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1 Introduction

In the study of geometry of curves in a manifold, Prof. Abe obtained the
following equation ([17)

d n 3{1
(1) —a—i}—+A(x)y+taﬂ s Z yiBix)y=0, y:< : )
s=1 Yu

Here x is the variable of a curve y, s is a variable in the normal direction of the
curve and y=3(x, s). A is the torsion matrix of the curve and B,'s are calculated
for important manifolds. In any case, they are geometric meaningful.

If the curve y is a closed curve, that is, if y is given by a periodic ma 7(x)
with the period 1, we call the correspondence

J8)=y0, s)—uk, s)=ra(f)s),

where y(x, s) is a solution of (1), to be the monodromy of the equation (1). Here &
is an integer and represents o= = (y). Treaty of the monodromy of (1)is a geometric
problem. presented by Prof. Abe. In this note, we treat this problem and show
the followings:

Lemma 3. Let 0 and ¢ be matrix valued 1- forms over a smocth manifold M with
the universal covering manifold M such that

(2) do-+0,6=0,

d+0 \p=0.
Then for any xo= M and a function f(s) of s, s a (complex) parameter, the equation
(3) dF —F0+sFpF=0

hasa solution F'=F (x, s) such that F (x,, s)=f(s) and can be continued as a solution
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of (3) on U (MxO0), aneighborhood of Mx0 in MxC. F(x, s)is holomorphic in s if
F(s) is holomorphic. In general, F has following form

(4) F=f(I+ 3] s"G,) Fo, I is the identity matrix.

n=1

Here F, is the solution of the linear part of (3) such that Foxo)=I and each G,=
Gulx, f(s)) is homogeneous of degree n in f.
For simple, we regard x, =M when F is continued to be a solution of (3) on

U (Mx0). In this case, we also have F(x,, 0)=1I.
Definition. We call the corvespondence
J($)=F(xy, sy——F(o(xo), 5)=ra(f) (s), o&n (M)

to be the monodromy of (3). Here we vegard f(s) to be a germ of matrix valued

Sunction.

Theorem 3. To denote the monodromy of the linear part of (3) by x,, we have
the following expansion of xe(f).

(5) kA= i} oW £15).

Here each A,,6(f) is homogeneous of degree n in f. x,f and 2y,of )y, f mean the matrix
multiplications of y, and f and An,o(f) and y,f. Especially, A,o(f) is linear in f. It
satisfies following period relation

(6) /21,O'(T):Ih,d(er)"]’X(IZ],'L'(T)XG“I, T is a matrix.

Since y is a representation of m; (M), it defines a local coefficient cohomology
H*(M, V). (6) shows Try, defines an element of H!'(M, Vy). It is a characteristic
class of the non-linear part of (3).

To apply these results to the original equation (1) of Abe, (3) is a little restri-
ctive. So we consider the following equation

(1Y) %+A(x)Y+sF(Y, Y)=0.

Here Y(x, s) and A (x) are matrix valued functions, F(U, V) is a matrix valued
bilinear function such that
(7) FU, VCO)=FU, V)C, C a matrix.

Then we have
Lemma 1. For any a>0 and a wmatrix valued continuous function f(s) of s,

there exists an é=¢la, f)>0 such that (1) has a solution Y (x, s) with the initial data
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F(s) on {|x|<a, |s| <& . If f{s)is Ck-class, this Y(x, s) is Ct-class in s and if f(s)
ts holomorphis, Y (x, s) is holomorphic in s. Precisely, Y (x, s) takes the following
Jorm

o

Yix, $)=Ulx) I+ Z_,: "V (F) S (s).
Here Ulx) is the unitary solution of the linear part of (1), that is, Ul(x) is the

solution of the equation

dy
( 8) 'E;” +A(x)Y_0,
with the initial data Y(0)=1I and each V. (x, f)is homogencous of degree n in f.
By Lemma 1, if (1) is defined on a closed curve y, we can define its mono-

dromy ke=xsf). Then we have

Theorem 1. Let o be in =, (7). Then the monodromy ke (f) allows the following

expansion

8
(5) ta( f)$)= ol + Z,;‘S"Rn,a(f) () fs).

n=
Here s is the monodromy of (8), An,0(f)is homogeneous of degree n in f. Especially,

Ay is linear in f and satisfies following period relation

(6)/ zl,ur(T):/z],r (T)+Xr—121,a(er) x.—.

It seems main informations from the non-linear part of (1)’ (or (3))are contained
in 2. In Abe’s equation (1), 4 is determined by A and Bjs and does not depend
on the choice of the normal direction.

Lemma 1 is proved in Section 2. Theorem 2 is proved in Section 3 together
with the C9-estimate of ko(regarding xo to be a map in C°(—¢, €) and the period
relation of 2,. Considering (1) on a complex domain, we have similar results.
These are remarked in Section 4. These may concern non-linear Riemann-Hilbert
problem (cf. [5], [6]). But our main interest is its (non-linear) monodromy. Except
the use of the integrability condition (d¢-+6,¢=0), Lemma 3 and Theorem 3 follow
Lemma 1 and Theorem 1. So in Section 5, we show how to use the integrability
condition to construct a local solution of (3). This integrability condition is chiral to
the linear part of (3) and relate some works inspired recent particle physics and

field theory (cf. [37]).

2 Proof of Lemma 1
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For the convenience to get the informations about monodromy, we apply the
method developed in [2]. For the coefficients of (1), we assume

(9) HA@ 2k |x|<a,
NEU, V) (&, =LpU, s (Vix, s)ll, |xI<a, [s]<b.

Here ||(a;;) || means (Z iilaiil %, a>0 is a given constant and & > 0 is a suitable
constant.

Let U=U (x) be the unitary solution of (8). Then Y, (x, s)=U{(x) f(s) is the
solution of (8) with the initial data f(s). Starting Y,, we define a series of matrix
valued functions Y,, Y, <+, Y,, -+, successively by the equation

dYn n=1
(10)» P +A@) Y+ DY F(Ye Yuor)=0, Y,(0)(s)=0,n=1.
k=0

Explicitly, ¥, is given by

Vils, $)==UW | U@ (SIFYae, 9) Yoonalé, s)as.
0

—-

3

(11)

b
]

By (11), if Yi(x, s)=Ux)Vi(x, 8)f(s), k=n—1, where Vi (x, )=V, (x, s, f)is
homogeneous of degree %k in f, then to set

x n—1
(1) Valx, S):~J vt (/ OF(Yk(E, 8), Ux)Va_ral§, s)HdE,
0

Yu(x, s) is equal to Ulx)Vu(x, s) f(s) by (7). Since F(U, V) is bilinear in U, V,
Vax, s, f)is homogeneous of degree n in f because Y. (x, s, f) is homogeneous

of degree k+1 in f.
By (9), we have ||U (x)|| <e*!1*!<e*? (cf.[2], [4]). Hence we have

(12)o 1Yo(x, s)lIe*|fs)l, |x| Za.
By (12), and (11), we get ||V {x, s)}| = L| f(s) |2e**¢ |x| if |x| <a. Hence we
assume the inequality
(12) Y k(x, S)ISLE| fls)| FHie@h+ka |y
is hold if |x]<a and k=<n—1, Then we have
n—1

Il QF(YIZ(X, $h YV palx, s)

n—1

é Z} L'L"]f(s)l k+1e(3k+1)KaLn~k—1lf(s)’n—ke(an—ak—z)lra,x’n-l
k=0

é nLk |f(s) l n+1e(an—1)Ka |x l n—l,
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if x| =a. Hence we obtain (12), by (11). Therefore the series

oo

Yix, s)= Z s*Y, (x, s)

n=0

converges absolutely and uniformly on {|x|=a, |s|<{¢} if {sLf(s)e’®%| <1 for |s|<e.
Hence to take & to satisfy

e<r|r1me’3K” 1/ l1=maz | i), for suitable 6>0,
Y(x, s) converges on {|x| <a, |s| <¢.} Then, since Y,'(x, s)= —A{x)Y,(x, s)—
_Z::)F(Yk, Yu_ia) (x, s), we obtain by (12)

[t
dx

_S_KL”If(s)l””e“"“”"“le"—i-nL”'llf(s)l”“e“"'l)K“lxl"".

(x, s

Hencez s"Y,, x, s) converges absolutely and uniformly on the same domain.
Therefore Y(x, s) is a solution of (1)'. Since Y,(x, s)=Ux)V.(x, s) f(s), where
Valx,8)=V,{x, s, f)is homogeneous of degree n in f, we have

Yie, )=UGN+ S1sValx, s, ) As)
n=l1

Y(x, 0)=f(s).

Since Y,(x, s) is holomorphic in s if f(s) is holomorphic and F(U, V) is holo-
morphic in s, Y{x, s) is holomorphic in s in this case.
If F(U, V)is C¥—class in s, we use the notation

o*F ¥

SN, V)= (o FUG, 1), Vix, )]s

(

Then we assume

k
(9 IEEY W, v & si=Lave )i vt il

To show the C!-regularity for Cl-class f, we set
[ f&)y=max (1 f(S)], [f(s)]), Lay=max (L, Ly).

Then, since

aF(al?V) (a A\ w, V)+F(aU v) +F(U,%),
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we get ||(0Y1/8s) (x, $)I=3L¢y| f(s)|%e*¥%|x|. Hence we assume the inequality

(190 120 (s, SHIZBH L) e 1]

is hold if 2&<n—1. Then we have

n—1
12 (X F(Ye (@, 9) Yaoraa s I
S k=0
n—1 aF aYk
= 331 {55) o Yaord IHIP (T Vi)l +

HIF (v, Pzt

= (nLyLeny" M f(s)] " le@n DK

n—1
+2 ;E Ly3*Liy™™t| f(s)]*H1e3n DK a) | g |#
=0

<n(3L¢yy*| f(s)] M ieGnmDKe | g|n,

Hence we obtain (13),, by {11). Therefore Y (x, s) is C'-class in s. Higher regu-

larities are similarly proved.

3 Prdof of Theorem 1

Since the uniqueness is hold for the Cauchy problem of the equation (1),
if Y{x, s) is a solution of (1)’ such that ¥{x, 0)= f(s), we have Y{(x, s)= Ulx) I+
Z},;S"Vn (x, $)f(s). Hence if o= (y)=Z is represented by an integer k, we have

(14) kel Fs) =7, (I + f;: SV all, SHAS).

Because U(k)=y,, the monodromy of (8). Since V,(x, s)=V,(x, s, f) is homogeneous
of degree n in f, we have the first assertion of Theorem 1. We note that, since

V. is given by

Vilz, 5)=—U)]] Ve FU@AS), Ulehde,
we get
(15) Vils, $l=—Ul) [ Uy 46 FU@), Ui
for the original equation (1) of Abe. Because F satisfies

7y FUB, VC)=*BF(U, V)C, B, V are matrices
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in this case. (15) shows that V, is independent to the choice of normal direction
in the equation of Abe.

By (5), we have

sorl(5) =105 I+ 33 "tn el AN
—roliee el F)S)
o (I + }i,; $anya () (el (5)

—a iz M mo (e () (e T+ 3 5me() 15)

n=1

=Yo7 f(8)+$(gohs, olec( gz +xocd, (/) fls)+
oo n—1
+ Ez $™(Xodn, o (&7 () e+ kE:l xodu,o (6r( ek k() +

+xoedn, (SDSS).

We set f(s)=fot+sfit++++, fo=,(0), where each f; is a {constant) matrix. Then by
the linearity of 2;, we have

A ot(fo) =y Ay, o(xr Folae + A1, <(fo)

Since f, is an arbitrary matrix, this shows (6). By (15), 4, is independent to the
choice of normal directions in the equation of Abe.

Since 1,,¢(f) is homogeneous of degree » in f, we have

(16) An, o fo+s8)=2u, 0(f0)+0(5)a n=1.

Hence we get

Xor(Ay,0c(f1)+ 25, 0:(f0))

=xoelAy, o(f 1)+ A, «(f o))+ xodn o{ye S 14 2o «(Follx= +

+ 02, o(xe folxte +xods, otz folten(fo)

=yorldy, o{ f1)}+ gods,olxe f1)ye+

2o, e( fo)+ xods,o(xe s, «( fo)pr -+ xols, o)z folye +

+ 201, 0{xe Fo)xe A, «(fo).
Therefore by (6), we obtain the following period relation of .
(17) Zo,0e(T) =20, «(T) 43z Ap, ol T+

+ e WAy, oy, e Dye + Ay, o{xe Txe Ay, «(T)).
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We consider « to be a map of the space of germs of functions in Theorem 1.
But with a suitable €>0, we can regard x to be a map from {f|feC[—¢ &, |lf]|
=a} into C° [—¢, €]. Then we have

A

(18) [ea(A)] = kL[| f|[FE

Note. By definition, we have
(19) Xn,e(f):(),

for all n=1. Here e means the identity of =,(y). Especially we have

Ao (T)= =367 21, 0(xsT)yo.

4 Equation on a Complex Domain
On a domain D in C, the complex plane, we consider the equation

(20) % + AR)Y+sF(Y, Y)0, zeD.
Here A(z) and F(U, V) (s, z) are holomorphic in z (and s). We denote the universal
covering space of D by D. Then denote the s-space by C, DxC is the universal
covering space of DxC. By Lemma 1, we have

Lemma 2. For any holomorphic function f(s) near the origin of C, there exists
a neighborhood U (D x 0) :U(bxo, flof Dx0in DxC such that (20) has a holomo-
rphic solution Y{(z, s) on U (EXO) such that flzo, s)=f(s), where z, is a fixed point
of D. Precisely, this Y{(z) has the jollowing form

(21) Yie, s)=Ula) (I+ iisnvn & s, FOAS).

Here U(2) is the solution of the linear part of (20) such that U(zd)=1 and each V.,(f)
is homogeneous of degree n in f.

By Lemma 2, we have

Theorem 2. (20) has the monodromy ke=ks(f), o= (D). It has the following

form

(22) wo (F)S)=xolI+ D) $"2u,o(f)) f(5).

n=1
Here yo is the monodromy of the linear part of (20), 2,,0(8)=2n0(f) is holomorphic in
s and homogeneous of degree n in f. Especially, i,.(f) is linear in f and satisfies
the periodic relation (6)
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yo defines aflat vector bundle [y]. It defines a local coefficient cohomology
HYD, Vi) of D. Since Tr 2, satisfies
Tr(Ay,0:(T)=Tr(Ay, «(T)+Tr(A,e(x=T))

by (6), Tri defines an element of H'(D, V). It is a characteristic class of the non-
linear part of (20). The meaning of this characteristic class is discussed in Section 5.

5 Proof of Lemma 3 and Characteristic Classes of Non-Linear Part

As in Section 2, we solve (3} as follows : Let U=U(x) be the unitary solution

of the linear part of (3). That is, U satisfies
dU—-U0=0, Ulx,)=1I, the identity matrix,
and set Fo=Fy(x, s)=f(s)U(x). Here f(s) is the initial data at x,. Starting this Fy,
we want to define a series of matrix valued functions Fy, Fy, -+, inductively by
n—1
(23) dFy—Fy0 4 23 FrFu_p1=0, Fylx)=0, n=L.
k=0

To solve (23), we set F,=G,U (Gy=f(s)). Then (23) becomes

n—1
(23)' dGy+ D) FigGr_p_y=0.
=0

(23) has a local soloution G, if and only if & (Z::) Fr6Gy_p-1)=0. If n=1, this
condition is
dFond+ Fodgp= f(sXAU ngp+Udgp)=0.
Hence it is the integrability condition d¢+0,¢=0. So we assume
k=1

Gy =—SVFi$Gp_j.1, 0=h<n—1.
=

Then we have

n—1

n—1
d(g FroGu_pa) =d (g Gy UGG,_ i)

—

= 3 (dGLUGG 11 +GrldUG+UdP)G _ .1 ~G UGG y_p_1)
D

X
[

n—1 k n—1 n—k—1

= _E E FipFp_j19Grojoit ;% Z FroFi¢Ga_p

=0 ;=0 i=0

-

[

= 0.
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Therefore we can define G, by
n—1
Gn=—] Q) FipGn_r-1), n=1,
=0

1
Jet)= | ¢ 33 mibdat) dt, = 3 pud.
Then, since ] satisfies

B0 <~

=l 42, i f A = Kllx—xol[™,

and defined along a curve, we have Lemma 3.
By the discussions of Section 3, we obtain Theorem 3 from Lemma 3. In the

above calculations, G, is given by
(24) Gilx, $)=—J(Fox, s)gGox, s)=—SfIs)JUx)p)f(s).
By the integrability condition (2), U¢ is a global closed 1-form on M. Hence we
can set Up=dH on M. Then, since (Ug)’=yx.Up, we have
(25) Hx)’ =yoeH(x)+ ho,
hor=Yohc+ho.
Here each #s is a constant matrix. Using this ke, ;¢ is given by
(26) Aol =heTys™t.

On M, we may regard U¢ to be a collection {U;¢}, where U;"'dU;=¢ on V;, an
open set of M. Since U;U,™! is the transition function of the flat bundle 7, {U;¢}
is a cross-section of 7 and closed by (2). Hence in the sence of de Rham, {U;¢)
defines an element of H! (M, gp3), where ¢ is the module of matrices. But this
class does not reflect the influence of the linear part of (3). While (26) shows the’
class Tr A, reflects influence from the linear part.

We note that, using above H=H,, Gy is given by
(27) ‘ Ge=(—1HfH)*S.
To show this, we set Hp=(—1*Hf)*'H, k=2. Since G,=fHf, we have

dGz:fd(HfH)f:f(U¢fH+HfU¢)f:F0¢Gl+F1¢Go

Hence we use the induction about n. Then, since Gr=fH,f, we have

(—1d(fHp f)=(—1)"fdHf

n—1
= (=1"f g (HfHdH) f(H fy=*=
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3
|
—

tIIIj

(=D AHS U 1)k fH fp 5

0

3
| i

1

= =2 FigGy_pr.
=0

Hence we obtain (27).

By (27), we have

Theorem 3' Let U be the unitary solution of the linear part of (3), H, the
malrix valued function on M such that

dH=U¢, H(x,)=0.
Then on U(M), a suitable neighborhood of Mx0 in Mx C, the solution F(x, s) of (3)
with the initial data f(s) is given by

oo

(28) Fla, s) =X+ 2 (—1)s"(Hx) f(s)")U(x).

n=1

Note 1. By (28), 2,0's, n=2, are written by k. and y,.

Note 2. Even the solution of the linear part of (20) has regular singularity at
20D, the solution of (20) may not have regular singularity at z, by (28).
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