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   On the complex Grassmann manifold SUn,m/S(UnxUm), irreducible decomposi-

tions of SU..m-modules of complex valued functions and 1-forms are calculated

([7], [5]). For the complex projective space SU..i/S(U.×Ui), irreducible decompo-

sitons of the SU..i-module of (r, s)-forms are calculated ([2]). In [2] making use

of the irreducible decomposition, spectra (eigenvalues of the Laplacian and their

multiplicities) are also determined.

    In this paper we represent the complex Grassmann manifold M as Un+m/Unx

U.,, and we try to calculate irreducible decompositions of the Un,.-modules of

(r, s)-forms. Our problem is reduced into the following two: What kind of an

irreducible U.xUm-module appears in the exterior product of the (complexified)

isotropy representation ? How the U..m-module induced from the answer of above

is decomposed into irreducible U..m-modules ? The main result of this paper is to

show these two problems are solved by the use of the (L-R) rule (Littlewood-

Richardson rule [4]). As an example we derive the results mentioned at the begining

more accurately. At the end of this paper we compute the Hodge numbers making

use of the answer of the first problem.

    In appendix, we present a computer program for the calculation of the (L-R)

rule due to Dr. H. Kamiya. I would like to.thank Dr. H. Kamiya for the making

of this program and permission of its insertion in this paper.

    M. Notatioms and preliinimuries.

    LetG be U... and K be UnxUm. As in [2], Cco(Ar,SM) denotes the U.,.-

 module of smooth (r, s)-forms on M=G/K. We denote

                       m=( (% P tg) AEIi M(m, n, C)] ,

              1(OA -`oA)== (v-OIA V-ol`A), m±={xEmc 1 .lcx== ±ix}



where "i" is the imaginary unit for the complexification, and

                   Ar,S=,, mH A. . , .A tn "Am+ A. . . .A m+
                                               ,                          VrV VsV
        Cco(G,K,Ar･S)= {fECDo(G, Ar･S)lf<gk)=kH'･f<g) for any gEG, feeK}.

    Here A',S is a K-module, and we identlfy the induced G-module Cco(G, K,

Ar,s) with Cco(Ar,sM).

   From now on, for the sake of later sections we give a brief review having

connections with restricted Young diagrams and representations of a unltary group

Ue. We identify the follwing set with Young diagrams whose "depth" are not

more than e,

                    YD={Rci!Z2 1 Ri>-････l}lRe>NO} (eEiiN>.

For a nonnegative integer P Iet Ylb(P) =;' { 2E Y2 i 2i -i- ･ ･ e ･ ÷2e ==P } , then 2E Yb (P) is

identified with a diagram consisted of P "squares". The Young diagram 2(P )rf:O)

whose squares are labeled with figures 'from 1 to P is called a tableati on 2, and

we denote it by B. In particular B is called a "standard tableau" if the figures in

its each row and column are in increasing order. For a given B a Young symme-

             Atrizer CB and CB are determined as as follows;

              HE = = a, KB = X (sgn a) a, CB=HBKB, eB == KB"B.

                  aEspB ti Ei stB

Here 5bB (resp. AB).is the subgroup of the symmetric group @p which preserves the

                                            Asets of figures in each row (resp. column). For CB we can use the foliowing

    Lemrna'X. 1([3]). (1) if 212' (2,2'EYe(P)) and B,B' are tableaux on 2, 2'

                         AArespectively, then we have CBCB,=:O.

                                         AA (2) There is a Positive nzamber q sblch that (CB)2 ==q CB.

    Next T=C2(g)････(g)C2 becomes a U2-module canonically, and a gp-module by

 the action

                 a(viX'･･･(Ei)vp)=va-i(i)(2b････Xva-'(p) for aGgp.

 Since the two actions are commutative a representation Ue-GL (bBT) is deter-

 mined.

    Remark. We choose a maximal torus as diag (Ei,･･･.･,E2), (Ei==e2n,/-ix,, ･...,

 Ee==e2rr/miX2). The charecter of this representation is given by the Schur function

 {2} whose variables are 6i,･.e･,E2. 0n the other hand {R} is the character of the irre-

 ducible representation whose highest weight is 2ixi+････+2£xe. (We take a natural

 fundamental Weyl chamber of Ue and "highest weight" means the weight which

 takes the maximal value on the closure of the fundamental Weyl chamber, see [1]).

    By the above remark we have the following
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   Proposition 1. 2 (Weyl [3]). T is decomposed into the irreducible U2-modules
A
CBT, namely

                          T== AEOia(p) (BEfll?(A)6BT)'

where ve(2) denotes the set of all standard tableaux on 2.

   Let pA be the irreducible representation, and po the trivial representation (O=

(O,--･, O)). For given R, 2'EiYe we can calculate the irreducible decomposition of

 va.upR(g)pR, by the following

   Proposition 1. 3 ([6]). {R} {2'} == = g22ra" {2"}･

                                 at,EYe

Llere g2At2t, is the number of the Ybung diagram 2" that can be built by adding to

the Ybung diagram 2, 2'i squares with ]igures1, ･･･o, R'e sqaares with figures e,

s"beJect to two conditions : <a) After the addition of each squares with identical

]igures, we mntst have Ybung diagranf with no two identical figures in the same

column. (b) Ilf the total set of added figures is read from the right to the lefr and

from the tQP to the bottom, we get following inequalities at all squares.

         (the number of aPPeared 1) l;ll････2}l (the number of aPPeared e).

   The above algorithm is called the (L-R> rule ([4]). We denote this proposition

by the equation

                          R(EbJt'= O gnvi"R"･
                                A,t Ei Y2

Then we close this section with following definitions.

   R=(fti,-''',Rn+m), Lt::=(Fti,.o'e,Ltn), v=(vi,e.,d,vm): sets of integers which are in

    decreasing order,

   (pR, V2) (resp. (p", Vp), (pv, Vv)):the irreducible representation of G (resp. U.

                               n+m n m    U.) whose highest weight is 2= X 2ixi (resp. pt= :Ili:] pixi, v== X vixn+i),

                               .i -1 i--l                                                          t=1
    * : Ze lDh- *h==(-he, ････, -hi)EZe,

    ±e : Z2 i)hsh±e=(hi±e, ････,hs±e)EZ2 (eGZ),

    Y.(ra == {ps E Y(A) 1pi:{l;m} , Y)S3 = {v (i! Y (.r,) 1vifi{g n} ,

    t : YISr,l iii)pt --tptEyEIrl, wpt)]B-.･tBE%(tpt)

    where "t" means the reflection in the leading diagonal.

    2. Krreducible decoTnpmitiogt af the K-moduke Ar,s.

    For the U.-module Vi and U.-module V2 let VixV2 be the direct product of

them (the representation of K whose representation module is Vi (Eb V2). As a



fundametal Weyl chamber of K we choose the direct product of U.'s one and U.'s

one. So a dominant integral form of K is expressed as ps+v, Instead of the integral

forms{x.+j1]'=1, .･･e, m} we use {yj= -x.+mHj+i17'=1, .･･･, m} in this section.

   Leinwaa 2. X. For ptEY.(,'.? let tept be pt+*tpt. Then top is a weight of A',O

                            ,and its multiplicity is one.

   Pifoof. From the definition A`,O is equivalent with C"xCM". So the weights of

Ai･O are {xi+yi [ 1{giwu<n, lfi{C.j-<m}･

since these rnultiplicities are one, the WeightS x,+y, x,-g-y2 ････････- xi+ym

of Ar,O are obtained by adding different r squares
                                            x2+yi x2-1-y2 ････ny････ x2+y.
chosen from the right figure. Let Wbe any . . .
shape of r squares which determines tup, then
                                            Xn+Yl Xn+Y2 ''''''''b Xnrri-Ynt
    pti=# {squares of W in the i-th row}.

So there is no square of W in the i-th row (tpti+lf{lli-<n). On the other hand tpti==

ts {squares of VV in the first column}. Therefore in the first column of VV there is no

hole from the first row to the t,tti-th row. So, as for the 1'-th coiumn (2s{gjs{:m)

there is no square of VV in the i-th row (tpa2+1gi-<ttti). On the other hand tpt2==:#

 {squares of VV in the second column}. Therefore in the second column of W there

is no hole of i7V from the first row to the tLt2-th row. After the analogous steps

we can see VV must be the shape of pt. Since the multiplicity is equal to the

number of W, we have Lemma 2. 1.

    We set

    T=:C" (29････(Eb C" (U.-module), T'=!CM* (g)･･t･(g> CM" (U,.-modu}e),

                  g : (cn×cm*)op････x(cn×cm*) -T×T*
                       VrV
                    (canonical identification as K-module).

The action of @. induced by g is as follows;

                 ae(v(2be)=(av)(E9(a6) for oE@., vffET and 6GT".

    Theorem 2. 2. Let Ar be X (sgn a)o, then we have the irreducible decom-
                            aEgr
Posttzon

                                         AA                 g{Ar(cn(Egcm*)}- o                                     Ar '(CBT × CtBT"),
                               pEYST;L
                                   J                                                           '
 zvhere B is a tableau on pt. Then A,"(bBTx(>tBT") is indopendent of the choice of

 B, and is equivalent with VpxV*t,.

    Proof. Let e be n in Proposition 1, 2, then we have the irreducible decomposition

                            T =. .f[li)(:) (B.ee(.)6B T) '

 We have the analogous irreducible decomposition for e=m as Um-module. Let us
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consider its contragredient representation, then we have

                     T"=::yE(l2(A) (B'E(Ds(u)6B'T*)'

Considering the equation g{Ar(C"xCM')} =Ar･(TxT*), let us examine

                     AA                  Ar"(CBTXCBtT") (BEiE8<pt), B'E8Cv)).

Since A.==(sgn a)A,aH', @B==SbtB and 5bB==AtB, we have

                A,･(aBv(E96Bte) = = Ar･((sgn a)aHBvX(>Bre)

                              dEiAB

                            == = A.･(HBvopa-i6Bte)

                              ti EI fp t.

                            =A. e (HBv (Eb H`BbB,g)

                                         A                            =A.･(vopKtBHtBCB,e)･

Here KtBHtB is 6tB. If vftp, by Lerr}ma 1. 1 (1) we have

                            AA                        Ar '(CBTopCB'T*)= {O} .

If v=tpt and it is not {O}, we have

                  A,･(6BT opeB,T*)::V" × l,".tge (pt E }15 r.)),

                                              '
because the map vEbg-Ar･(v(g)6) is a K-homomorphism. Hence

               Ar e(T ×T*) ==,.gl)A.L IB.:2Bi[I](.) Ar '(6BT × 6B'T*)] -

                            '                               B'E%(tp)

Here we can see above { } consists of just one non-zero term by Lemma 2.

give a non-zero term let us examine the following

                                 1j ILt,ml
      Ar'(eBoT(E96`BoT") Bo=:= psi+11 lpt'+pt2]

                                    l lrl
                                 t
                             pt1+''+ptnHl+1

By Lemma 1. 1(2) we have

                  Ar '(CABeT × 6`BoT*) =Ar '(T × (S'Bo6tBoT")

                                         A
                                 =Ar ' (T × CtBoT*)

                                 ==:Ar '(HBoT × HtBoT').

Using the natural basis {viil:f{lim<n} (resp. {8j]1-<1-rm<nz})of C"(resp. CM"), we

1
.

17

(i)

To

define



vo and go as follows;

           vo =:vi Xvi opo'''(E9 vi op '''..ep(Eg) vn op vn (g>....op vn

               V"IV VPnV
           (lo =:i&op6'2 (g)･d･･op gtA, op･････ebop giop82 op･･･dop (lp.･

By these definitions, we have HB,vo==lspB,lvo, HtB,go=iAB,lgo and

                 Ar ' (HBoVo(geH'Bo4o) = i opBo l i ABo [ Ar ' (Vo op6o),

which is not zero because

     Ar '(vo op go)= g {(vi op 6i)A' ' 'A(vi (2b 6pt,)Ae ' ' 'A(vnQ6i)A' ' 'A(vn op ep.)} .

Hence

                     Ar'(aB, Tx btB,T*) or VptxY*tp. (ii)

Next we define B=rBo (r ci @,), then we have (>B-=T(>B,r"and btB=:rC"tH,r'`.

Hence we have

                  Ar'(bBTX(S"BT") =Ar'((SBeT&(S`BoT')･ (iii)

(i), (ii) and (iii) show Theorem 2. 2. Q.E.D.
   Tkeorerert 2. 3. Ar,S admits the following decomposiiton.

                  Ar'S[)::..fll.]l.,,.) (YP op V* tv) × (V*t" Q Vv) .

                       vEYA'j:

   Proof. From the definition m' -'tw(tn')*. So AD,S-`v(AS,O)', and by Theorem 2, 2

AO･S is equivalent with (D V*tvxVv. Considering m'nm'={O}, we have
                  y E y.(,Sl

           Ar'S=Ar' O"AO'S1):: (. .9.). V" × V*tP) X(. ,,(l?:,). V"t" × V')

                             sJ
                       2i..(il)Ar). (Vt! (Ei) V* t") × (V*ttt op Vv).

                         y Ei Y.C'j ).

So we get Theorern 2. 3.

   It is reduced to the (L-R) rule to give the irreducible decomposition of Ar,S by

the following

   Theorenvt 2. 4. YP (21) V*tv (resp. V*tp (g) Vv) is decomPosed into irreducibte Un

(resP. U.)-modules by the (L-R) rule.

   Proof. Considering V*t"(E9Vv =Vv(E9V*tp, the irreducible decomposition of V*t"

(2b Vv is analogous to that of Vp (g) V*tv. So we have only to state about Vp(g)V*tv.
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Let le be the depth of v, then

                    p"opp*tv=(det) lln-le (ppt-p.opp*tv+fe).

Since pt-". and *tv+k are elements of Y., we can decompose pg--p. C9 p*tv+k into

irreducible representations by the (L-R) rule. Since the irreducibility is preserved

under the tensor product with the 1-dimensional representation, we get Theorem

2. 4.

   3. grreducible decomposition o£ the G-moduie Cco(G, K, Ar,s>.

   Let us write.the irreducible decomposition of Ar,S as <{D W, then Coo(G, K, Ar,S)
                                                  PVc:Ar,s
admits the decompositionw({D..9,o,o(G, K VPi). Here Cco(G, K VV) is the G-module

induced from VV. For its irreducible decomposition, we can use the following

   LeffiftErta 3. 1 (Frobenius [7]). The following mop is an isomo2zPhism.

             HOmK(V2, W)]g-g-EiiHomG(V2, CoQ(G, K, VII)),

where op-(v)(g)=g(m(gHi)v) for vEVR, gEG.

   We may replace VV with V#xVv. Then we define the number mR",=dim Hom

K(VR, V"×Vv). To determine mRu, we can use the following
   Proposition 3. 2 ([6]). De]ine the Schur fttnction {2} (resP. {pt}, {v}) forREi Y.+m

(resP. ,aEiY., vcl Yin) whose variables are Ei, ...., 8n+m (resP. Ei,･.h･,8n, en+i,....,

Sn+m). Then we have

                          {2} = X gp D'R {g} {v} ,

                              :.e.Y:

where pt=(pti,....ptn, O, .,.., O), v==(vi,eeee,vm, O, .･e., O) and gpJ2 is the number

                   VmV VnVgained by the (L-R) rule.

    We can compute the irreducible decomposition of Coo(G, K, VptxVv) by the

following

    'TkeoreitE 3. 3. Let us identi.Ey the irreducible components with these highest

weights with multiplicities. Then we have

                                      Ybung diagrams mpPearing in
     Coo(G' K' VptXV"):=] ,2M,.Y...,-.,,) (p+e)(29(v+e) whose (n+m)-th -e,

                                     components are O

where the meaning of" "is the same as in PrQPosition 3. 2, and{ }-e means

the set of dominant integral forms made by subtracting e .from each Ybung diagram

in { }.

    Proof. It is enough to show the equation

           mAp-H, ==# {R appearing in the right hand si(le} for any 2.



    Onlywhen e=-2n+m,we can find 2 in the right hand side. So we have to

divide the proof into two cases.

    Case (1). e=-2n+m;}iMax (-Ltn,-vm). As R+eEiiYn+m, we can use Proposition

3. 2.

                    {R+e} = = &i'iJ,2.,{tt'} {v'}.

                           fjEl:

{pt'} and {v'} are the irreducible characters of U. and Um determined by pt' and v'

respectively. So we get

                  MR+eprvt== gp,JtR+e fOr any pt'EY., v'EII Yin.

Moreover we have the following because (g g) e=:IAIelBle.

         m2+e u+e v+e==mRpv for any dominant integral forms pt, v. (iv)

Setting pt':=pt+e and v'==v+e,we get mRgv=gzii.Fe, m.rE R+,. As the (n+m) -th compo-

nent of a+e is O,

                g7i:.Fie J:FT, 2+e=:=ts {2+e appearing in the { }}.

Therefore we get mR"v==st {2 appearing in the right hand side}.

    Case (2). -a.+. <Max(-pt,,,-v.). It is enough to show mRp.:=O. As R-2.+.

EYn+m, {2-2n+m} is a polynomial whose variables are Ei,g...,En+m. On the other

hand either pt-1.+. or v-2... is not a Young diagram owing to the assumption.

So (8i..o'8n)'-i or (En+ie...E.+.)-i must appear in {pt-2n+m} {v-2n+m} as a common

factor. By these properties of {Z-2.+.} and {pt-2n+m} (v-2n+m}, we can con-

CIUde MA-Rn+mg-Rn+mv-2n+m::=O･ By (iv), m2"v=MA-Rn+m"-Rn+mv-An+m･ HenCe M2yv iS

    4. Exafferiples.

    In this section we decompose Coo(G, K, Ar･S) into irreducible G-modules making

use of theorems in g2 and g3.

    Rernark. When we pull back the above irreducible decomposition by the na-

tural identification SU.+m/S(U.×U.)::G/K, we get the irreducible decomposition

as SUn+m-modules.

    Assume relllm for convenience, and define the following

fundamental dominant integra} forms. S
     Ai=(xi+'`'"+xi-xn+m..i+i-'"''rmxn+m) (i-<i-<m)

Even in the case dominant integral forms are not Young

diagrams, let us express these as diagrams showing the

origin by the mark "i".

Ai=

i

i

/
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   Exasnple I- The case m=1. We may assume sE{r, r+snv<n since AS,r=::(Ar,S)*,

Ar,S."vAn-S,"-r.Then we can give the irreducible decomposition of A',S by Theorem

2. 3 and 2. 4. This is shown in the following figure.

              ;i Jt                                                     1'-s

                1. ).        rir,s.. op ×(tll,lljG9V)- e････e ×(".,S)

                  5r 5'
                  Yy
Therefore we have oniy to decompose the G-module induced from the K-module

    si

           ;
       × p into the irreduible G-modules, This is done by Theorem 3. 3 using
         J'-s
  s

the figure shown below. The answer is sumrnarized in Table A.

                Yxx...,/t Ci:-I}i)7

                                        r-s                              J'          uk
      c2'-.' A4?t.r( i'- s, 1 )

s
x

Table A

(r, s)

O==s=r

O=s<r<n

o==s, r=n

O<sSr<n
 r+s==n

O<sgr<n
 r+s<n

highest weights (These multiplicities are one,)

fn, (f }iO)

fr11+(Xl+'"''+XrunrXn+1) (f}iO)

fAt+(x2LIT'e''+Xr+i-rXn+i) (f21)

fAi+(xi-Ft'e.+x.-nx.+i) (f})o)

f711+(Xl+''''+Xr-Xr÷1m''''-Xn-(r-S)Xn+t) (f2)O)

]t'1i+(x2+e･''+XrvXr+2-''''hXnm(r-S)Xn+1) (fl}il)

fAl+(-Xl+X2+'''''i"Xr+1-Xr+2-''･e-xn-(rmS)xn+D (f2}i2)

fAi+(Xi+''''+Xr-Xn-s+i -''''- Xn-(rMS)Xn+l) (f2o)

fAi+(x2+e･.e+xr+t-xn.-s+i-･..emxnh(r-S)xn+i) (f})l)

flAt+(X2+'''"+Xr-Xn-s+2-'''"-Xn-(r-S>Xn+f) (f;}il)

fnl+(-Xl+X2+'''-"-Xr+1rmXn-s+2-''''mXn-(r-S)Xn+t) (f22)
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   Exariftple

position for

 Table B

 2.

(r,

 The
s) == (O,

general

O), (1,

     KIyosl{l ITo

case (nl})m21). First we

O), (O, 1) in TableB,

show the irreducible decom-

(r, s)

(1) (r, s) =- (o, o)

(2) (r, s)-(1, O)

(3) (r, s)=(O, 1)

highest weights

ln
i!ii ] fiAi

i--1

(fi->o)

mXfiA,
i-1

(fi>tuo)

(fi->o,

     m     XfiA, +(xj-x,)
     i--1
1f{gjSn, n+1E{:kf{ n+m, *(x i･ - xk)Ai(x J･ mXk))

m
=f,Ai
i=1

(fi>-o)

           m           =fiAi +(-xj+xfe)
           i=1
(fim>O,lf{:iE{:n, n+ls{;feKn+m, *(-xj+xk):1ff(-xj+xk))

multiplicities

1

# {fiAfo}

1

# {fiN!O}

1

(1) Let us put pt=O, v=O in Theorem 3. 3, then we

                    7n
   equal to the set {= ](}Ail.f12}iO}.

                                       '                    '                    z=1
                                    N)x--- c e
                                             IJI                                    Ji
                                   1op             U Young diagrams in n,
                                    )il             e2e

                 whose (n+m)-th components are O

The elements in { } correspond to the ones in {(fi,e-･･,

bijectiveiy as is shown in the following diagram.

                     ee

can see the following set is

     -e.

         7n
.4n) E ZMi = fi=e, .fl ;}) O}

         i-mi

    IZ

    P)1

Since

the

1

11Z
2

:
3
jl･1

l

3

4

  figure

2X i
･m

2

l
l
li･1

2

:
3
])1

:
3
j'J･z

3

]i･1

nt ]]7.

      LhA.-

     the numbers

(n+1)-th row

   right hand

determined as

s--- fll..--

     of each

to get the

 side as

above.

s- A"'

    figures

 diagrams

above.

s"An""

    are
    whose

 Then

×An

 equai, the

   (n+m)-th

the arrangement

   4

    1 does

row are O.

   of the

not

So

left

appear in the

we can wrlte

hand side is
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(2) Let us exarnine the following set as in (1).

                                   ne ln

           U Young diagrams in m op

           e21

               whose (n+m)-th components are O

In the above { }, we can classify the diagrams'

    Case 1. There is not 1 in the (e+1)-th column.

    Case 2. There is a 1, but not 2, in the

         - - - - - ny - - + ny - - ny - - t - - - - - - - l - ny - - - - i i - l - - - - - - l t - - - t - - - i 4 - l - - l l - - - - -

    Case m There is a1,-o･･, a m-1, but
Unless n=m, the following case must be considered.

    Case m+1. There is a 1,･e･･, and am in the

there are two cases, namely,

    Case j'A, There is not 1 in the (n+1)-th row.

    Case 1'B. There is a1 in the (n+1)-th row.

We can show the following equations as in (1),

sides are assumed to be dominant integral forms).

                           m         U {case ]'A} -e={:fiAi

         e)1 i=1
                           m         U {case 7'B} -e== {: .fl･Ai +(xj-x.+m)

         e21 i--1
We get (2) by adding these two equations from

    (3)Let us think the image of (2) under the map

   5. Cornputation of the Hodge murnbers.

   By Theorem 2. 3 we can get the Hodge

we need to prepare some results on the spectra of

G, and < > the inner product of gdefined by

< > we define the Cassimir operator C. Then we

the same way as [2] (Since G is unimodular and has
If clg is biinvariant measure of G, SG.X<f) cig is

   Lemafftrta 5. 1. Let us identi.ICI), Coo(A',SM) with

                     na=-Ca for any

   The eigenvalues of C are given by the following
   Leffertffna 5. 2 ([8]). Let 6 == "l}-X (Positive roots

ducible submodule of Coo(G, K, Ar,S) tvith VR. Then,

on Gn+nt,n

e
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             n -e.

          mto the following m+1 (m) cases.

      (e+1)-th column.

             -----t-i-il-i---

          not m, in the (e+1)-th column.

            (e+1)-th column. For each case

          (The elements in the right hand

+(xi-xle) 1 fi>-O, n+IE{gfe:f{n+m-1}.

                    '
          lA;}iO}.

         i--1 to 1'-m+1(m).

             *, then we get (3).

       nurmbers h',S (M). For this purpose

            M. Letg be the Lie algebra of

            <X, Y>==-2tr.XY. For this

              have the foliowing lemma in

             no boundary we get the fact:

          equal to O for fECoo(G) and XEiig).

           Coo(G, K, Ar･S), then

    aECoo(Ar,sM).

           of G), and we identifly tlre irre-



             Cf== - 4rr2 < 2, Z+ 26 > f for any fEi VR.

  By the aid of these lemmas we can derive the following fact.

  propasition s. 3. hr,s(M)=(#y9(,:,).(Il=S3).

  Preof. Let V2 be an irreducible component corresponding to the harmonic forms

in Coe(Ar,SM). Then we get R==O because of <1, 6>>-O･

So hr･S(M)=-dim HomK(C, Ar,S). By Theorem 2. 3 we have,

  HomK(C, Ar,S) : O Homu.(C, Vpt(E9V*"v)(29Homu.(C, lxr*'g(E9Vv)
            "EYTf',)n
               '            PEil Y.CS,? .               t
           :t e Homun(Vtv, Y")(Ei)Homu,.(Vt", Vv).
            "EySrl
               '            pEy Ss ).
               ,
Hence we have the above fact.

                      Appemdix
  We show a program in N88-BASIC for the calculation of the (L-R) rule by Dr.

Hisao Kamiya.

10 REM save "YNG"
20 KEY 10, "LIST 30-50"+CHR$ (13)

30 REMS123456789=== SET DATA===
40 DATA 5, 3, 2, 2, O, O

50 DATA 5, 2, 1, O, O,O

60 REM .-"xh-Hnv-"-..---H"-----.---"--mH

70 DEFINT A-Z:DIM A(10, 10), W(10, 10), Z(1000, 10)

80 RESTORE 40
90 LPRINT CHR$ (27)+"LOIO"+"INITIAL DATAt,

100 READ SX : FOR I=1 TO SX : READ X(I) : LPRINT X(I);:NEXT : LPRINT

110 READ SY : FOR I=:il TO SY : READ Y(I) : LPRINT Y(I);:NEXT : LPRINT

120 FOR I=1 TO SX
130 A(O, I)==X(I)

140 NEXT:A(O, O)=:999

150 L=1:J=O
160 REM ============== NEXT L ==============

170 FOR I-1 TO SX : W(L, I)=O : A(L, I)=A(L-1, I) : NEXT

180 W (L, L)==Y(L):A(L, L)=W(L, L)+A(L-1, L)

190 IF A(L-1, L-1)<A(L, L) THEN GOTO 210 ELSE 320

210 K=1
220 IF W(L, K)==O THEN 300

230 WW=W(L, K)-1:W(L, K)-O:W(L, L)-WW:W(L, K+1):--W(L, K+1)+1
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240 FOR K==O TO SX
250 A(L, K)=::A(L-1,K)+W(L, K)

260 NEXT
270 FOR KK==L TO SX : IF A(L-1, KK-1)<A(L,KK) THEN 210

280 NEXT:GOTO 320
290 REM =--======-------.-"rmma - ----------=

300 K=K+1:IF K>==SX THEN 310 ELSE 220
310 L=L-1 : IF L::=O THEN STOP ELSE 210

320 IF L==1 THEN 360

330 REM ---- LATTICE PERMUTATION CHECK==---
340 T::::W(L, 1) : FOR K==2 TO SX+1 : IF T>O THEN 210

350 T=T-W(L-1, K-1)+W(L, K):NEXT
360 IF L==SY THEN 380

370 L=L+1:GOTO 170
380 CLS 1:PRINT J+1;"-th answer of this type"

390 FOR II=1 TO SX:PRINT:FOR IJ=1 TO X(II):PRINT"O";

395 NEXT:FOR IJ=1 TO SY
400 FOR IK::=1 TO W(IJ, II) : PRINT USING"#pt"l IJ ; : NEXT : NEXT : NEXT :

 PRINT
410 FOR II=1 TO SX : LPRINT : FOR IJ=1 TO X(II) : LPRINTii o,t ;

415 NEXT:FOR IJ:=1TO SY
420 FOR IK=1 TO W(IJ, II) : LPRINT USING'i##'t ; IJ ;: NEXT : NEXT : NEXT :

 LPRINT
430 IK =:: 1 : FOR II := 1 TO SX : Z(J, II)-A(SY, II) : NEXT

440 FOR II==1 TO J-1 : FOR IJ=-1 TO SX : IF Z(II, IJ)< >Z(J, IJ) THEN 460

450 NEXT:IK:=IK+1
460 NEXT II:PRINT"This is";IK;"-th answer of this type."

470 LPRINT"This is";IK;"-th answer of this type. ":GOSUB 500

480 J=J+1:PRINT:GOTO 210
490 REM =====-==== DATA check ======--====

500 PRINT:FOR L-rlTO SY:FOR KL==O TO 10:PRINT A<L, KL)]:NEXT:

 PRINTrNEXT
510 PRINT : FOR L=::1 TO SY : FOR KL:=:O TO 10

515 PRINT W(L, KL);: NEXT : PRINT : NEXT

520 T::=W(2, 1) : FOR K==2 TO SX

530 T=T-W(1, K-1)+W(2,K) : PRINT T;:NEXT : RETURN

540 FOR I::=1 TO 200:NEXT:INPUT X$:RETURN

550 END
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