the derivation on M) {ei} is a connection

of e and ei = dei + 0iAOi. Hence, if rEiHi(Ml Z), we can give differential geometric

definition of b,,p(g) (cf. [4]). But other cases to get differential geometric definition

of i,,p(g), it seems to need some considerations like anomaly cancellation (cf.[10],

[12], [15]).

Added in Proof.: Dr Terazawa kiRdly taught the author the book "GrouP of

Paths, Observations, Fields, and Particles" by MENsKy, M.B. : Moscow 1983

(Japanese translation, Keiro-Gun no Kikagaku to Soryusi-Ron, transL bySuGA-

No, K.: Tokyo, 1988). In this book, Mensky emphasized the importance of

the study of representation theory of the group of paths 9M (multiplication is

defined by the composition of paths, cf. [3]), Results of this paper together

with results in [3], [4] (and Theorem of Milnor-Lashof, cf. [3]), such rePre-

sentations divide two classes, one is rePresentations in U(n) and the other is rePre-

sentations in 9U (n). In Chap. 8 (of Japanese translation) of above book, repre-

sentations of 92M, the double loop space over M, is connected to the study of

strings. Results of this paper show that such rePresentations may be considered

as gauge theory on 9M (in stable range), and it turns out representation theory

of 9Min 9U(n), In [3], we remarked that the third non abelian de Rham

theory (c£ [2]) may be regarded as gauge theory on 9ML The third non abelian

de Rham theory produces 2-form connection ([2]), which appear in Chap.8 of

the above book to describe interaction ofstrings. So this paper (and [2], [3],

[4]) give some answers (and mathematical backgrounds) of the problerns raised

in the above book (cf. Chap. I2). I would lil<e to thank Dr. Terazawa to teach

me Mensky's book. We also note that we have defined B. Details will appear soon

(cf. [3])
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