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On the complex Grassmann manifold SU s/ SWUax Upy), irreducible decomposi-
tions of SU,.n-modules of complex valued functions and 1l-forms are calculated
([7], [5]). For the complex projective space SU,..1/SWU,, x Uy}, irreducible decompo-
sitons of the SU,..-module of (#, s)-forms are calculated ([2]). In [2] making use
of the irreducible decomposition, spectra (eigenvalues of the Laplacian and their
multiplicities) are also determined.

In this paper we represent the complex Grassmann manifold M as Uuem/UnX
U,,, and we try to calculate irreducible decompositions of the U, .m-modules of
(», s)-forms. Our problem is réduced into the following two: What kind of an
irreducible U, x U,-module appears in the exterior product of the (complexified)
isotropy representation ? How the U,.m-module induced from the answer of above
is decomposed into irreducible U ..,-modules ? The main result of this paper is to
show these two problems are solved by the use of the (L-R) rule (Littlewood-
Richardson rule[4]). As an example we derive the results mentioned at the begining
more accurately. At the end of this paper we compute the Hodge numbers making
use of the answer of the first problem.

In appendix, we present a computer program for the calculation of the (L-R)
rule due to Dr. H. Kamiya. I would like to thank Dr. H. Kamiya for the making
of this program and permission of its insertion in this paper.

1. Notations and preliminaries.
Let G be Up.m and K be U,xUy. As in [2], C=(47°M) denotes the Ussm-
module of smooth (r, s)-forms on M=G/K. We denote

(%, ~*4)| AcHin ).
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where “i" is the imaginary unit for the complexification, and

AT S=m™ ~AceeonmmAamt ~Aevoermt

e P S — §

C=(G, K, A7%5)= {feC=(G, 4%%|flgh)=Fk*-f(g) for any geCG, keK]}.
Here A7.° is a K-module, and we identify the induced G-module C=(G, K,
A7) with Ce(A7SM).
From now on, for the sake of later sections we give a brief review having
connections with restricted Young diagrams and representations of a unitary group

Ue. We identify the follwing set with Young diagrams whose “depth” are not
more than ¢,

Yo={2€Z | 3;>+++->2>0) (4=N).

For a nonnegative integer p let Yo®={2€ Vo | A4+ - +Ae=p}, then 2€Y{® is
identified with a diagram consisted of p “squares”. The Young diagram 2 (p % 0)
whose squares are labeled with figures from 1 to p is called a tableau on 1, and
we denote it by B. In particular B is called a “standard tableau” if the figures in
its each row and column are in increasing order. For a given B a Young symme-
trizer Cg and éB are determined as as follows;

Hy= >0, Kp=(sgn o) 0. Cy=HyKp, Cy=KyHp.
€Dy cef®n

Here 95 (resp. ®p).is the subgroup of the symmetric group &, which preserves the
sets of figures in each row (resp. column). For éa we can use the following

Lemma 1. 1 ([3]). (1) If 2522 A1 EYe?) and B,B' are tableaus on 2, ¥
respectively, then we have éBéB':O.
(2) There is a positive number q such that ((/:‘B)L’:q Cs.

Next T=C*®-+++-®C? becomes a Us-module canonically, and a &,-—module by
the action

o1+ Qup) = (R + Qe (py for 6 €S,

Since the two actions are commutative a representation Ug——GL (&‘BT) is deter-
mined.

Remark. We choose a maximal torus as diag (&, «+--- £g), (&8,=e2/ 1z,
ep=e 2"/ ~1%,). The charecter of this representation is given by the Schur function
{2} whose variables are &, ---+,&. On the other hand {4} is the character of the irre-
ducible representation whose highest weight is 2%+ ¢+ +2exs. (We take a natural
fundamental Weyl chamber of Uy and “highest weight” means the weight which
takes the maximal value on the closure of the fundamental Weyl chamber, see [17]).

By the above remark we have the following
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Proposition 1. 2 (Weyl [30)). T is decomposed into the irreducible Ug-modules
éBT, namely

= @ (B GT),
re ¥ \BeR(1)
where B(A) denotes the set of all standard tableaux on A.
Let p; be the irreducible representation, and p, the trivial representation (0=
(0, -+, 0). For given 1, €Y, we can calculate the irreducible decomposition of

e
pa®par by the following
Proposition 1. 3 ([67]). @ = ZY gaaar (.
"E Z

Heve gy is the number of the Young diagvam X' that can be built by adding to
the Young diagram 2, 'y squaves with figures1, «-«-, s squares with figures 4,
subject to two conditions : (a) After the addition of each squares with identical
JSigures, we must have Young diagram with no two identical figures in the same
column. (b) If the total set of added figures is read from the vight to the left and
Srom the top to the bottom, we get following inequalities at all squares.
(the number of appeared 1) >>++++> (the number of appeared o).

The above algorithm is called the (L-R) rule ({4]). We denote this proposition

by the equation

RX= @ gk
e,

Then we close this section with following definitions.
A=, v oo Anam)y p=(pt, oo v, p)y V=), =+ <+, v,,) : sets of integers which are in
decreasing order,

(02, V3) (resp. (o, V), (ev, Vo)) : the irreducible representation of G (resp. Uy,
ntm n m

Un) whose highest weight is 2= > 2;x; (resp. p= D piki, v= D viZusi)
=1 i=1 i=1

%1 IPDh—— kh=(—hg, ++or, —h)EZL?,

te:Z¢sh—hte=(hite, -, hute)cZ? (es),

Y=Y P | m<m), Y =beY P nln,
£ Yig,rgt Su %_*tlle Y;Ezf%, %(#) EB*_’tBE%(tﬂ)

where “;" means the reflection in the leading diagonal.

2. Irreducible decomposition of the K-module Ars.

For the U,-module V, and U,,-module V, let V,xV, be the direct product of
them (the representation of K whose representation module is V, ® V,). As a
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fundametal Weyl chamber of K we choose the direct product of U,’s one and U,’s
one. So a dominant integral form of K is expressed as p+v. Instead of the integral
forms { £nsj | 7=1, +=++, m} we use {¥;= —Xyim-js1 | j=1, ++++, m} in this section.
Lemma 2. 1. For peY,’) let wy be pt+'p. Then op is a weight of A7°
and its multiplicity is one. ’
Proof. From the definition 4.° is equivalent with C*xC"*, So the weights of
AL% are {x;+y; | 1<i<n, 1<j<lm}.

Since these multiplicities are one, the weights

X1tV | Xy Ye | e X1t Ym
.0 . . .
of A7:° are obtained by adding different » squares Hat 3y | Kot ya | e Yot Vur
chosen from the right figure. Let W be any : ; ;
shape of # squares which determines @, then : '
. . Xpt+Y1 | Xntde 1 """"" Xnt+Ym
p#i=4# {squares of W in the i-th row}.

So there is no square of W in the i-th row (‘g +1<i<(n). On the other hand ‘u =
# {squares of W in the first column}. Therefore in the first column of W there is no
hole from the first row to the ‘u-th row. So, as for the j-th column (2 < j<m)
there is no square of W in the i-th row (‘41 <i<’st,). On the other hand !u,=4#
{squares of W in the second column}. Therefore in the second column of W there
is no hole of W from the first row to the ‘u,-th row. After the analogous steps
we can see W must be the shape of . Since the multiplicity is equal to the
number of W, we have Lemma 2. 1.
We set

T-C@::::® O (Uyemodule), T=C"* @28 € (Uyemodule)

N S
o+ 1O B0 O] T X T
(canonical identification as K-module).
The action of &, induced by ¢ is as follows ;
o (v®E)=(o1)Q(0€) for 6€6,, veT and EéT*.
Theorem 2. 2. Let A, be Z (sgn o)o, then we have the irveducible decom-

1 eS,
position

pUA(CRC ™) = @ Ap(C5T x 5T,

HEY nln

where B is a tableau on p. Then A,-(éBTxé’BT*) is independent of the choice of
B, and is equivalent with VeXVyy,.

Proof. Let ¢ be » in Proposition 1. 2, then we have the irreducible decomposition

T :ue@(;) <BE§§(”)CAB T) )

We have the analogous irreducible decomposition for ¢=m as U, -module. Let us
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consider its contragredient representation, then we have

T*= CABrT*>.

VE@(:") <B’e<_%(v)
Considering the equation ¢ {47(C* xC"*)} =A, (T xT*), let us examine
A, (CaTxCpT¥)  (BEB(p), B'eBW).

Since A,=(sgn ¢)4,07!, $5=9'p and Hr=8%s, we have

o (Csv@Cpie) = > Ar-(sgn o) Yo H spRCy0€)
ae@

ZJ A HBZ)®0' 1C}g’f)

uef‘)t
— A, (Hpo @ H! 5Cpi6)
— A, (WRK! g H 5Cr€).

Here KizH!p is Ctp. If vs£ip, by Lemma 1. 1 (1) we have
A, {(CsTRCHT*)=(0).
If v="p and it is not {0}, we have
A CsT RCuT =V x Vil (n€Y, S,

because the map v®@Et—A,(vQE) is a K-homomorphism. Hence

ATxTI= @ |
uer.Cfn BeBxu)
B eBa)

A,-(CA‘BTXCA‘B/T*)}. (i)

Here we can see above { } consists of just one non-zero term by Lemma 2. 1. To

give a non-zero term let us examine the following

L I I H I
Al T ®CtT*) | By= [+ |l/11+;zz]

| 7|

1
mt et t+1
By Lemma 1. 1 (2) we have

A, (CoT % Cp,T*) = Ay (T xCt5,Cty,T)
= A, (' xC1p,T)
— A, (HgoT X H' p,T*).

Using the natural basis {v;]1<{i<n} (resp. {&;]1<{j<{m}) of C” (resp. C”*), we define
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v, and &, as follows ;

UO:UI@Q?@”I@ ....... ®Un\®_@g§“\”_@vn
E0=E®E Q- @by @eeveees R ERE Q¢+ ® Enae

By these definitions, we have Hp,vo=|9n,|ve, Hp.Lo=|Rs,|& and
Ay (Hp,0o®H g,€0)= | Do lIR5, | A7 + (00&Eo),

which is not zero because

Ay vy Q &)= © {(v; R E)ne oo~V @ Epne e ANV RE e vy @ )}

Hence
Ay (Coy Tx Gt TH) =V x Vita, (i)

Next we define B=tB, (r € &,), then we have (/\,‘B:ré‘gor’land é’B:fé‘BOT".

Hence we have
A (CTx CtT*) =A,+ (Co, TR C! 5, TH). (iii)

(1), (ii) and (iii) show Theorem 2. 2. Q.E.D.
Theorem 2. 3. A5 admits the following decomposiiton.

Ar's:#e@;y (V,; ® V. tu) x (V*t;x ® V»).

L
vEYm:',.

Proof. From the definition m* ~(m™)*. So 4%% == (4%%*, and by Theorem 2. 2

A% is equivalent with @( Vifux V. Considering m* Nm~={0}, we have
veYan

Ans:AnoAAo,s:( ® Vﬂxv*fy)@)( @ V*fuxvv)

#GY,(.:% vEY mn

:ﬂe(;),s;; (Vy ® Vs fu) X (V*m RV, )

veysh

So we get Theorem 2. 3.

It is reduced to the (L-R) rule to give the irreducible decomposition of A7:5 by
the following

Theorem 2. 4. Ve & Vil (resp. Vile ® Vo) is decomposed into irreducible U,
(resp. U,,)-modules by the (L-R) rule.

Proof. Considering Vi /eQ@V. V@V, iz, the irreducible decomposition of Viu
® Vv is analogous to that of Vi ® Vii. So we have only to state about Ve@V.,ly.
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Let %k be the depth of », then

or@p+ts=(det) =k (pp—p, Qprlv-tk).

Since g—p, and *'v+k are elements of Y,, we can decompose pg-x, & px'v+Ek into
irreducible representations by the (L—R) rule. Since the irreducibility is preserved
under the tensor product with the 1-dimensional representation, we get Theorem
2. 4.

3. Iireducible decomposition of the G-module C=(G, K, Ars).

Let us write. the irreducible decomposition of A”:S aSWQr) W, then C=(G, K, A">%)
CAI‘,!
admits the decompositionw@ C=(G, K, W). Here C*(G, K, W) is the G-module
CAT,I
induced from W. For its irreducible decomposition, we can use the following

Lemma 3. 1 (Frobenius [7]). The following map is an isomorphism.
Homg(Vi, W)s¢p——gsHomg(V,, C=(G, K, W)),

where pNg=¢(oig W) for veV,, ge6.

We may replace W with VexVy. Then we define the number m,,, =dim Hom
Vi, VuxVy). To determine m;,, we can use the following

Proposition 3. 2 ([6]). Define the Schur function {A} (resp. {¢}, V}) for A€ Y ,im
(resp. peY,, veY,,) whose variables are &, ++++, &,pp (VeSP. &, vovn, Euy Eyuy, ovoe,
Enam). Then we have

=27 graly b,

HEY
ve¥n

where g=(ty, «*** iy, 2_,\/0) D=y, """, U, O\/J and g@v, is the number
gained by the (L-R) rule. " "

We can compute the irreducible decomposition of C=(G, K, VpuxVy) by the
following

Theovem 3. 3. Lef us identify the irreducible components with these highest

weights with multiplicities. Then we have

Young diagrams appearing in
(pFe)®(v+e) whose m+m)—tht—e,
components are O

C=(G, K, VuxVy)=

e>Max(—uy, —vy)

where the meaning of "—" is the same as in Proposition 3. 2, and { }—e means

the set of dominant integral forms made by subtracting e from each Young diagram
in { }.

Proof. It is enough to show the equation

mazy =4 {4 appearing in the right hand side} for any 2.
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Only when e=—1,,,,,we can find 2 in the right hand side. So we have to
divide the proof into two cases.

Case (1). e=—Apym=Max (—pn, —vw). As 24+e=Y ., we can use Proposition
3. 2.

{2’1"8} = Z gﬁ'3’1+e{ﬂ’} {VI}-

wel,
v'eYn

{¢'} and {v'}) are the irreducible characters of U, and U, determined by p' and »'
respectively. So we get

Mivep'v' =ga'v 2ve fOr any p' €Y, v'&Yy.

Moreover we have the following because )(‘g g)iez |Al¢|B]e.
Mire pre vee=Mzyy for any dominant integral forms p, v. (iv)

Setting ¢’ =p+e and v’ =v-te,we get M =gue vvz 2+ As the (r+m) — th compo-
nent of A4+e is 0,

8wrs vie awe=f (A1+e appearing in the { }}.

Therefore we get mapxv=4 {1 appearing in the right hand side}.

Case (2). —2pim < Max (—pty, —vn). It is enough to show mj,,=0. As 2—2Auum
€ Yyim> {A—244) is a polynomial whose variables are &, -+++,&,.,. On the other
hand either p—2,4,; Or v—2A,4s is not a Young diagram owing to the assumption.
SO (&10e08,)7 Or (8,4 0%+ +E,4p,) " must appear in {g—2Auem} P—2An+m) as a common
factor. By these properties of {A—Ausm} and {g—2dpim) (P—2Ansm}, we can con-
clude 9 2nem peanim vornsm=0. By (iV), Mapy =M1 1nem p-inem v-inem. Hence my,, is
equal to 0. Q. E. D.

4. Examples.

In this section we decompose C=(G, K, A7) into irreducible G-modules making
use of theorems in §2 and §3.

Remark. When we pull back the above irreducible decomposition by the na-
tural identification SU,44/S (U, xU,,) 2G/K, we get the irreducible decomposition
as SU,+m-modules.

Assume n=m for convenience, and define the following
fundamental dominant integral forms.

Ai:(x1+ SRR o Thak SOV LR "xn+m) (ISZSWI)

Even in the case dominant integral forms are not Young
diagrams, let us express these as diagrams showing the

origin by the mark “}".
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Example 1. The case m=1. We may assume s<<r, 7+s<n since A%72=(A7.5)*,
Ar:S~A%5,n"7 Then we can give the irreducible decomposition of 4”>° by Theorem
2. 3 and 2. 4. This is shown in the following figure.

|

IR ==E=R I (=)

;
& N

\ \

Therefore we have only to decompose the G-module induced from the K-module
l

x ;;j into the irreduible G-modules. This is done by Theorem 3. 3 using

the figure shown below. The answer is summarized in Table A.

(r, s) highest weights (These multiplicities are one,)

O=s=r i (f=0)
Omscran  |TATEA A ) (=9
S (xgt oo e F X1 —FXna) (/=1)

O=s, r=n S (E e+ Xy —NX ) (f=>0)
FAA @ F e X — Xy — et = Ky — (P = S)X ) (f=0)

TSI | Pttt = = Shan) (r=1
SA (=% Faxgteve e b Xy —Xppa— oo — Xy —(F—$)&nqy) (f=2)

SAH@E A es e X — Ky gy — e =Xy — (P $)E ) (f=0)

0<s<r<n S (Kot oeeo X, —Xyogpg— oo —Xp—(F—8)Xns1) (f=1)
rsn FA A (s oor ot Xy Ky gag—onoe —Xn—{r—8)Xnsi) (f=1)
FA A (=21 ot e e Hppy = Hpogyz— oo oo — X — (¥ —S)p41) (f=2)
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Example 2. The general case (n>m>>1). First we show the irreducible decom-
position for (», s)=(0, 0), (1, 0}, (0, 1) in TableB,

Table B
(r, ) highest weights multiplicities
(1) (r, 5)=(0, 0) DVl (£i=20) 1
i=1
DVl (£i=0) # {20}
i=1
2) (r, 5)=(1, 0) Zfi/]i +(xj—x5) .
i=1
(Fi20, 1<G<n, n+1<k<Sndm, #(x;—xp)3{x;—xp)
2\l (fi>0) B {fi70}
i=1
(8) (r, 5)=0, 1) Efi/]i F{—xj+xp) 1
i=1
(Fi20,1<i<n, n+1<hkln+m, *(—x;+x)3(— 2+ 1z)

(1) Let us put #=0, v=0 in Theorem 3. 3, then we can see the following set is

equal to the set {D | fid;| fi>>0}.
i=1

T ¢
" mn

: i &
U |Young diagrams in ,I
>0 m

whose (n+m)—th components are 0
m
The elements in { } correspond to the ones in {(fi, «=+*, fm) € Z"] ZJ fi=e, f; =0}
i=1

bijectively as is shown in the following diagram.

M IZ[\fl

72

Lo DD | e

3
R fal7]\fz

}

S

21 [2]3 3]
21 13 3 i f,
| i \~f2_,/

b

7

|)iz']\“fm'/

Since the numbers of each figures are equa’, the figure 1 does not appear in the
(n+1)-th row to get the diagrams whose (n-+m)-th row are 0. So we can write
the right hand side as above. Then the arrangement of the left hand side is

determined as above.
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(2) Let us examine the following set as in (1).

¢ — e
2

U | Young diagrams in )

m
ex1

whose (n+m)-th components are 0

In the above { }, we can classify the diagrams into the following m+1 (m) cases.

Case 1. There is not 1 in the (e-+1)-th column.

Case 2. There is a 1, but not 2, in the (¢41)-th column.

Case m. There is a 1,--++, a m—1, but not m, in the (e+1)-th column.
Unless n=m, the following case must be considered.

Case m+1. There isa 1,.++-, and a m in the (¢+1)-th column. For each case
there are two cases, namely,

Case ja. There is not 1 in the (n+1)-th row.

Case jg. There is a 1 in the (#-+1)-th row.
We can show the following equations as in (1), (The elements in the right hand

sides are assumed to be dominant integral forms).

U (case ja} —e={>] fidi +(xj—xp) | fi0, n+1<k<n+m—1}.
=

ex1

U {case jg} —e={ ﬁl Jidi H(xi—xnem) | £i20}.

ex1
We get (2) by adding these two equations from j=1to j=m+1(m).
(3)Let us think the image of (2) under the map *, then we get (3).

5. Computation of the Hodge numbers.

By Theorem 2. 3 we can get the Hodge nurmbers 4" (M). For this purpose
we need to prepare some results on the spectra of M. Let ¢ be the Lie algebra of
G, and < > the inner product of § defined by <X, Y >=—2tr.XY. For this
< > we define the Cassimir operator C. Then we have the following lemma in
the same way as [2] (Since G is unimodular and has no boundary we get the fact :
If dg is biinvariant measure of G, JGX(f) dg is equal to 0 for feC~(G)and Xe&4).

Lemma 5. 1. Let us identify C(A" M) with C~(G, K, A"%), then

da=—Ca for any acC=(A"SM).
The eigenvalues of C are given by the following

Lemma 5. 2 ([(8]). Let 6 = é— (positive roots of G), and we identify tlhe irre-
ducible submodule of C*(G, K, A% with V. Then,
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Cf= —A4n* <4, 24206 > f for any feV,.
By the aid of these lemmas we can derive the following fact.
J 0 (rs%s)

irs S — ,
Proposition 5. 8. 47 S(M) [ﬁyr(t,')ﬂ (r=s5).

Proof. Let V,; be an irreducible component corresponding to the harmonic forms
in Co{47.SM). Then we get i=0 because of <1, §>>0.
So A7 S(M)=dim Homg(C, A47:5). By Theorem 2. 3 we have,
Homg(C, 47%)~ @ Homu,(C, Ve@V:'»)@Homym(C, Vi'e@Vv)
#eYﬁy’%
veVa
~ @ Homy,(Vt, Ve)QHomy,(Vie, V).
ney 2

velY 1(;,)71

Hence we have the above fact.

Appendix

We show a program in N88-BASIC for the calculation of the (L-R) rule by Dr.
Hisao Kamiya.
10 REM save "YNG”
20 KEY 10, "LIST 30-50"+4CHRS$ (13)
30 REMS1234567 89 ===SET DATA===
40 DATA 5,3,2,2,0,0
50 DATA 5,2,1,0,0,0
60 REM =======sz=z=== ===szssss=sSssssssss=ass
70 DEFINT A-Z: DIM A(10, 10), W(10, 10), Z{1000, 10)
80 RESTORE 40
90 LPRINT CHR$ (27)4"L010"+4"INITIAL DATA"
100 READ SX : FOR I=1 TO SX : READ X(I) : LPRINT X(I); :NEXT : LPRINT
110 READ SY : FOR I=1 TO SY : READ Y(I) : LPRINT Y(I); :NEXT : LPRINT
120 FOR I=1 TO SX
130 A0, D)=X{)
140 NEXT : A(0, 0)=999
150 L=1:]J=0
160 REM =s======z=====z= NEXT L ==============
170 FOR I=1 TO SX: W(L, I)=0: AL, I)=A(L—1, I): NEXT
180 W (L, Ly=Y(L): AL, L)=W(L, L)+A(L—-1, L)
190 IF A(L—1, L—1)<A{l,, L) THEN GOTO 210 ELSE 320
210 K=1
220 IF W(L, K)=0 THEN 300
230 WW=W(L, K)—1: WL, K)=0: WL, L)y=WW : WL, K+1)=W({L, K+1)+1




240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
395
400
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FOR K=0 TO SX

AL, K)=AL—-1,K)+W(L, K)

NEXT

FOR KK=L TO 8X:IF A(L—1, KK—1)<{A(L,KK) THEN 210
NEXT : GOTO 320

K=K+1:IF K>=SX THEN 310 ELSE 220

L=L—1:1IF L=0 THEN STOP ELSE 210

IF L=1 THEN 360

REM ==== LATTICE PERMUTATION CHECK=====

T=W({L, 1): FOR K=2 TO SX+1:IF T>0 THEN 210
T=T-W(L-1, K-1)+W(L, K): NEXT

IF L=8Y THEN 380

L=L+1:GOTO 170

CLS 1: PRINT J+1; "—th answer of this type"”

FOR II=1 TO 8X : PRINT : FOR IJ=1 TO X(II) : PRINT " 0" ;
NEXT : FOR IJ=1 TO SY

FOR IK=1 TO W({J, II): PRINT USING"##t"; 1J;: NEXT : NEXT : NEXT :

PRINT

410
415
420

FOR II=1 TO SX : LPRINT : FOR 1J=1 TO X(II) : LPRINT" 0" ;
NEXT : FOR IJ=1 TO SY
FOR IK=1 TO W(J, II) : LPRINT USING"##" ; 1J ;: NEXT : NEXT : NEXT :

LPRINT

430
440
450
460
470
480

IK=1:FOR II=1 TO SX : Z(J, M)=A(SY, II): NEXT

FOR II=1 TO J-1:FOR IJ=1 TO SX : IF Z(I, IN)< >Z(J, IJ) THEN 460
NEXT : IK=IK+1

NEXT II : PRINT"This is" ; IK ; “-th answer of this type.”
LPRINT"This is" ; IK ; “-th answer of this type. " : GOSUB 500
J=J+1: PRINT : GOTO 210

490 REM ========== DATA check s===========
500 PRINT : FOR L=1 TO SY : FOR KL=0 TO 10:PRINT A(L, KL);: NEXT :
PRINT : NEXT

510
515
520
530
540
550

PRINT : FOR L=1 TO SY : FOR KL=0 TO 10

PRINT W(L, KL);: NEXT : PRINT : NEXT

T=W(2, 1): FOR K=2 TO SX

T=T-W(1, K-1)+W(2,K): PRINT T;:NEXT : RETURN
FOR I=1 TO 200 : NEXT : INPUT X$ : RETURN

END
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