Monodromy of a Differential Equation Hlowing a Qutadratic Non Linear Term

Dedicated to Professor

Hirosi Toda on his 60th birthday

By Akira Asada
Department of Mathematics, Faculty of Science, Shinshu University
(Received June 15, 1987)

11 Introduction

In the study of geometry of curves in a manifold, Prof. Abe obtained the following equation ([1])

$$
\frac{d y}{d x}+A(x) y+\tan s \sum_{j=1}^{n} y_{j} B_{j}(x) y=0, \quad y=\left(\begin{array}{c}
y_{1} \tag{1}\\
\vdots \\
y_{n}
\end{array}\right) .
$$

Here x is the variable of a curve γ, s is a variable in the normal direction of the curve and $y=y(x, s)$. A is the torsion matrix of the curve and B_{j} 's are calculated for important manifolds. In any case, they are geometric meaningful.

If the curve γ is a closed curve, that is, if γ is given by a periodic ma $\gamma(x)$ with the period 1 , we call the correspondence

$$
f(s)=y(0, s) \longrightarrow y(k, s)=\kappa a(f)(s),
$$

where $y(x, s)$ is a solution of (1), to be the monodromy of the equation (1). Here k is an integer and represents $\sigma \in \pi_{3}(\gamma)$. Treaty of the monodromy of (1) is a geometric problem. presented by Prof. Abe. In this note, we treat this problem and show the followings:

Lemma 3. Let θ and ϕ be matrix valued 1 -forms over a smocth manifold M with the universal covering manifold \widetilde{M} such that

$$
\begin{align*}
& d \theta+\theta_{\wedge} \theta=0, \tag{2}\\
& d \phi+\theta_{\wedge} \phi=0 .
\end{align*}
$$

Then for any $x_{0} \in M$ and a function $f(s)$ of s, s a (complex) parameter, the equation

$$
\begin{equation*}
d F-F \theta+s F \phi F=0 \tag{3}
\end{equation*}
$$

hasa solution $F=F(x, s)$ such that $F\left(x_{0}, s\right)=f(s)$ and can be continued as a solution
of (3) on $U(\widetilde{M} \times 0)$, a neighborhood of $\widetilde{M} \times 0$ in $\widetilde{M} \times \mathbb{C} . F(x, s)$ is holomorphic in s if $f(s)$ is holomorphic. In general, F has following form

$$
\begin{equation*}
F=f\left(I+\sum_{n=1}^{\infty} s^{n} G_{n}\right) F_{0}, I \text { is the identity matrix. } \tag{4}
\end{equation*}
$$

Here F_{0} is the solution of the linear part of (3) such that $F_{0}\left(x_{0}\right)=I$ and each $G_{n}=$ $G_{n}(x, f(s))$ is homogeneous of degree n in f.

For simple, we regard $x_{0} \in \widetilde{M}$ when F is continued to be a solution of (3) on $U(\widetilde{M} \times 0)$. In this case, we also have $F\left(x_{0}, 0\right)=I$.

Definition. We call the correspondence

$$
f(s)=F\left(x_{0}, s\right) \longrightarrow F\left(\sigma\left(x_{0}\right), s\right)=\kappa \sigma(f)(s), \quad \sigma \in \pi_{1}(M)
$$

to be the monodromy of (3). Here we regard $f(s)$ to be a germ of matrix valued function.

Theorem 3. To denote the monodromy of the linear part of (3) by χ_{σ}, we have the following expansion of $\kappa_{o}(f)$.

$$
\begin{equation*}
\kappa \sigma(f)(s)=\left(I+\sum_{n=1}^{\infty} s^{n} \lambda_{n, \sigma}(f) \chi_{\sigma} f(s) .\right. \tag{5}
\end{equation*}
$$

Here each $\lambda_{n, \sigma}(f)$ is homogeneous of degree n in $f . \chi_{\sigma} f$ and $\lambda_{n, \sigma}(f) \chi_{\sigma} f$ mean the matrix multiplications of χ_{σ} and f and $\lambda_{n, \sigma}(f)$ and $\chi_{\sigma} f$. Especially, $\lambda_{1, \sigma}(f)$ is linear in f. It satisfies following period relation

$$
\begin{equation*}
\lambda_{1}, \sigma(T)=\lambda_{1}, \sigma\left(\chi_{\tau} T\right)+\chi_{\sigma} \lambda_{1}, r(T) \chi_{\sigma}{ }^{-1}, T \text { is a matrix. } \tag{6}
\end{equation*}
$$

Since χ is a representation of $\pi_{1}(M)$, it defines a local coefficient cohomology $\mathrm{H}^{*}\left(M, V_{\chi}\right)$. (6) shows $\operatorname{Tr} \chi_{1}$ defines an element of $\mathrm{H}^{1}\left(M, V_{\chi}\right)$. It is a characteristic class of the non-linear part of (3).

To apply these results to the original equation (1) of Abe, (3) is a little restrictive. So we consider the following equation

$$
\begin{equation*}
\frac{d Y}{d x}+A(x) Y+s F(Y, Y)=0 \tag{1}
\end{equation*}
$$

Here $Y(x, s)$ and $A(x)$ are matrix valued functions, $F(U, V)$ is a matrix valued bilinear function such that

$$
\begin{equation*}
F(U, V C)=F(U, V) C, \text { C a matrix. } \tag{7}
\end{equation*}
$$

Then we have
Lemma 1. For any $a>0$ and a matrix valued continuous function $f(s)$ of s, there exists an $\varepsilon=\hat{\varepsilon}(a, f)>0$ such that (1) has a solution $Y(x, s)$ with the initial data
$f(s)$ on $\{|x|<a,|s|<\varepsilon\}$. If $f(s)$ is C^{k}-class, this $Y(x, s)$ is C^{k}-class in s and if $f(s)$ is holomorphis, $Y(x, s)$ is holomorphic in s. Precisely, $Y(x, s)$ takes the following form

$$
Y(x, s)=U(x)\left(I+\sum_{n=1}^{\infty} s^{n} V_{n}(f)\right) f(s)
$$

Here $U(x)$ is the unitary solution of the linear part of $(1)^{\prime}$, that is, $U(x)$ is the solution of the equation

$$
\begin{equation*}
\frac{d Y}{d x}+A(x) Y=0 \tag{8}
\end{equation*}
$$

with the initial data $Y(0)=I$ and each $V_{n}(x, f)$ is homogeneous of degree n in f.
By Lemma 1, if (1$)^{\prime}$ is defined on a closed curve γ, we can define its monodromy $\kappa_{\sigma}=\kappa_{\sigma}(f)$. Then we have

Theorem 1. Let σ be in $\pi_{1}(\gamma)$. Then the monodromy $\kappa_{\sigma}(f)$ allows the following expansion

$$
\begin{equation*}
\kappa_{\sigma}(f)(s)=\chi_{\sigma}\left(I+\sum_{n=1}^{8} s^{n} \lambda_{n, \sigma}(f)\langle s\rangle\right) f(s) . \tag{5}
\end{equation*}
$$

Here χ_{σ} is the monodromy of $(8), \lambda_{n, \sigma}(f)$ is homogeneous of degree n in f. Especially, λ_{1} is linear in f and satisfies following period relation

$$
\begin{equation*}
\lambda_{1}, \sigma r(T)=\lambda_{1, \tau}(T)+\chi_{\tau}{ }^{-1} \lambda_{1}, \sigma\left(\chi_{\tau} T\right) \chi_{\tau} . \tag{6}
\end{equation*}
$$

It seems main informations from the non-linear part of (1)' (or (3)) are contained in λ_{1}. In Abe's equation (1), λ_{1} is determined by A and B_{j} 's and does not depend on the choice of the normal direction.

Lemma 1 is proved in Section 2. Theorem 2 is proved in Section 3 together with the C^{0}-estimate of $\kappa_{\sigma}\left(\right.$ regarding κ_{σ} to be a map in $\left.\mathrm{C}^{0}(-\varepsilon, \varepsilon)\right)$ and the period relation of λ_{2}. Considering (1)' on a complex domain, we have similar results. These are remarked in Section 4. These may concern non-linear Riemann-Hilbert problem (cf. [5], [6]). But our main interest is its (non-linear) monodromy. Except the use of the integrability condition ($d \phi+\theta_{\wedge} \phi=0$), Lemma 3 and Theorem 3 follow Lemma 1 and Theorem 1. So in Section 5, we show how to use the integrability condition to construct a local solution of (3). This integrability condition is chiral to the linear part of (3) and relate some works inspired recent particle physics and field theory (cf. [3]).

2 Proof of Lemma I

For the convenience to get the informations about monodromy, we apply the method developed in [2]. For the coefficients of $(1)^{\prime}$, we assume

$$
\begin{gather*}
\|A(x)\| \leqq k,|x| \leqq \mathrm{a}, \tag{9}\\
\|F(U, V)(x, s)\| \leqq L_{k}\|U(x, \mathrm{~s})\|\|V(x, \mathrm{~s})\|, \quad|x| \leqq a, \quad|\mathrm{~s}|<b .
\end{gather*}
$$

Here $\left\|\left(a_{i j}\right)\right\|$ means $\left(\sum i j\left|a_{i j}\right|^{2}\right)^{1 / 2}, a>0$ is a given constant and $b>0$ is a suitable constant.

Let $U=U(x)$ be the unitary solution of (8). Then $Y_{0}(x, s)=U(x) f(s)$ is the solution of (8) with the initial data $f(s)$. Starting Y_{0}, we define a series of matrix valued functions $Y_{0}, Y_{1}, \cdots, Y_{n}, \cdots$, successively by the equation
$(10)_{n} \quad \frac{d Y_{n}}{d x}+A(x) Y_{n}+\sum_{k=0}^{n=1} F\left(Y_{k}, \quad Y_{n-k-1}\right)=0, \quad Y_{n}(0)(s)=0, n \geqq 1$.
Explicitly, Y_{n} is given by

$$
\begin{equation*}
Y_{n}(x, s)=-U(x) \int_{0}^{x} U(\xi)^{-1}\left(\sum_{k=0}^{n-1} F\left(Y_{k}(\xi, s), \quad Y_{n-k-1}(\xi, s)\right) d \xi .\right. \tag{11}
\end{equation*}
$$

By (11), if $Y_{k}(x, s)=U(x) V_{k}(x, s) f(s), k \geqq n-1$, where $V_{k}(x, s)=V_{k}(x, s, f)$ is homogeneous of degree k in f, then to set

$$
\begin{equation*}
V_{n}(x, s)=-\int_{0}^{x} U(\xi)^{-1}\left(\sum_{k=0}^{n-1} F\left(Y_{k}(\xi, s), U(x) V_{n-k-1}(\xi, s)\right) d \xi\right. \tag{11}
\end{equation*}
$$

$Y_{n}(x, s)$ is equal to $U(x) V_{n}(x, s) f(s)$ by (7). Since $F(U, V)$ is bilinear in U, V, $V_{n}(x, s, f)$ is homogeneous of degree n in f because $Y_{k}(x, s, f)$ is homogeneous of degree $k+1$ in f.

By (9), we have $\|U(x)\| \leqq \mathrm{e}^{k|x|} \leqq \mathrm{e}^{k a}$ (cf. [2], [4]). Hence we have

$$
\begin{equation*}
\left\|Y_{0}(x, s)\right\| \leqq \mathrm{e}^{k a}|f(s)|, \quad|x| \leqq a \tag{12}
\end{equation*}
$$

By (12) $)_{0}$ and (11), we get $\left\|Y_{1}(x, s)\right\| \leqq L|f(s)|^{2} \mathrm{e}^{4 k a}|x|$ if $|\mathrm{x}| \leqq a$. Hence we assume the inequality

$$
\begin{equation*}
\left\|Y_{k}(x, \mathrm{~s})\right\| \leqq L^{k}|f(s)|^{k+1} \mathrm{e}^{(3 k+1) k a}|x| \tag{12}
\end{equation*}
$$

is hold if $|x| \leqq a$ and $k \leqq n-1$, Then we have

$$
\begin{aligned}
& \left\|\sum_{k=0}^{n-1} F\left(Y_{k}(\mathrm{x}, s), \quad Y_{n-k-1}(x, s)\right)\right\| \\
& \leqq \sum_{k=0}^{n-1} L \cdot L^{k}|f(s)|^{k+1} \mathrm{e}^{(3 k+1) K a} L^{n-k-1}|f(s)|^{n-k} \mathrm{e}^{(3 n-3 k-2) K a}|x|^{n-1} \\
& \leqq n L^{k}|f(s)|^{n+1} \mathrm{e}^{(3 n-1) K a}|x|^{n-1},
\end{aligned}
$$

if $|x| \leqq a$. Hence we obtain (12) ${ }_{n}$ by (11). Therefore the series

$$
Y(x, s)=\sum_{n=0}^{\infty} s^{n} Y_{n}(x, s)
$$

converges absolutely and uniformly on $\{|x| \leqq a,|s|<\varepsilon\}$ if $\left|s L f(s) \mathrm{e}^{3 K a}\right|<1$ for $|s|<\varepsilon$. Hence to take ε to satisfy

$$
\varepsilon<\frac{1}{L\|f\|} \mathrm{e}^{-3 K^{a}}, \quad\|f\|=\max _{|s| \leqq b}|f(s)|, \text { for suitable } b>0
$$

$Y(x, s)$ converges on $\{|x|<a,|s|<\varepsilon$.$\} Then, since Y_{n}^{\prime}(x, s)=-A(x) Y_{n}(x, s)-$ $-\sum_{k=0}^{n-1} F\left(Y_{k}, \quad Y_{n-k-1}\right)(x, s)$, we obtain by (12)

$$
\begin{aligned}
& \left\|\frac{d Y_{n}}{d x}(x, s)\right\| \\
& \leqq K L^{n}|f(s)|^{n+1} \mathrm{e}^{(3 n+1) K a}|x|^{n}+n L^{n-1}|f(s)|^{n+1} \mathrm{e}^{(3 n-1) K a}|x|^{n-1}
\end{aligned}
$$

Hence $\sum_{n=0}^{\infty} s^{n} Y_{n}{ }^{\prime}(x, s)$ converges absolutely and uniformly on the same domain. Therefore $Y(x, s)$ is a solution of $(1)^{\prime}$. Since $Y_{n}(x, s)=U(x) V_{n}(x, s) f(s)$, where $V_{n}(x, s)=V_{n}(x, s, f)$ is homogeneous of degree n in f, we have

$$
\begin{aligned}
& Y(x, s)=U(x)\left(I+\sum_{n=1}^{\infty} s^{n} V_{n}(x, s, f)\right) f(s) \\
& Y(x, 0)=f(s)
\end{aligned}
$$

Since $Y_{n}(x, s)$ is holomorphic in s if $f(s)$ is holomorphic and $F(U, V)$ is holomorphic in $s, Y(x, s)$ is holomorphic in s in this case.

If $F(U, V)$ is C^{k}-class in s, we use the notation

$$
\left(\frac{\partial^{k} F}{\partial s^{k}}\right)(U, V)=\left(\left.\frac{\partial^{k}}{\partial s^{k}} F(U(x, t), \quad V(x, t))\right|_{t=s}\right.
$$

Then we assume

$$
\begin{equation*}
\left\|\left(\frac{\partial^{k} F}{\partial s^{k}}\right)(U, V)(x, s)\right\| \leqq L_{k}\|U(x, s)\|\|V(x, s)\| \tag{9}
\end{equation*}
$$

To show the C^{1}-regularity for C^{1} - class f, we set

$$
|f(s)|_{1}=\max \left(|f(s)|, \quad\left|f^{\prime}(s)\right|\right), \quad L_{(1)}=\max \left(L, L_{1}\right)
$$

Then, since

$$
\frac{\partial F(U, V)}{\partial s}=\left(\frac{\partial F}{\partial s}\right)(U, V)+F\left(\frac{\partial U}{\partial s}, V\right)+F\left(U, \frac{\partial V}{\partial s}\right)
$$

we get $\left\|\left(\partial Y_{1} / \partial s\right)(x, s)\right\| \leqq 3 L_{(1)}|f(s)|_{1}{ }^{2} \mathrm{e}^{4 K a}|x|$. Hence we assume the inequality

$$
\begin{equation*}
\left\|\frac{\partial Y_{k}}{\partial s}(x, s)\right\| \leqq 3^{k}\left(L_{(1)}\right)^{k}\left(|f(s)|_{1}\right)^{k+1} \mathrm{e}^{(3 k+1) K a}|x|^{k} \tag{13}
\end{equation*}
$$

is hold if $k \leqq \mathrm{n}-1$. Then we have

$$
\begin{aligned}
& \| \frac{\partial}{\partial s}\left(\sum_{k=0}^{n-1} F\left(Y_{k}(x, s), Y_{n-k=1}(x, s)\right) \|\right. \\
& \leqq \sum_{k=0}^{n-1}\left(\left\|\left(\frac{\partial F}{\partial s}\right)\left(Y_{k}, Y_{n-k-1}\right)\right\|+\left\|F\left(\frac{\partial Y_{k}}{\partial s}, Y_{n-k-1}\right)\right\|+\right. \\
& \left.+\left\|F\left(Y_{k}, \frac{\partial Y_{n-k-1}}{\partial s}\right)\right\|\right) \\
& \leqq\left(n L_{(1)} L_{(1)}\right)^{n-1}|f(s)|_{1}{ }^{n+1} \mathrm{e}^{(3 n-1) K a}+ \\
& \left.\left.+2 \sum_{k=0}^{n-1} L_{(1)} 3^{k} L_{(1)}\right)^{n-1}|f(s)|_{1}^{n+1} \mathrm{e}^{(3 n-1) K a}\right)|x|^{n} \\
& <n\left(3 L_{(1)}\right)^{n}|f(s)|_{1}^{n+1} \mathrm{e}^{(3 n-1) K a}|x|^{n} .
\end{aligned}
$$

Hence we obtain (13) by (11). Therefore $Y(x, s)$ is C^{1}-class in s. Higher regularities are similarly proved.

3 Proof of Theorem 1

Since the uniqueness is hold for the Cauchy problem of the equation (1)', if $Y(x, s)$ is a solution of (1)' such that $Y(x, 0)=f(s)$, we have $Y(x, s)=U(x)(I+$ $\left.\sum_{n=1}^{\infty} s^{n} V_{n}(x, s)\right) f(s)$. Hence if $\sigma \in \pi_{1}(\gamma) \cong \mathbb{Z}$ is represented by an integer k, we have

$$
\begin{equation*}
\kappa \sigma(f)(s)=\chi_{\sigma}\left(I+\sum_{n=1}^{\infty} s^{n} V_{n}(k, s)\right) f(s) . \tag{14}
\end{equation*}
$$

Because $U(k)=\chi_{\theta}$, the monodromy of (8). Since $V_{n}(x, s)=V_{n}(x, s, f)$ is homogeneous of degree n in f, we have the first assertion of Theorem 1 . We note that, since V_{1} is given by

$$
\mathrm{V}_{\mathrm{J}}(x, s)=-U(x) \int_{0}^{x} U(\xi)^{-1} F(U(\xi) f(s), U(\xi)) d \xi
$$

we get

$$
\begin{equation*}
V_{1}(x, s)=-U(x) \int_{0}^{x} U(\xi)^{-1} t f(s) F(U(\xi), U(\xi)) d \xi \tag{15}
\end{equation*}
$$

for the original equation (1) of Abe. Because F satisfies

$$
\begin{equation*}
F(U B, V C)={ }^{t} B F(U, V) C, \mathrm{~B}, V \text { are matrices } \tag{7}
\end{equation*}
$$

in this case. (15) shows that V_{1} is independent to the choice of normal direction in the equation of Abe.

By (5), we have

$$
\begin{aligned}
& \kappa_{\sigma \tau}(f)(s)=\chi_{\sigma \tau}\left(I+\sum_{n=1}^{\infty} s^{n} \lambda_{n, \sigma \tau}(f)\right)(f)(s) \\
& =\kappa_{\sigma}\left(\kappa_{\tau}(f)\right)\left(\kappa_{\tau}(f)\right)(s) \\
& =\chi_{\sigma}\left(I+\sum_{n=1}^{\infty} s^{n} \lambda_{n, \sigma}\left(\kappa_{\tau}(f)\right)\right)\left(\kappa_{\tau}(f)\right)(s) \\
& =\chi_{\sigma}\left(I+\sum_{n=1}^{\infty} s^{n} \lambda_{n, \sigma}\left(\kappa_{\tau}(f)\right)\right)\left(\chi_{\tau}\left(I+\sum_{n=1}^{\infty} s^{n} \lambda_{n, \tau}(f)\right) f(s)\right. \\
& =\chi_{\sigma \tau} f(s)+s\left(\chi_{\sigma} \lambda_{1}, \sigma\left(\kappa_{\tau}(f)\right) \chi_{\tau}+\chi_{\sigma \tau} \tau \lambda_{1}, \tau(f)\right) f(s)+ \\
& +\sum_{n=2}^{\infty} s^{n}\left(\chi_{\sigma} \lambda_{n, \sigma}(\kappa \tau(f)) \chi_{\tau}+\sum_{k=1}^{n-1} \chi_{\sigma} \lambda_{k, \sigma}(\kappa \tau(f)) \chi \tau \lambda_{n-k, \tau}(f)+\right. \\
& \left.+\chi_{\sigma \tau} \lambda_{n, \tau}(f)\right) f(s) .
\end{aligned}
$$

We set $f(s)=f_{0}+s f_{1}+\cdots, f_{0}=f(0)$, where each f_{i} is a (constant) matrix. Then by the linearity of λ_{1}, we have

$$
\lambda_{1, \sigma \tau}\left(f_{0}\right)=\chi_{\tau}{ }^{-1} \lambda_{1}, \sigma\left(\chi_{\tau} f_{0}\right) \chi_{\tau}+\lambda_{1}, \tau\left(f_{0}\right) .
$$

Since f_{0} is an arbitrary matrix, this shows (6). By (15), λ_{1} is independent to the choice of normal directions in the equation of Abe.

Since $\lambda_{n}, \sigma(f)$ is homogeneous of degree n in f, we have

$$
\begin{equation*}
\lambda_{n}, \sigma\left(f_{0}+s g\right)=\lambda_{n}, o\left(f_{0}\right)+o(s), \quad n \geqq 1 . \tag{16}
\end{equation*}
$$

Hence we get

$$
\begin{aligned}
& \chi_{\sigma \tau}\left(\lambda_{1}, \sigma \tau\left(f_{1}\right)+\lambda_{2}, \sigma \tau\left(f_{0}\right)\right) \\
& =\chi_{\sigma \tau}\left(\lambda_{1}, \tau\left(f_{1}\right)+\lambda_{2, \tau}\left(f_{0}\right)\right)+\chi_{\sigma} \lambda_{1}, \sigma\left(\chi_{\tau} f_{1}+\chi_{\tau} \lambda_{1}, \tau\left(f_{0}\right)\right) \chi_{\tau}+ \\
& +\chi_{\sigma} \lambda_{2}, \sigma\left(\chi_{\tau} f_{0}\right) \chi_{\tau}+\chi_{\sigma} \lambda_{1}, \sigma\left(\chi_{\tau} f_{0}\right) \chi_{\tau} \lambda_{1}, \tau\left(f_{0}\right) \\
& =\chi_{\sigma \tau} \lambda_{1}, \tau\left(f_{1}\right)+\chi_{\sigma} \lambda_{1}, \sigma\left(\chi_{\tau} f_{1}\right) \chi_{\tau}+ \\
& +\chi_{\sigma \tau} \lambda_{2}, \tau\left(f_{0}\right)+\chi_{\sigma} \lambda_{1}, \sigma\left(\chi_{\tau} \lambda_{1}, \tau\left(f_{0}\right)\right) \chi_{\tau}+\chi_{\sigma} \lambda_{2}, \sigma\left(\chi_{\tau} f_{0}\right) \chi_{\tau}+ \\
& +\chi_{\sigma} \lambda_{1}, \sigma\left(\chi_{\tau} f_{0}\right) \chi_{\tau} \lambda_{1}, \tau\left(f_{0}\right) .
\end{aligned}
$$

Therefore by (6), we obtain the following period relation of λ_{2}.

$$
\begin{align*}
& \lambda_{2, \sigma \tau}(T)=\lambda_{2, \tau}(T)+\chi_{\tau}^{-1} \lambda_{2}, \sigma\left(\chi_{\tau} T\right) \chi_{\tau}+ \tag{17}\\
& +\chi_{\tau}^{-1}\left(\lambda_{1}, \sigma\left(\chi_{\tau} \lambda_{1}, \tau T\right) \chi_{\tau}+\lambda_{1}, \sigma\left(\chi_{\tau} T\right) \chi_{\tau} \lambda_{1}, \tau(T)\right) .
\end{align*}
$$

We consider κ to be a map of the space of germs of functions in Theorem 1 . But with a suitable $\varepsilon>0$, we can regard κ to be a map from $\left\{f \mid f \in \mathrm{C}^{0}[-\varepsilon, \varepsilon],\|f\|\right.$ $\leqq a\}$ into $\mathrm{C}^{a}[-\varepsilon, \varepsilon]$. Then we have

$$
\begin{equation*}
\left\|\kappa_{\sigma}(f)\right\| \leqq \frac{\|f\|}{1-k L\|f\| \mathrm{e}^{3 k K}} . \tag{18}
\end{equation*}
$$

Note. By definition, we have

$$
\begin{equation*}
\lambda_{n, e}(f)=0, \tag{19}
\end{equation*}
$$

for all $n \geq 1$. Here e means the identity of $\pi_{1}(\gamma)$. Especially we have

$$
\lambda_{1, \sigma-1}(T)=-\chi_{\sigma^{-1}} \lambda_{1, \sigma}\left(\chi_{\sigma} T\right) \chi_{\sigma} .
$$

4 Equation on a Complex Domain

On a domain D in \boldsymbol{C}, the complex plane, we consider the equation

$$
\begin{equation*}
\frac{d Y}{d z}+A(z) Y+s F(Y, \quad Y) 0, z \in D \tag{20}
\end{equation*}
$$

Here $A(z)$ and $F(U, V)(s, z)$ are holomorphic in z (and $s)$. We denote the universal covering space of D by \widetilde{D}. Then denote the s-space by $\boldsymbol{C}, \widetilde{D} \times \boldsymbol{C}$ is the universal covering space of $D \times \boldsymbol{C}$. By Lemma 1, we have

Lemma 2. For any holomorphic function $f(s)$ near the origin of \boldsymbol{C}, there exists a neighborhood $U(\widetilde{D} \times 0)=U(\widetilde{D} \times 0, f)$ of $\widetilde{D} \times 0$ in $\widetilde{D} \times C$ such that (20) has a holomorphic solution $Y(z, s)$ on $U(\widetilde{D} \times 0)$ such that $f\left(z_{0}, s\right)=f(s)$, where z_{0} is a fixed point of \widetilde{D}. Precisely, this $Y(z)$ has the following form

$$
\begin{equation*}
Y(z, s)=U(z)\left(I+\sum_{n=1}^{\infty} s^{n} V_{n}(z, s, f)\right) f(s) \tag{21}
\end{equation*}
$$

Here $U(z)$ is the solution of the linear part of (20) such that $U\left(z_{0}\right)=I$ and each $V_{n}(f)$ is homogeneous of degree n in f.

By Lemma 2, we have
Theorem 2. (20) has the monodromy $\kappa_{\sigma}=\kappa_{\sigma}(f), \sigma \in \pi_{1}(D)$. It has the following form

$$
\begin{equation*}
\kappa_{\sigma}(f)(s)=\chi_{\sigma}\left(I+\sum_{n=1}^{\infty} s^{n} \lambda_{n, \sigma}(f)\right) f(s) . \tag{22}
\end{equation*}
$$

Here χ_{σ} is the monodromy of the linear part of $(20), \lambda_{n, \sigma}(s)=\lambda_{n, \sigma}(f)$ is holomorphic in s and homogeneous of degree n in f. Especially, $\lambda_{1}, \sigma(f)$ is linear in f and satisfies the periodic relation (6)
χ_{o} defines aflat vector bundle $|\chi|$. It defines a local coefficient cohomology $\mathrm{H}^{1}\left(D, V_{\chi}\right)$ of D. Since $\operatorname{Tr} \lambda_{1}$ satisfies

$$
\operatorname{Tr}\left(\lambda_{1, \sigma \tau}(T)\right)=\operatorname{Tr}\left(\lambda_{1}, \tau(T)\right)+\operatorname{Tr}\left(\lambda_{1, \sigma} \sigma\left(\chi_{\tau} T\right)\right)
$$

by (6), $\operatorname{Tr} \lambda_{1}$ defines an element of $\mathrm{H}^{1}\left(D, V_{\chi}\right)$. It is a characteristic class of the nonlinear part of (20). The meaning of this characteristic class is discussed in Section 5.

5 Proof of Lemma 3 and Characteristic Classes of Non-Linear Part

As in Section 2, we solve (3) as follows: Let $U=U(x)$ be the unitary solution of the linear part of (3). That is, U satisfies

$$
d U-U \theta=0, \quad U\left(x_{0}\right)=I, \text { the identity matrix }
$$

and set $F_{0}=F_{0}(x, \mathrm{~s})=f(s) U(x)$. Here $f(s)$ is the initial data at x_{0}. Starting this F_{0}, we want to define a series of matrix valued functions F_{0}, F_{1}, \cdots, inductively by

$$
\begin{equation*}
d F_{n}-F_{n} \theta+\sum_{k=0}^{n-1} F_{k} \phi F_{n-k-1}=0, \quad F_{n}\left(x_{0}\right)=0, \quad n \geqq 1 \tag{23}
\end{equation*}
$$

To solve (23), we set $F_{n}=G_{n} U\left(G_{0}=f(s)\right)$. Then (23) becomes

$$
\begin{equation*}
d G_{n}+\sum_{k=0}^{n-1} F_{k} \phi G_{n-k-1}=0 \tag{23}
\end{equation*}
$$

(23)' has a local soloution G_{n} if and only if $d\left(\sum_{k=0}^{n-1} F_{k} \phi G_{n-k-1}\right)=0$. If $n=1$, this condition is

$$
d F_{0 \wedge \phi}+F_{0} d \phi=f(s)\left(d U_{\wedge \phi}+U d \phi\right)=0 .
$$

Hence it is the integrability condition $d \phi+\theta_{\wedge} \phi=0$. So we assume

$$
d G_{k}=-\sum_{j=0}^{k-1} F_{j} \phi G_{k-j-1}, \quad 0 \leqq k \leqq n-1 .
$$

Then we have

$$
\begin{aligned}
& d\left(\sum_{k=0}^{n-1} F_{k} \phi G_{n-k-1}\right)=d\left(\sum_{k=0}^{n-1} G_{k} U \phi G_{n-k-1}\right) \\
& =\sum_{k=0}^{n-1}\left(d G_{k} U \phi G_{n-k-1}+G_{k}\left(d U_{\phi}+U d \phi\right) G_{n-k-1}-G_{k} U \phi G_{n-k-1}\right) \\
& =-\sum_{k=0}^{n-1} \sum_{j=0}^{k-1} F_{j} \phi F_{k-j-1} \phi G_{k-j-1}+\sum_{k=0}^{n-1} \sum_{i=0}^{n-k-1} F_{k} \phi F_{i} \phi G_{n-k-1} \\
& =0 .
\end{aligned}
$$

Therefore we can define G_{n} by

$$
\begin{aligned}
& G_{n}=-J\left(\sum_{k=0}^{n-1} F_{k} \phi G_{n-k-1}\right), n \geqq 1, \\
& \mathrm{~J} \beta(x)=\int_{0}^{1} t \sum_{i} x_{i} \beta_{i}(x t) d t, \beta=\sum_{i} \beta_{i} d x_{i} .
\end{aligned}
$$

Then, since J satisfies

$$
\|J \beta(x)\| \leqq \frac{K}{m+1}\left\|x-x_{0}\right\|^{m+1}, \text { if }\|\beta(x)\| \leqq K\left\|x-x_{0}\right\|^{m}
$$

and defined along a curve, we have Lemma 3.
By the discussions of Section 3, we obtain Theorem 3 from Lemma 3. In the above calculations, G_{1} is given by

$$
\begin{equation*}
G_{1}(x, s)=-\mathrm{J}\left(F_{0}(x, s) \phi G_{0}(x, s)\right)=-f(s) \mathrm{J}(U(x) \phi) f(s) . \tag{24}
\end{equation*}
$$

By the integrability condition (2), U U_{ϕ} is a global closed 1 -form on \widetilde{M}. Hence we can set $U \phi=d H$ on \widetilde{M}. Then, since $(U \phi)^{\sigma}=\chi_{\sigma} U \phi$, we have

$$
\begin{align*}
& H(x)^{\sigma}=\chi_{\sigma} H(x)+h_{\sigma}, \tag{25}\\
& h_{\sigma \tau}=\chi_{\sigma} h_{\tau}+h_{\sigma} .
\end{align*}
$$

Here each h_{σ} is a constant matrix. Using this $h_{\sigma}, \lambda_{1, \sigma}$ is given by

$$
\begin{equation*}
\lambda_{1, \sigma} T=h_{\sigma} T \chi_{\sigma}{ }^{-1} . \tag{26}
\end{equation*}
$$

On M, we may regard U_{ϕ} to be a collection $\left\{U_{i} \phi\right\}$, where $U_{i}^{-1} d U_{i}=\phi$ on V_{i}, an open set of M. Since $U_{i} U_{j}^{-1}$ is the transition function of the flat bundle $\left\lceil\chi,\left\{U_{i} \phi\right\}\right.$ is a cross-section of $\chi \chi$ and closed by (2). Hence in the sence of de Rham, $\left\{U_{i} \phi\right\}$ defines an element of $\mathrm{H}^{1}(M, 8|\chi|)$, where g is the module of matrices. But this class does not reflect the influence of the linear part of (3). While (26) shows the class $\operatorname{Tr} \lambda_{1}$ reflects influence from the linear part.

We note that, using above $H=H_{1}, \mathrm{G}_{k}$ is given by

$$
\begin{equation*}
G_{k}=(-1)^{k}(f H)^{k} f \tag{27}
\end{equation*}
$$

To show this, we set $H_{k}=(-1)^{k}(H f)^{k-1} H, \mathrm{k} \geqq 2$. Since $\mathrm{G}_{1}=f H f$, we have

$$
d G_{2}=f d(H f H) f=f(U \phi f H+H f U \phi) f=F_{0} \phi G_{1}+F_{1} \phi G_{0} .
$$

Hence we use the induction about n. Then, since $G_{k}=f H_{k} f$, we have

$$
\begin{aligned}
& (-1)^{n} d\left(f H_{k} f\right)=(-1)^{n} f d H_{k} f \\
& =(-1)^{n} f \sum_{k=0}^{n-1}(H f)^{k}(d H) f(H f)^{n-k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{k=0}^{n-1}(-1)^{k} f(H f)^{k} U \phi(-1)^{n-k-1} f(H f)^{n-k-1} \\
& =-\sum_{k=0}^{n-1} F_{k} \phi G_{n-k-1}
\end{aligned}
$$

Hence we obtain (27).
By (27), we have
Theorem 3' Let U be the unitary solution of the linear part of (3), H, the matrix valued function on \widetilde{M} such that

$$
d H=U \phi, H\left(x_{0}\right)=0 .
$$

Then on $U(\widetilde{M})$, a suitable neighborhood of $\widetilde{M} \times 0$ in $\widetilde{M} \times C$, the solution $F(x, s)$ of (3) with the initial data $f(s)$ is given by

$$
\begin{equation*}
F(x, s)=f(s)\left(I+\sum_{n=1}^{\infty}(-1)^{n} s^{n}(H(x) f(s))^{n}\right) U(x) \tag{28}
\end{equation*}
$$

Note 1. By (28), $\lambda_{n}, \sigma^{\prime} s, n \geqq 2$, are written by h_{o} and χ_{σ}.
Note 2. Even the solution of the linear part of (20) has regular singularity at $z_{0} \in \bar{D}$, the solution of (20) may not have regular singularity at z_{0} by (28).

References

1. Abe, K.: To appear
2. Asada, A.: Non abelian Poincaré lemma, Lect. Notes in Math., 1209 (1986), 37-65. Springer, Berlin-New York.
3. Asada, A.: Non abelian de Rham theory, To appear in Proc. Int. Conf. Prospects on Mathematical Science, Tokyo, 1986, World Scientifique, Singapore.
4. Rasch, G. : Zur Theorie und Anwendung des Produktintegrals, Journ. für reine und angew. Math., 171 (1934), 65-119.
5. Wolfersdorf, L. v. : On the theory of nonlinear Riemann-Hilbert problem for holomorphic functions, Complex Variables, 3 (1984), 457-480.
6. Wolfersdorf, L. v. : A class of nonlinear Riemann-Hilbert problems with monotone Nonlinearity, Math. Nachr., 130 (1987), 111-119.
