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Abstract Let G be GL (n,¢) and £2G the based loop group over G. Then the
(stable} first and second non abelian de Rham sets with respect to G and £2G are

related by the diagram

HO (QMe, " gge0)] d(H (2Me, 28, )
o | !
B, —H! (M, /{ngo)

HO(M,,/‘w)/de(Hf’(M,Qoo, @))rerre e PFL e
k ! Kl‘

Here, §2M. is the space of zero homotopic loops over M, ¢ is the Lie algebra of
G, 29 is the loop algebra over g, and .#'! and .# 'y are the sheaves of germs of
g- and f£29-valued integrable forms on M, a smooth Hilbert manifold. The maps
p*, B, and B, are defined by using Grassmanhian model of loop qroups (B is
defined with some additional assumptions at this stage). Geometric characterization
of the map from M into £G, the basic central extension of £2G, together with its
quantization condition and relations of several characteristic classes of non abelian

de Rham sets, including string classes, and the above maps are also given.

Introduction

In our previous papers [3], [4], a G-bundle & over a smooth Hilbert manifold
M is related to an integrable form 6=[¢) on £M. or an LG-bundle L'¢) on
£2M.+ Here G is a Lie group with the Lie algebra ¢ (in the rest, we assume G=GL
(n,C)), LG is the loop group over G and $£2M. is the space of zero-homotopic based
loops over M. By using notations and terminologies in non abelian de Rham theory
(C1], [2]), I and L' give maps
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[0 (M, ")y —H (M., .2")] dH® (2M., 84)),

L' B (M, #")V—H" (2M., .#"14).

Here, g is the Lie algebra of G, Lg is the loop algebra over g and d° is given by
def =efdef)=df + Z] (ad f)* (@f),
n= 1

where (ad f) (df)= fdf) —(df) f (cf.[1]). We have also defined characteristic
classes 8?2 (0) & H2?"' (M, C), for 6 € H® (M, #") and ¢? e)) € H2?* (M, C) for <awde
HY (M, #'rs) (37, [4]). B?(0) is defined as the de Rham class of

o (b1

(2ma/ —1)P (20 — 1) (07, 97 = gn -t

(_
Definition of ¢? (w}) is given in [4] and reviewed in Appendix. For these character-
istic classes, the followings are shown ([3], [4])

Choicap) = (=12 1P o 1 <o),

1

W) = e 10 (p—1)

(P (L! ({ap)).

Here Ch? ({w)) is the p-th Chern character of {w) (cf. [1], [2]), and =:H?*!"! (M, C)
—H?? (2M.,C) is the transgression map (cf. [5], [6]). In [4] the relation between
¢! ({wp) and the string class (and string structure) of Killingback and Pilch-Warner
([9], [13]) is discussed.

These results suggest that there may exist some map between H° (M, .#Y)/
de(H° (M, ¢,)) and H'(M, .#"'rs). In this paper, we construct such map by using
Grassmannian model of loop groups ([14], [16]). This study also shows that
[M, G7, the space of homotopy equivalence classes of based maps from M into
f)G, the basic central extension of the based loop group 2G, is

[M, §G] = {Stable G~bundles & such that ¢, (§) =0} x H! (M, C).

Here, c¢,(&) is the first integral Chern class of £, If the map g: M—£G is realized
as an SGL(n, C)-bundle, then the H! (M, C)-part of g in the above correspondence

is an integral class.

The outline of this paper is as follows; In Section 1, we give some basic
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definitions of sheaf and its cohomology sets of germs of loop algebra valued integrable
forms (cf.[4]). In Section 4, first we investigate the relation between loop algebra
valued integrable forms and G-bundles. The relation between integrable forms and
QG-bundles is also studied. Then the relation between several characteristic classes
of integrable forms and bundles via the obtained maps are shown. In Appendix,
we review differential geometric and topological definitions of &2 ({w)). Topological
definition of characterisitic class of a Map (X, G)-bundle is also given. To get
differential geometric defini-tion of this class seems to relate the theory of anomaly
and its cancellation (cf. [117, [10], [12], [15]). We note that, although we work in
smooth category in this paper, it seems interesting to treat similar problem in
holomorphic category. Such study may relate to the theory of soliton equations
(cf. [167)).

§1 Sheaves of Germs of Loop Algebra valued Integrable Forms

1. Let G be a Lie group with the Lie algebra ¢ (We assume G = GL{n, C) in
the rest). The free and based loop groups and loop algebras over G and ¢ are
denoted by LG, £2G, Lg and £29, respectively. Their basic (complexified) central
extensions are denoted by ZG, @G, Lo and £, respectively. By defintions, regar-
ding G and ¢ to be the spaces of constant loops, we have the following commutative
diagram with exact lines and columns (as sets). (1)

0 9 .0 0 ' 9 .O
O—»(TJ* —I»!?G —J»éGm»O o—»z’ L —J»L;g —0
(1) 0 C[*:—i»ZG ——J»QG —0 o—»L_*—l»gg —J»IL —0
[ I
0 — G — G — 0 0 —§ —f —0
1 1 1 1
0 0 0 0

A smooth Lg-valued 1-form 4 = 6(t), 0=t=<1 is the loop variable, defined on a
smooth Hilbert manifold M, is said to be integrable if it satisfies

dd + 0,0 = 0.

In this case, ¢ is locally written as g”' dg, where g is a smooth LG-valued function
([470). If 6 is a £2¢-valued form, then we can take this g to be a £2G-valued func-
tion, If ¢ is an Lo-valued 1-form, then we can set ¢ = (¢, 8), where ¢ is an Lg-
valued 1-form and § is a usual l-form. An L-g-valued 1-form # is said to be
integrable if it satisfies df + '/, [¢,¢] =0, that is, if 0 = (0, a) satisfies

db+ a0 =0, da+ é—j; tr (OA0) dt = 0.
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Here ' means d6/dt ((4]). 8 also has a local integration ([47]).

On M, we consider the following sheaves;
C*p Gy LGy QG4 ZGt and ?JG,: The sheaves of germs of constant C*, etc., valued

, maps over M.

C*y Gg LGy 2G4 LGy and 3G 4: The sheaves of germs of smooth C*, etc., valued
maps over M.

MY, A Ly A gy Ty and A4 5y . The sheaves of germs of integrable ¢, elc., valued

k 1-forms over M.

Ct, 90, Lgb, Q4¢, L¢» and 2%: The sheaves of germs of swooth p-forms and @,
etc., valued p-forms over M. '

©P: The sheaf of germs of closed p-forms over M.

If G =GL(1,C), then we have _#!' = 6"

If gis an LG-valued function, then we define a G-valued function g®> on MxS!
by

g (x,t) = (g(x)) ()

Similarly, for an Lg-valued form ¢, we define a g-valued form ¢® on MxS'. In
the rest, we assume that g is smooth means g® is smooth (¢ is smooth means ¢° is
smooth). If g is an LG-valued function (if ¢ is an Lg-valued form), then gis smooth
means g is smooth in the usual sense and j(g)is smooth in the above sense (¢ is
smooth in the usual sense and j (¢) is smooth in the above sense).

2, In [4], commutativity and exactness of each line and column of the following
diagram is proved.

0 0 0
1 it
4] —@! ———r‘,//’wl ——-—n,//Ll — ()
o 0 TLQ 0 l
(2 0 —C*; ——Z*ZGd————LLGd——> 0

0 *‘-‘-’C*t *—LZG[ ——LLG[-‘—> 0
? 1 1
0 0 0

o is deﬁned by plg) = g 'dg. Since LG has no cannonical coordinate, p does not
have cannonical expression. But it takes the following local form ([4])

1
0(80) = (g7'dg, a+do), da-+ 5| tr (g7 dgalg™dg)) dt =0
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Here (g,¢), g€LG, ¢=C* 1is a local expression of LG.
(2) follows from the first diagram of (1). By the second diagram of (1), we
have the following commutative diagram with exact lines and columns

By diagrams (2) and (3), we have the followiug commutative diagrams with exact
lines and columns of non abelian cohomology sets (cf., [17,[2] [4]).

0—~H! (M, C*) —H (M, LG,) —H! (M,LG,) —H? (M,C*)

. . 5 ~
0 —H"(M, 0% — Ly (M, J/flzg)h]»H" (M, .#'1y) —H (M,6")—H* (M, C)

~ j d =
0 —H"(M, C*;)—H* (M, LG,) ERE (M, LG,;) —H' (M, C*,—H? (M, Z),

T
| : =
0—H'(M,0") —H" (M, # Qg)—_’H[ M, z'5,) —H'(M,0"V—H*(M,C)

| = 3

5 =
0 —~HY (M, 0Y) —H* (M, .2 15—H (M, .21, —H! (M, 0)—H? (M, C)

] | ¢ K
0—— (

s HY (M, ) ——HO (M, )  —— 0

L WM — B M,z — 0

A

~

This second diagram shows
) O(H® (M, #"gg)) = 6 (H® (M, #"Lg)).

In [4], we have shown that the representing closed 2-form of 4§ (6), fe
HY(M, #'Lqg), is given by J; tr (6,07 dt. It is also shown that to define [2#(6)
eH?? (M, C) as the de Rham class of

(5) (ﬁi)ﬁ“ tr (6227100 dt, 0 H M, #'14),

(6) 1P (g7'dg) = Cpg* (ep), Cps0 is a constant. .
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Here ¢, is the 2p-th generator of H* (2G, C) (cf. [6], [7], [8], [14]). By (5), we
have

(7) 0 =0 if 0ci(H (M, 2.

Hence we can define [? as the characteristic class of the elements of H° (M, . #g;).

3. we denote GL (n,C) by G,. Its Lie algebra is denoted by 8,. Then there
are inclusions ¢ =¢"”, : G,—G,, and ¢:0,—8, if myn. They induce inclusions
¢=¢",:LG,~LG, and ¢: L8,—Lg,, etc.. By definitions of ¢-s, the {ollowing
diagrams are commutative.

0~ H (M, 0') ~H° (M, 45y ) > HO M, 45y ) H! (M, 6) = H? (M, C)
(8) = | & | =]
0—H® (M, 68') —HO (M, .#"5g,) ~H* (M, 4" 5g )~ H' (M, 0") = H! (M, ),

(8")

o™, oM, =

0 = H® (M, C*3)~H® (M, 2G,, 4) —~H® (M, 9G,, o) ~H! (M, C*,) = H? (M, Z)
0 —»HOT]\L, C*y)=H (M, 3G, 4) —H* (M, 0G,, q) —~H' (M, C*;) = H? (M, Z).
Hence we can define stable non abelian de Rham sets H (M, #'4), etc., by
He (M, #0g) = lim [H*(M, 40 ,) | "], elc..

Then by (8) and (8), the following sequences are exact.

. . 5
(9) 0 —~H® (M, 0') ——HO (M, " 5gea)2—HO (M, g ) ——
—H! (M, ") = H2 (M, C),

. . . 5
(9) 0 —HO(M, C* g)——H (M, BCor.a) L—H® (M, G oo, a) ——

—H! (M, C*,) = H? (M, Z).

By definitions of /2 : H*(M, .#gy,,) — H2? (M, C) and ¢*,, the diagram

I
H* (M, 4" oq m)——H*? (M, C)

is commutative. Hence /? is defined on H® (M, .#'¢q) (and on H® (M, #'Lg«). Then
we have

8(6) = 1'(6), 0&H (M, 4 gyw) (or 0H (M, 4" Lg ).
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Similarly, we can define H° (M, #'x) by
HO (M, #'x) = lim [H* (M, .#*,) | <", ].
Here .#', is the sheaf of germs of complex (#, #) -matrix valued inte-grable forms.
Then we can define the map p?:H(M, #'s)— H*?"(M,C) by using the map
8? : HAM, .z ,)—~H**"(M, C) (cf. [3]).
In [3], it is noted that H®(M, #')/d® (H°(M,9,) is more natural cohomology

set than H° (M, .#") from the point of view of view of non abelian de Rham theory
(cf. [17). Here d° is given by

aof = etdef) = df+ 3 ad £

By using H(M, .#gy ,)/d® (HY(M, £28,), etc., we get the exact sequence

(10, 0 ——HYM, C)—HAM, 2" og )}/ d“(H(M, £28,,))0—
HM, A g )d*(HYM, £6,.))—H(M, &) =H*M, C).

This sequence induces the exact sequence

(100 . O——HYM, C\—HM, 2" gy <) d*(H(M, £0e5, . ))—
—H(M, 05 )| H(M, 08eo,a))—H"(M, 6")=H¥M, C).

§2 Qo-valued Integrable Forms and G-bundles

4. Let Gr be the universal Grassmann manifold. Then there is an inclusion { =
in:8G,——Gr such that i,*:x, (2G,) == w,(G¥), if r<2n—2 ((14], [16]). Hence if § &
H® (M, #'04,) is integrated on M, that is, if we have

(11) b=g'dg, geHM,2G, 4),

then i,g gives a smooth map from M into Gr. g is determined uniquely by ¢ if we
determine its value at a (fiexd) point of M. Hence we may consider 6§ defines a based
smooth map from M into Gr. Therefore @ defines a (stable) vector bundle £§=£&(f) on
M. Computations of characteristic classes of LG-bundles in [4] (cf. [6], [7], [8))
show

(12) PO)=(p—1)! Ch* E0),

where Ch?(€) is the p-th Chern character of (stable) G-bundle &.
In (11), we assume g = j(g), where g is a smooth map from M into 2G. Then
we get 440)=0. Hence by (12) and (8), we have

(13) C1(E@) =0, c¢,(6) is the fiirst integral Chevn class of &.

Conversely, since i,:7,(2G,)=r,.(Gr), r<2n—2, if a vector bundle satisfies ¢,{)=0,
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its stable class is represented by &(j(6)), where 6 € HYM, .#'4;,,) for some m, by the

exactness of (8). Therefore we have the first part of the following Theorem.
Theorem 1. There is a l to | correspondence between p (H(M, ﬁGm,d)) and the

set of pairs (&, ¢), where & is a (stable) G-bundle such that c(§) =0 and ¢ is a 1-form

on M such that
o|U; = tr(A;), (A;} is a connection of &.
proof. By (7)and (11), if 8 € pHYM, 2G,q)), then to set § = (0, @), the I-form
« satisfies
(F ) = da.

Here F.¢; is a curvature form of £(). we denote {A4;} the connection of &(#) whose
curvature is F,¢,. Then we get

alU; = tr(Ai) + Bi, dBi = 0.

Since B; is a l-form, we set B8; = dh; where h; is a matrix valued function. Then we

get

1 1 1
| U; ztr(e—ahi A eah,-+—7£,3,'lm>, m=rank ),
L. is the unit (m, m-matvix

Hence we have the second part of Theorem. Because if {A4;} is a connection of &(f),
then another connection (A} is given by {A; + B;}, where B; = g;;B;g:i;"!, so0
tr(B;) defines a global 1-form on M.

By this Theorem and exactness of (10)w, we have

(14) p(HYM, G, 1))/d°(HY(M, £20 a))
= {Stable class of G-bundles & such that c(£)=0} xH M, C).

Since the kernel of this left hand side is the set of zero-homotopic maps from M
into 2G, we have

(14) (M, 2G] = (Stable G-bundles & with c(€) = 0} x H{(M, C).

If ¢,(6) =0, the structure group of £ is reduced to SGL(n, C). Hence & has a
connection {4;} such that ¢#(A;) = 0. Therefore, in the correspondence (14), we can
take (£, 0) to be the cannonical element. Other c¢-s, ¢ < H'(M, C), measure the
difference between the connection {A;}, tr(A;) represents ¢ by the de Rham corre-
spondence, and 38g1(n, C)-valued connections of §&. On the other hand, by using sheaf

exact sequences

0——SGLy——Gy Zecr—,
1
0 w//lig[ — O —0,
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where SGL; and .#'jy are the sheaves of germs of smooth SGL (n, C)-valued
functions and 30l (#, C)-valued integrable I-forms over M, we have the following

commutative diagram.

HYM, 2)—HYM, C* ;)—H M, SGL z)—HYM, G,)

HY(M, C)——HYM, 0Yy—H M, 4" o ) —H(M, 2.
Hence if 0 corresponds to an SGL-bundle, then ¢ is an integral class.

5. In general, denoting M the universal covering space of M with the proje-

ction =, we have
(1y x¥0) = g 'dg, 0 < H(M, £ gc H(M, 2G,).

Since #*(¢) is invariant under the action of =,(M), g is a representative function
with rosopect to the action of =z'(M). Hence the transition function {g;;} of the
induced bundle of the universal bundle of G¥ by the map i,g satisfies

olgi)) = olgi) if ®(U;) = a(Uy).
Therefore, {p(gi;)} defines a cocycle in Z{1l, #'x). If g= ™), fis a smooth g-
valued function on M, then {p(g;;)} defines a coboundary in B¥ll, .#'x). Hence we
have the map

¥ HAM, A" ggo)d(HYM, £29, goo))—H (M, .1 "),
On the other hand, if g=ef on M, then i,g is a zero-homotopic map from M into
Gr. Hence we have the map

1:HY(M, 2Ge, g)lexp (HAM, 28, q)——HY M, Geo, a).

This map is a bijection, because ¢,*:7,(2G,)= . (Gr), if »<2n — 2. Therefore we
obtain the first part of the following Theorem.
Theorem 2. we have the following commutative diagram with exact lines.
p*
(15) 0 HY(M, 2Ge,a)/exp (HAM, $28co,q))—

11 =

*

HYM, Goo, 1)—H(M, Goo, ) LN
5
——HYM, 4" pgoo)ld(HY(M, 2000, 0 ))—H (M, £2Goo, s)=Hom(w (M), £2Gx)
p¥i s
 H(M, e SHYM, Gus).

In this diagram, we have
(16) o) =(p — 1) Ch? (p*E0)). 6 & HAM, .2 gg).

Proof. We need only to show (16). But it follows from (12).
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By (15), if the map 6:HYM, .# " pg00)/d(HY(M, 2800, a))—H (M, 2Go, ) = Hom (z,(M),
QG- is onto, then we can define the map
*:Hom (z (M), £Gw)—H M, Gw,1),
by
(17) () =0p*EO)), it x=a(0).
Note. 7:9G——Gr induces the map i*:HU(M, #!g500)—H' (M, Gw,q). Then by

(12), (15) and the definition of the k-group K° (M), we have the following commu-
tative diagram

?
KoM —— S e Q)
i I Ch? :I
HYM, M!gge)——H"' (M, Geo,a)——H??(M, Q)
o e ]
HY(M, 2Ge,q)——H! ]\T Goo,d) >H2PjM, Q)
p =
Ko(M) —— 112, Q)

6. we denote by £2M, the space of based zero-homotopic loops over M. If g
is a smooth G-valued function on M, then we define a smooth £G-valued function
g2 on M, by

(&%) (t)=g(+)"'&r(8)), *=7(0).
The correspondence g——g2 induces maps
2 HO(M, ')y —H" (QM,, 4" ag),
Q' HY (M, %) | de (0 (M, 00))——H® (M, A2y ) ) d* (H® (2 M, £284),

(cf. [4]). Since there is the map p*i:H® (2M,, # " pqc) | d® (H® (2M,, 200, a))—
HY (2M,, #'x), to set

BO = P*iQ!;
B, gives the map
(18) By : HY (M, #') | d® (H(M, 8co, 0))—H* (2M,, A ).

B, is a kind of non abelian de Rham version of Bott map with respect to the space.
As for the relation between characteristic classes, we obtain by the results in [3],
[4] and (16)

10 pr @)= (—1p 2L v cno (B, 0),
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Here, 7! : H22(M, C)——H??"Y(M, C) is the inverse of the transgression map.
In [37], we have defined the map
L H(M, A gg o) —HYALMe, A 09 ) | d(H(LM,, 2eo, a)).
Hence to set
B, = p*il,
we obtain the map
(20) B, : H(M, A" gg 0)—H LM, # ).
By (20), if By(HYM, #"'05x))DB{H(M, .#') | d(HYM, 8w, 4))) and B,™* is defined, then

we can define the map
B : HYM, .# ') | d*HYXM, 0x,q))—H (M, #" 94 )
by B = B,"'B, (similarly, if By(HYM, #'wx)[d(H (M, e,;))) D B{(H\M, 4" 0g) and

B;™! is defined, then B V:HYM, .#'gqc0)——HYM, # ') | d(H (M, §c,q)) is defined by
B, 'B,). If B is defined, we have

-2

e PO = 27/ 1) (2p—1)!

cp-1 (BE), p=2.

we may consider B to be a kind of non abelian de Rham version of Bott periodicity
map with respect to the coefficients.

We summarlize the results of this Section as the following Theorem

Theorem 3. The following diagram is commutative. By these maps, characteristic
classes Ch?, B? and c,., are mapped each other via the transgression map.

ey H0 @My a02) | AHAOMe B0 0)
0% |
HOM, 10s) | dS(HIM, Goo, g)) ++++++5coeeeseesessesanssnsiisisnssnsssencien. SHYM, 2 gge0)

|
BQ\A HY2M,, /100)%

Appendix. Characteristic Classes of 2G-bundles and Elements of H{M, 7).
Let &€ = {g;;}) be a smooth £ G-bundle over a smooth Hilbert manifold M. Its
connection form {#;} is a collection of £ g-valued l-forms such that

gij 'dgij = 0; — &i;7'0:8i;.
It is known that {0;} exists if {o;;} = {g;;7! dg;;} satisfies
(1) Wi —oir+ 8" wij gir = 0.

(1) is weaker than the condition g;; gj» gz = 1, and we call {w;;} to be a l-cocycle
with respect to .#%gy, if {w;;} satisfies (1). Then we can define cohomology set
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HY (M, .#"'gg). The cohomology class of {w;;} is denoted by <w>. We call a collection
of fQg-valued l-forms {8;} such that w;; =0, — g;;7'0,g8;;, ®;; = g 'dgi;, to be a
connection (form) of {wp. The curvature (form) {®;} of {f;} is defined by ©; = db;
0,0, '

The characterisitic class ¢p ((w)) eH?*Y(M, C) of wpeH (M, #'g) is defined as
the de Rham class of a closed (2p+1)-form whose local form is J(l) tr(@;2A0,) dt.

b
Here ©;? =0;p.... AO; andf;-=df/dt. But in general, J(l) tr(0;250,)dt  behaves
anomalously by the change of coordinates. To cancell this anomaly, we assume
1 1
(2) [, tr Orenen™) dt— [ 0 Otgign) dt +
1
+J0 tr (B:Pgiigii7") dt =0.

(2)is satisfied if (d/dt) (gijgirgr:) =0. Especially, if {g;;} defines a £G-bundle,
then (2) is satisfied. If (2) is hold, we can set

1
JO tr (0:°gigi;7") dt =¥ p; — ¥y
Then, it is shown that
1 1
[0 tr (©:Pa0;) dt —d¥, ; = Jo tv (9:200;) dt —d¥p, ;

on U;AU;. Hence it defines a global closed (2p + 1}-form on M and whose de
Rham class is ¢, ({a)).

Instead of the above differential geometric definition, we can give topological
definition of ¢,(Kw)) as follows; If w;;=g;;7' dgi;; and (d/dt)(g:;girgri) = 0,
then we can associate an element {wd? of HYM xS, 71 for {w) & H (M, #'4).
Especially, if & ={g;;} defines a £2G-bundle, then we can define a G-bundle &b
over M XS by

Eb = {gijb} s gijb (xr t) = (gif (x)) (t):

where the coordinate system of &% is {U; x S'}. We denote the integration along
the fibre S! (in H* (M xS, C)) by Jslgb (cf. [5], [6]). Then we obtain

(3)  Gplkod) = —(2ey/TTP! [aChY (DY

(3) and the properties of the evaluation map ev: 2M, x S'— M (cf. [6]) shows
the following formula on (generalized) string classes ([4])

(4)  ©p (21() = (2ry/ —1)P*! ple™t (ChP*1 (B)).

Note. Topological definition of ¢, (€) (=cp (0*(£)) is generalized for a Map (X, G)-
bundle & X is a smooth compact manifold, as follows:Let r be a fixed generator
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of integral homology group H, (M,Z) of X. Then we define a characteristic class
C,p ()& HP74 (M, Q) of & by

(5) ¢, 46) :J,Chl’ (€v).

Here &* is defined similarly as above. Especially, if X =S5, a Map (S™, G)}-bundle
has even dimensional characteristic classes if m is even, and has odd dimensional
characteristic classes if m is odd (cf.- [117). It is shown that &* has the following

form curvature {F;}
F,' :@ib +dX0,'b +D¢9i77i, D0¢:d¢ + [‘9’ ¢:|

Here, d¥ is the derivation on X, d is the derivation on M, ({#;} is a connection
of £ and ©; = do; + 6;,0;. Hence, if yeH,(M,Z), we can give differential geometric
definition of ¢,,, (&) (cf. [4]). But other cases to get differential geometric definition
of £, »(6), it seems to need some considerations like anomaly cancellation (cf.[10],

(121, [15]).

Added in Proof.: Dr Terazawa kindly taught the author the book “Group of
Paths, Observations, Fields, and Particles” by MENSKY, M.B.: Moscow 1983
(Japanese translation, Keiro-Gun no Kikagaku to Soryusi-Ron, transl. by SUGA-
NO, K.: Tokyo, 1988). In this book, Mensky emphasized the importance of
the study of representation theory of the group of paths €M (multiplication is
defined by the composition of paths, cf. [3]). Results of this paper together
with results in [3], [4] (and Theorem of Milnor-Lashof, cf. [3]), such repre-
sentations divide two classes, one is representations in U(n) and the other is repre-
sentations in 2U (n). In Chap. 8 (of Japanese translation) of above book, repre-
sentations of £22}, the double loop space over M, is connected to the study of
strings. Results of this paper show that such representations may be considered
as gauge theory on 2 M (in stable range), and it turns out representation theory
of M in QUmn). In [3], we remarked that the third non abelian de Rham
theory (cf. [2]) may be regarded as gauge theory on 2M. The third non abelian
de Rham theory produces 2-form connection ((2]), which appear in Chap. 8 of
the above book to describe interaction of strings. So this paper (and [2], [3],
[4]) give some answers (and mathematical backgrounds) of the problems raised
in the above book (cf. Chap.12). I would like to thank Dr. Terazawa to teach
me Mensky’s book. We also note that we have defined B. Details will appear soon

(cf. [3])
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