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                             Abstract

   A method proposed by Ikeda, Maekawa .and the present author to look

for static solutions of the SU (2) gauge theory is applied to get nonstatic

solutions with spherical symmetry, and a class of time-dependent solutions are

obtained in a systematic way for a special type of field strength. The solutions

are not self-dual and contain those obtained previously by several authors.

   Introduetion. Recent developments in h!gh energy physics teach us that

the gauge principle plays a fundamental role in the laws of nature. In order

to understand the structure of the so-called elementarY particles and various

interactions among them, it is important to investigate physical contents of

the non-Abelian gauge theory. Especially, a deep knowledge on classical con-

figurations of the field will glve us an important clue to its quantum mechan-

ical behaviour.

   In a previous paper [1], we proposed a method to classify static and spher-

ically symmetric solutions of the Minkowski SU(2) gauge theory according

to the types of field strength in a systematic way. The method can naturally

be applied also to the nonstatic case. In this note we present a class of time-

dependent solutions which are obtained in the course of investigations along

this line of reasoning. Our solutions are not self-duai and cpntain those ob-

tained previousiy by several authors.

   General formulation. The field stYength Fa"v and the potential Bapt in Yang-

Mills theory are related by

                   D'F"ptv=-O"F"ptv+E.b,Bb'FCpv=O, (1)

                    Faptv =O"Ba,-O.Bap+E.b,Bb"BC.. (2)

The most general form of a spherically symmetric field is given by [1], [2], [3]
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                                 xa
                                    B,                            Boa..
                                  r
                                                               (3)
               Bai=s.ii' lg (1+A)+(5.i-Xra,Xt) C/r+Xra,XiD.

               Faoi=s.i,･ :I fi+(e.i-X#,Xi)f>/r+V',X-ifh,

                                                               (4)
                           xl               Il"aii' =Eijk[E.kl r, gi+(6.k-XarX,k)g,/r+Xai,kgt].

Here A,B,C,D, fi and gi (i=1, 2, 3) are functions ofrand t.

   Substituting (3) and (4) into (1), we can rewrite the field equation (1) in the

following form:

                         Or(r2fh) == 2(Cfi - Afh),

                         a,(r2fk)= -2(Cgy+Agi),
                                                               (5)
                         Oofi+O,g2=Bfh-Dgi-Ag3,

                         Oofi-Orgi= -Bfi-Dgy-C&･

Also we see from (2) that f's and g's can be written in terms of A,B,C,D

                    A=OoA-BC, gi--6rC+AD,

                    A=OoC+AB, g2==-a,A+CD, (6)
                    fl]="OoD-O.B, gl] =(A2+C2-1)/r2.

   Special type of solutions. We look for a solution whose field strength F belongs

to the type A&g3 iAO, fli==k=gi=O. It is easy to find from (5) and (6) that the only

non-vanishing component of the potential in this case is A(r,t) and that the field

strengths are given by

                  .fl=OoA, g2=-O,A, g3=(A2-1)/r2. (7)

Here A(r,t) is a solution of the equation

                      r2(02oA-02rA)=A(1'A2)･ (8)

We consider that the solution A(r,t) depends on r and t through a combination p=

p(r,t). Then, Eq. (8) reads

                          dA                                    d2A
                  r2 {(P-p") dp +(P2-p'2) dp,}=A(1-A2), (9)
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where a dot and a prime denote differentiation with respect to t and r, respectively.

   Now we require that p is afunction of r andt such that Eq.(9) can be ex-

pressed in terms of a single variable p. In other words, r2(P-p") and r2(P2-p'2) must

be some functions of p. We tried to look for this possibility by assuming the form

p==F(r,t)/G(r,t), where Fand G are polynomials of rand t. Two cases will be

discussed below.

   I p (r,t)=27'(t+a), where a is a constant.

   In this case we obtain

                     r2(P-p")=2p3, r2(P2-p'2)..p4-p2.

Then Eq. (9) can be written

                       dA                                  d2A
                    2p3 dp +(p`-p2) dp, =A(1-A2), (10)

which is the equation derived by Arodz [4]. It is also a special case of the equation

derived by Babu Joseph and Baby [5] (for a vanishing Higgs field). Using a variable

T=･-
}--1, we get

                                 '                                dA                       d
                       d. {(2+r)r d. }==A(A2-1). ao

The regular solution of Eq. (11) has been analysed in Ref. [4]. We shall discuss

the solution of Eq. (10) in the next paragraph.

   II p==r/(t2-r2+at+b), where a and b are constants.

   In this case we get after some calculation the following equation for A:

                        dA                                      d2A
                         dp +(-p2-4ap`) dp, =A(1-A2), (12)                   -8ap3

where a= b-a2/4.

   (i) If a=O, Eq. (12) is reduced to

                             d2A
                          -P2 dp2 =A(1-A2). (13)

                          '
We notice that Eq. (13) has the same forrn as the one considered by Wu and

Yang [6]. We remark that the Wu-Yang monopole is a constant solution A=:

O, while a nonstatic solution in which we are interested here must be a non-

constant solution, whose asymptotic behaviour has been analysed numerically

in Ref. [6].
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   (ii) For a nonvanishing value of a, we can rewrite Eq. (12) by rescaling the

variable p.

   For a>O, we put g==2evi12p, and obtain

                   -263 ddAe -(62+e") digA, ==A(1-A2). ' (14)

                                                                '                                     .t
                                                                 '                                                        'Usingavariable g==tane, we get .
                                                           tt                               t tt                                                  '                                                   ttt
                        d2A -'                   -Sin20 de2 =:A(1-A2),                                                                 (15)

                                '                                            'which has a solution

                        A=±cose==±(1+e2)-i12. (16)

   For ev<O, we put g=21ev1i12p, and obtain

                       dA d2A --                    263 d6 +(-62+e`) de2 ==A(1-A2), (17)
                                                              .t                                                                  l
which has the same form as Eq. (10). Using a variable g==tanhe, we get ' ' '･

                               d2A
                               de2 ==A(1-A2), (18)                        msinh2o

which has a solution

                                              '
                        A== ±, coshe== ±(1-slt2)"f2 ' (19)
                                                tt tt                                                             'Thus the solution of Eq. (10) is given by .

                         .A=±t(t2-r2)'il2. (20)
                              ttTaking the definition of 6 into account, we see that the two solutions (16) and (19)

of Eq. (12) can be put into the following single form: ' '
                                                            '                                                     '                                                        '
                   A=±(t2-r2+a) [(t2-r2+a)2+4ar2]'i12. (21)

   Results and discussions. We n6w get a class of time-dependent solutions

of the SU (2) gauge theory for a special type of field strength. The results

are summarized below. (Hereafter we take the constant a in the definintion

                         'ofpto be zero.) . ･･ ', ,. ,
                                                                '               tttt t                          t -.                                   x]
                    Bao'==O, Bai=sai]･ -r2 (1+A(r,t)), - '
                                                                '
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                     '' 'xj ･･'                    Eai = Faoi -- 8ail' r2 .11, , (22)

                    .t
                                        '                            '                                 tt
                    H'ai = -ll-sitileFaile == (5.i-X$i) g2/r + XarX, igt.

                               '
   Solution 1. Thi$ solution is singular on the light cone.

                         A== ±t(t2-r2)"12,

                         A=:;r2(t2-r2)L312,
                                                                 (23)
                         g2 wu- '+ rt(t2- r2)-3h,

                         gt=(t2-r2)'1.

   Solution 2. The potential A in this case is a non-constant solutiori of the

equatlon

                             d2A
                          -P2 dp2 ==A(1-A2),

where

                            p==r/(t2-r2).

It has the following asymptotic behaviour [6]:

   p--+oo: A=±(1+c/p)+O(1/p2), where c is a constant;

   p-O: A-O as oscillatory functions of p with minima apd maxinia =O(pi/2).

Notice that for a fixed t (say t=:O), p-"oo and p-O correspond to hO and r-oo

respectively.

   Solution 3. For a non-vanishing value of a, we have

                   A == ±(t2 -r2 +a) [(t2 -r2 + or>2 + 4ar2]'ih,

                   A--±8orr2t[(t2-r2+or)2+4ctr2]'3!e,
                                                                 (24)
                   th--±4orr(t2+r2+a)[(t2-r2+a)2+4ar2]'312,

                   g= 4a [(t2-r2 +a)2+ 4ctr2]-i.

The solution with a>O is regular, while the one with cr<O is singular. For a==1,

the solution is reduced to

                   A=±(1+t2-r2)[(1+t2-r2)2+4r2]"h, (25)

which is a solution given by Actor [7].
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   Our solutions have both "electric" and "magnetic" components. Notice,

however, that the radial component of the field is purely magnetic and is given

by g3. In our formulation, the solutions are classified according to the type
                                                       .of field strength. Under a gauge transformation U==exp [-irllllaa"e(r,t)]which

preserves the spherical symmetry of the field, components of F transform simply

as

                    (k)=(-&9ig ,SggO i)(A.,) ,26)

and the same formula for g's. Notice that f3 and g3 rernain invariant, thus the

relation of various solutions with respect to a gauge transformation is mani-

fest in our approach.

   Our method can be applied to get solutions for other types of field strength.

Investigations covering all cases are now in progress, and results will be

published elsewhere.
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