A Note on the Jacobian Conjecture in Two Variables

By Kazuo Kishimoto
Department of Mathematics, Faculty of Science, Shinshu University and Andrzej Nowicki
Institute of Mathematics, Copernicus University
(Received March 3, 1987)

Let $k[x, y]$ be the polynomial ring over a field k of characteristic zero. If f and g are polynomials in $k[x, y]$ then we denote by $[f, g]$ the jacobian of (f, g), that is, $[f, g]=(\partial f / \partial x)(\partial g / \partial y)-(\partial f / \partial y)(\partial g / \partial x)$.

The jacobian conjecture says (see [2]) that if $[f, g]$ is a non-zero constant then $k[x, y]=k[f, g]$. In this note we shall show that the jacobian conjecture is equivalent to the following

Proposition. Let f and g be polynomials in $k[x, y]$. If $[f, g]$ is a non-zero constant then the ring $k[x, y] /(f)$ is isomorphic to $k[t]$, the ring of polynomials in one varaible over k.

It is clear that if the jacobian conjecture is true then the proposition is true. For the proof of the converse we shall use the following two facts:

Theorem 1. Let f and g be polynomials in $k[x, y]$ and assume that the ring $k[x, y] /(f)$ is isomorphic to $k[t]$. Then there exists a polynomial h in $k[x, y]$ such that $k[f, h]=k[x, y]$.

Proof. See [1] and [3].
Theorem 2. Let f and g be polynomials in $k[x, y]$. Assume that $[f, g]$ is a non-zero constant and assume that there exists a polynomial h in $k[x, y]$ such that $k[f, h]=k[x, y]$. Then $k[f, g]=k[x, y]$.

Proof. Let α be a k-endomorphism of $k[x, y]$ such that $\alpha(x)=f$ and $\alpha(y)=h$. Since $k[f, h]=k[x, y], \alpha$ is a k-automorphism of $k[x, y]$. Denote $\beta=\alpha^{-1}$. Then $[\beta(f), \beta(g)]$ is a non \cdot zero constant and $\beta(f)=x$. Hence $k[\beta(f), \beta(g)]=k[x, y]$, because it is easy to verify that the jacobian conjecture is true in the case when one of degrees of the polynomials is equal to one. Therefore we have

$$
k[f, g]=\beta^{-1} \beta k[f, g]=\beta^{-1}\left(k[\beta(f), \beta(g)]=\beta^{-1}(k[x, y])=k[x, y] .\right.
$$

Now we may prove that if the proposition is valid then the jacobian conjecture is true. In fact, assume that $f, \mathrm{~g} \in k[x, \mathrm{~g}],[f, \mathrm{~g}] \in k-\{0\}$ and assume that the
proposition is valid. Then the ring $k[x, y] /(f)$ is isomorphic to $k[t]$ and so, by Theorem 1, $k[f, h]=k[x, y]$, for some $h \in k[x, y]$ and hence, by Theorem 2, $k[f, g]=k[x, y]$.

Acknowledgement

This paper was written when the second named author visited the Department of Mathematics, Faculty of Science of Shinshu Univeristy as a research fellow of Japanese Goverment (Monbusho). He wishes to express his gratitude to the members of the Department for their hospitality.

References

[1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay, 1977.
[2] H. Bass, E. H. Connell and D. Wright, The Jacobian conjecture, Bull. A. M. S., 7 (1982), 287-330.
[3] M. Nagata, On automorphism groups of $k[x, y]$, Lect. in Kyoto Univ., No. 5, Kinokuniya, Tokyo, 1972.

