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g Yxttreduetioffk

   In the study of geometry of curves in a rnanifGld, Prof. Abe obtained the

following equation ([1])

") dudy +A(x)y+tan stt/YJBKX)Y=O, Y==(il,)'

Here x is the variable of a curve r, s is a variable in the normal direction of the

curve and y =y(x, s). A is the torsion matrix of the curve and Bi･'s are calculated

for important manifolds. In any case, they are geometric meaningful.

   If the curverisa closed curve, that is, ifris given by a periodic ma r(x)

with the period 1, we call the correspondence

                      f(s)=y(O, s)-y(h, s)==rca(f)(s),

where pt(x, s) is a solution of (1), to be the monodromy of the equation (1). Here le

is an integer and represents aErri(r). Treaty of the rnonodromy of(1)is a geometric

problern. presented by Prof. Abe. In this note, we treat this problem and show

the followings:

   Mektrttxerfta 3. Let 0 and ¢ be matrix valeced 1-forms over a smocth manifbld M with

the universal covering manifold M such that

(2) de+eAo::=o,
                            dip +0.g6 = O.

Then fbr any xoEllf and a function f(s) of s, s a <complex) Parameter, the equation

(3) dF-FO+sFipF=O
hasa solution F==F (x, s) such that F (xe, s)==f(s) and can be continued asa solutio.n
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            -.J -- --J of (3) on U(MxO), aneighborhood of MxO in MxC. F(x, s) is holomorphic in s if

 f(s) is holomorphic. hi general, iF has following form

                           oo (4) F=f(f+Xs"G.) Fo, i is the identity matrix.
                          n=1

 Here .Fo is the solection of the linear Part of (3) szach that Fe(xo)=:I and each G.==

Gn(x, f(s)) is homogeneoacs of degree n in f

    For simple, we regard xo Eijili when F is continued to be a solution of (3) on

U(M'WxO). In this case, we also have PH(xo, O)=L

    Pefinitiome. YP'ig caU the eorrespondenee

                f(s)== F(xo, s)-F(o(xo), s)=rca(f) (s), oeffi(M)

to be the monodromy of (3). Here we regtzrd f(s) to be a germ of matrix valued

juncti.on.

    Wkeereme 3. To denote the monodeompt of the linear Part of (3) by x., we have

the followin.g erpansion of rca(f).

                                   co(5) xa(f)(s)=(I+Xs"Rn,o(f))Zaf(s).
                                   n=tl

Here each 2.,a(f) is homogeneotts of degree n in f. x,fand2n,o(f)x.fmean thematrix

multiplications of x. and f and 2n,o(f) and x..fl Especially, Ri,a(f) is linear in .Sl ,rt

satishes following Period relation

(6) Rba(T>J=Rba(xrT)+XaRb･t(T)Xa-i, T is a 2natrix.

    Since x is a representation of rci (M), it defines a local coeMcient cohomology

H*(M, Vx). (6) shows Trxi defines an element of Hi(M, Vx). It is a characteristic

c!ass of the non-linear part of (3).

   To apply these results to the original equation (1) of Abe, (3) is a little restri-

ctive. So we consider the following equatlon

                           dV
                               +A(x)Y+sF(Y, Y)=O,(1)'
                           du

Here Y<x, s) and A(x) are rnatrix valued functions, F(U, V) is a matrix valued

bilinear function such that

(7) F(U, VC)=.F'(U, V)C, Carnatrix.
Then we have
   Lexwtffffta X. For anpt a>O and a matrix valued continuous .frenction f (s) of s,

there exists anE=E(a, f)>O such that (1)' has a solution Y(x, s) with the initial data
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 f(s) on {lxl<a, Isl <6}, Uf(s) is Cle-class, this Wx, s) is Cle-class insand if f(s)

 is holomo2zPhis, Y(x, s) is holomomphic in s. Precisely, Y(x, s) tafees the following

 form

                                    oo                     Y(x, s)-:U(x) (I+ X s"V. (f))f(s).

                                    n=1

 Here U(x) is the unitary solution of the linear Part of(1)', that is, U(x) is the

 solution of the equation

                              dY
(8)                                  +A(x)Y:-o,
                              dx

with the initial dnta Y(O):=I and each Y.(x, f) is homogeneous of degree n in f,

    By Lemma 1, if (1)' is defined on a closed curve r, we can define its mono-

dromy rco=rca(f). Then we have

    Theorem g. Let a be in rti (r). Then the n2onodromN rca(f) allows the following

etpanslon

                                  8
(5)' rca(f)(s):=:xa(I+ Xs"Rn,a(f) (s)) f(S)･
                                 n=1

Here Za is the monodromy of(8), Rn,a(f) is homogeneous of degree n in f. EsPecially,

2i is linear in f and satisfies following Period relation

(6 )' Ri,aT(T) :Zi,T (T)+Xr'`2ha (XTT) Xr.

   It seems main informations from the non-linear part of (1)' (or(3))are contained

in Ri. In Abe's equation (1), Rt is determined by A and Bf's and does not depend

on the choice of the normal direction.

   Lemma 1 is proved in Section 2. Theorem 2 is proved in Section 3 together

with the CO-estimate of rca(regarding rca to be a map in CO(-E, E)) and the period

relation of 22. Considering (1)' on a complex domain, we have similar results.

These are remarked in Section 4. These may concern non-linear Riemann-Hilbert

problem (cf. [5], [6]). But our main interest is its (non-linear) monodromy. Except

the use of the integrability condition (d¢+0A¢=O), Lemma 3 and Thqorem 3 follow

Lernma 1 and Theorem 1. So in Section 5, we show how to use the integrability

condition to construct a local solution of (3). This integrability condition is chiral to

the linear part of (3) and relate some works inspired recent particle physics and

fielcl theory (cf. [3]).

   2 Proof of 'Lenvtwaa e



     For the convenience to get the informations about monodromy, we apply the

 method developed in [2]. For the coeth'cients of (1)', we assurne

 (9) ]IA (x) ll ifll k, lxliSl; a,

            11F(U, V) (Jc, s)11:SLthIU(x, s)]HIV(x, s)I], lxl$a, [sl<b･

 Here Il(aij) ll means (X ii'laij'12)i/2, a>O is a given constant and b>O is a suitable

 constant.

    Let U==U(x) be the unitary solution of (8). Then Yb (x, s)=U(x)f(s) is the

 solution of (8) with the initial data f(s). Starting Y6, we define a series of matrix

 valued functions Yh, Yi,･･･,Xi,ee･, successively by the equation

 (lo). diilll" +A(x)Yn+iS' l=IF(Yk, Yn-h-i)=O, Y;t(O)(s)==O,n}ll･

Explicitly, Y. is given by

                            x n-1(11) Yn(x, s)==nU(x) l, U(g)H'(il.iil, F(Yk(e, s), Y}i-le-i(6, s))de･

By (11), if Yk(x, s)=U(x)Vle(x, s)f(s), lellln-1, where Vle(x, s)=Vh(x, s, f) is

homogeneous of degree le in f, then to set

                        x n-1(11)' Vn (X, S)==-j, U(6)-i (iii.lil, F(Yk(& S)･ U(x)Vn-le-i(6, s))d6･

Vli(x, s) is equal to U(x)Vn(x, s) f(s) by (7). Since F(U, V) is bilinear in U, V,

Vn(x, s, f) is homogeneous of degree n in f because Yk(x, s, f) is homogeneous

of degree k+1 in f.

   By (9), we have IIU(x)II$eleiXi$eka (cf.[2], [4]). Hence we have

(12)o HYb(x, s)l[Sekalf(s)E, lxi iSla.

   By (12)o and (11), we get IIYi(x, s)Il gS LIf(s)I2e`ka Ixl if 1×1 :s{a. Hence we

assume the inequality

(12)k IIYk(x, s)11;SLklf(s)lk'ie(3k"i)kalxi

is hold if lxlSa and fe;E{n-1, Then we have

             n-1
           H=F(Yk(x, s), Yn-k..i(x, s))ll

             ktO

             n-1
           $ IX .L.Lh I f(s) I k+ie(3k+OKaLn-h-i 1 f(s) )n'-ke(3n '"3h"2)Ka Ix1nbli

             k=rO

           $nLklf(s)In+ie(3np1)KaExlnpi,
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 iflxl:l{a. Hence we obtain (12). by (11). Therefore the series

                                 oo                         Y<x, s)= N s" Yh (x, s)

                                ll=O

 converges absolutely and uniformly on {lxl$a, lsl<s} if lsLf<s)e3Ka] <1 for lsl<E.

 Hence to take E to satisfy

                 1                    evSKa, Iifti=max lf(s)l, for suitable b>O,            E<               LIIfH lsl$b

 Y(x, s) converges on "xl<a, Isl<E.} Then, since Y.'(x, s)== -A(x)Y.(x, s)-
     n-1 um=k=,F(Yk, Yh-k-i) (x, s), we obtain by (12)

              dYn
                 (x, s)11            Il
              dx

            IS KLn l f(s) l n+ie(3n+i)Ka 1x [ n +nLnmi l f(s) 1 n+ie(3n"i)Ka lx I n-i.

 HenceX.oo-.os"Yn'(x, s) converges absolutely and uniformly on the same domain.

Therefore Y<x, s) is a solution of (1)'. Since Y),(x, s)=U(x)V.(x, s) f(s), where

Vn(x,s)= Vn(x, s, f) is homogeneous of degree n in f, we have

                                co                  Wx, s)-=U(x)(I+=s"V.(x, s, f)) f(s),

                                n=1
                  Wx, o)==f(s).

   Since Y),(x, s) is holomorphic in s if f(s) is holomorphic and F(U, V) is holo-

morphic in s, Y<x, s) is holomorphic in s in this case.

   If F(U, V) is Ck-class in s, we use the notation

                  okF                               Ok
                  ( o, te )(U, V) =: ( o, re F( U(x, t), V(x, t)) 1 t;s.

Then we assume

(g)' ]1(Ook,IT)(u, v) (x, s)Ll;s;LkHu(x, s)11 UV(x, s)Il･

To show the C'-regularity for C'-class f, we set

               lf(s)]i=max (1f(s)l, 1f'(s)l), L(i)==max (L, Li).

Then, since

             aF(oU,' V) ==(Oa-F, )(u, v)+aF(OoU,,v) +F(U, aoV, ),
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 we get [1(OYi/Os) (x, s)]l;Ell3L(i)lf(s)1i2e`K"ixl. Hence we assume the inequality

                    OYk                       (x, s)lil$3h(L(i))k(lf(s)i,)h"ie(3le"i)Kalxlle (l3)k ll                     Os

 is hold if le {gn-1. Then we have

                   n-1             il oO, (fi.,F(Yk (X, S), Yn"lemi(X, S)))[l

             $ tL-i(ll( OoF, ) (Yk, Yn-k-i)][+11F(OoY,le , Yn-h-i)]l+

             +1IF (y,, --OYSgle-i)II)

             l:ll (nL(i)L(i)"-i 1 f(s) 1 ,n+ie(3n-i)Ka+

                n-1
             + 2 X Lo)3kL(!)nt- i [ f(s) ] ,n+ie(3npi)Ka) Lxln

                h=to
             <n(3L(i))nIf(s)lin"ie(3npi)Ka1xLn.

 Hence we bbtain (13). by (ll). Therefore Y(x, s) is C`-class in s. Higher regu-

larities are similarly proved.

3 Proof of Tkeoreezz} 1

    Since the uniqueness is hold for the Cauchy problem of the equation (1)',

if Y(x, s) is a solution of (1)' such that Y<x, O) = f(s), we have Y(x, s) = U(x) (I+

X.ee.is"Vn (x, S))f(s)･ Hence if aErci(r)orZ is represented by an integer le, we have

                                oe(14) rca(f)(s)=x.(I+Xs"Vn(le, s))f(s).
                               n==1

Because U(le)=x., the monodromy of (8). Since V.(x, s)=V.(x, s, f) is homogeneous

of degree n in f, we have the first assertion of Theorem 1. We note that, since

Vi is given by

                  V,(x, s)=-U(x)f,X U(6)HiF(U(g)f(s), U(e))d6,

we get

(ls) li,(x, s)==-U(x)lg U(e)-i tf(s)F(u(e), u(G))d6,

for the original equation (1) of Abe. Because F satisfies

(7)' JF'(UB, VC)==`BF(U, V)C, B, Vare rnatrices
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in this case. (15) shows that Vi is independent to the choice of normal clirection

in the equation of Abe.

   By (5), we have

                                   oo                    rcar(f)(S)==xar (I+ X s"Rn,ar(f))(f)(s)

                                  n==1
                    = rca(rcT(f))(rcr(f))(S)

                            co                    ==xa (I+ X s"Rn,e (rcr(f))) (Mr(f)) (s)

                           n=1

                            oo co                    =xa (I+ X s"An,a (rct (f))) (xr (I + :Eil] s"2n,r(f)) f(s)

                           n=1 n=:1
                    =XaTf(S)+S(Xa2ba(rcr(f))xT+xaT2bT(f))f(S)+

                       oo n-1                    + X s"(xeRn,a (ue (f))xT+ X xo2k,a (rcT(f))xrRn"k,r(f)+

                      n=2 fe==1
                    +xarRn,r(f))f(s).

We set f(s)=.fb+s.ICI+･･･, fb =f(O), where each f? is a (constant) matrix. Then by

the linearity of 2i, we have

                   2i,oT(fh)= xr-i2i,a(xrfo)xr+2i,r(fo)･

Since .f}) is an arbitrary matrix, this shows (6). By (15), 2i is independent to the

choice of normal directions in the equation of Abe.

   Since 2.,a(f) is homogeneous of degree n in L we have

(16) Rn,a(A+Sg)==2n,o(fo)+O(S), nllll･

Hence we get

                zer(2bar(fi)+R2,ar(fo))

                 =xar(RbT(fi)+R2,r(fo))+xaRba(xTfi+xr2bT(fo))Xr+

                +xa22,a(xrfe)xT+xa2ba(xrfo)xT2i,T(fo)

                =xarRhT(fi)+xa2ba(xrfi)Xt+

                +xarR2,r(fo)+xaRi,a(xr2br(fe))zr+xaR2,a(xrfo)xr+

                +xa2ba(xrfo)xTRbT(fo)･

Therefore by (6), we obtain the following period relation of R2.

(17) 22,ar(T)=22,T(T)+xr'iR2,o(xrT)xr+

                  +xrht(2i,o(xrRbrT)xr+2i,e(xrT)xT2!,T(T))･



   We consider rc to be a map of the space of germs of functions in Theorem 1.

But with a suitable E>O, we can regard rc to be a map from {flfECO[-E,E],Hfll

nyKa} into CO [-s, s]. Then we have

                                      Yfll
as) llrca(f)Il:;I i-kLllflle3kK'

   Note. By definition, we have

(19) Rn,e(f)=O,
for all nl.lll. Here e means the identity of ni(r). Especially we have

                         2b.Hi(T)=-xo'ilho(xaT)xa.

4 Equation on a Complex DornaiR

    On a domain D in C, the complex plane, we consider the equation

                      dY
(20)                          +A(z)Y+sF(Y, Y)O, zED.
                      dz

Here A(z) and F(U, V) (s, 2) are holomorphic in z (and s). We denote the universal

covering space of D by IZ5. Then denote the s-space by C, DxC is the universal

covering space of DxC. By Lemma 1, we have

    Lescrirna 2. JF'or any holomozPhic .function f(s) near the origin of C, there exists

                -v ev tw tva neighborhood U (DxO) =::U(DxO, f) of DxOinDxC such that (20) has a holomo-
rphic solution Y(z, s) on U (iZiixO) such that f(xo, s)==f(s), where ze is a fixed Point

of 7). Precisely, this Y<z) has the following form

                                   oo(21) Wz, s)=U(z)(I+ :i]s"V. (z, s, f))f(s).
                                   n==1

Here U(z) is the solation of the linear Part of (20) such that U(zo)=I and each V.(f)

is homogeneous of degree n in f.

    By Lemma 2, we have

    Theorerrt 2. (20) has the monodromy rca==rca(f), oErri(D). It has the following

form

                                   co(22) rca (f) (S)=xa(I+ XS"2n, a(f)) f(S)-
                                   n;1

Here xa is the monodeomy of the linear Part of (20), 2.,a(s)==2.,a(f) is holomorphic in

s and homogeneous of degree n in f. EsPecially, 2i,a(f) is linear in f and satisfies

the Periodic relation (6)
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   xa defines aflat vector bundle bo. It defines a local coeMcient cohomology

Hi(D, Vx) of D. Since Tr 2i satisfies

                 Tr(Ri,ar(T))==Tr(2i,r(T))-i-Tr(2ba(xrT))

by (6), TrRi defines an element of Hi(D, Vz). It is a characteristic class of the non-

linear part of (20). The meaning of this characteristic class is discussed in Section 5.

S Proof of Lertrtrscia 3 axxd Charthcterkstic Cllasses of Nome-Linenr Part

   As in Section 2, we solve (3) as follows: Let U==U(x) be the unitary solution

of the linear part of (3). That is, U satisfies

                 dU-UO==O, U(xo)=I, the identity matrix,

and set Fo= ,l7o(x, s)=f(s)U(x). Here f(s) is the initial data at xo. Starting this Fe,

we want to define a series of matrix valued functions Fe, Fi, n･･, inductively by

                         n-1
(23) dFneFne+XFk¢Fn-lemi=O, Fn(xo)=O, nlllll･
                         k=O

To solve (23), we set F.:=G.U (Go=f(s)). Then (23) becomes

                          n-1
(23)' dGn+=llFkipGn-k-i:=:O･
                          k-=O

(23)' has a local soloution C. if and only if d (X:Ig FleipG."kmi)=O. If n::=1, this

   condition is

                   dFoA¢+Fedip=f(s)(dUA¢+Udip)=:O.

Hence it is the integrability condition d¢+eAip=O. So we assume

                         k-1
                   dGk ==-XI7j¢Gk-j-,, o$k$n-1.
                         )' -e

Then we have

            n-1 n-1
           d(X Fk ¢Gn.k-i) =d (X GkU¢Gn-k-i)
            le-O k=O
             n-1
           = X (dGkU¢Gn-k-i+Gk(dU¢ + Ud¢)Gnm le-i -G le UipGn-k-i)
             k=O

              n-1 fe-1 n-l n-k-1
           ": -XXFi¢Fk-i--i¢Gh-j-i+ I:Iiij = Fk¢Fi¢Gn-k-i
               k=O l' --O k= O i-O
           == o.



Therefore we can define Gn by

                            n-1
                    Gn := -f (X Fk¢Gn"le-i), n;l}1,
                            le=-o

                   Jp(x) := I: t pu. xipi(xt) dt, p:== :IF.l] piaxi.

Then, since J satisfies

                        K.                                       tf I1P(x)K iE{ KHx-xo1[M,                            1]x-xol]m+i,             ] IJP (x) 1] $
                       m+1

and defined along a curve, we have Lemma 3.

   By the discussions of Section 3, we obtain Theorem 3 from Lemma 3. In the

above calculations, Gi is given by

(24) Gi(x, s)=-J(Fo(x, s)ipGo(x, s))==-f(s)J(U(x)ip)f(s).

By the integrability condition (2), U¢ is a global closed 1-form on il. Hence we

can set Uip=dH on di. Then, since (Udi)"==:xaUip, we have

(25) H(x)a=:xaH(x)+ha,
                           hoT==xahT+ha.

Here each ho is a constant matrix. Using this ho, 2i,a is given by

(26) 2boT=haTxoM'.
On M, we may regard U¢ to be a collection {Uiip}, where Ui"dUi=¢ on Vi, an
open set of M. Since UiUi' is the transition function of the flat bundle ee, {Uiip}

is a cross-section of bo and closed by (2). Hence in the sence of de Rham, {Ui¢}

defines an element of Hi (M, gbe), where g is the module of matrices. But this

class does not reflect the infiuence of the linear part of (3). While (26) shows the'

class Tr 2i reflects influence from the linear part.

    We note that, using above fl=Hi, Gk is given by

(27) ' Gh -=(- 1)k( fH)le f.
To show this, we set Hh=(-1)le(fff)k-'H, klli;2. Since Gi=fHf, we have

              dG2==fd(HfH)f=f(U¢fH+HfUip)f=Fe¢Gi+Fi¢Go･

Hence we use the induction about n. Then, since Gfe=:fHlef, we have

                    (-1)nd(fHkf):-(-1)nfcifIlef

                             n-1
                     == (-1)nf 2 (Hf)h(dH)f(Hf)n'fe-i

                             k-=O



     Monedromy of a Differential Equation Having a Quadratic Non Linear Term 37

                        n-1
                    == -X(-1)lef(Hf)leUip(-1)nptleMif(fff)n-k-i

                        k=O

                        n-1
                    = -= Fh¢Gn-le-i･
                        k=O

Hence we obtain (27).

    By (27), we have

    Theerema 3' Let U be the unita2:y solution of the linear Part of (3), H, the

matrix valued fttnction on M such that

                           dH==Uip, H(xo)==O.
Then on U(M), asuitableneighborhood of Aixo in M"L'xC, the solution F(x, s) of (3)

with the initial data f(s) is given by

                                   oo(28) F(x, s) =:f(s)(I+ :(-1)nsn(H(x)f(s))n)u(x).
                                   n=1
    Note e. By (28), 2n,a's, nll;2, are written by ha and x..

    Note 2. Even the solution of the linear part of (20) has regular singularity at

2eED, the solution of (20) may not have regular singularity at zo by (28).
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