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1. Introduction

This is the detailed exposition of [2]. In the theory of Gaussian random fields
(G.r.f.’s), the notion of conjugate sets has been introduced by P. Lévy and
employed by the author to study the conditional independence of G.r.f.'s with
parameter space R? ({17—[5]). The aim of this paper is to give a description of
G.r.f.'s with projective invariance by using the conjugate sets associated with
them. In particular, the parameter space is taken to be the real Hilbert space /2

defined by /2= {x=(xn)n>1; an2<oo, xyeR (n>>1)}, in which every space R¢
n=1

(d>>1) is embedded. Let X={X(x); x= ¢? be a mean zero G.r.f. on /2 with
homogeneous and isotropic increments such that the variance of X(x)—X(y) is given
by #{lx—yl), where the structure function r(t) is assumed to be continuous and satisfy
the normalizing condition #(1)=1 ([8]). We may identify two G.r.f.'s on 42 with
common structure function #(¢), because such G.r.f.’s have the same probabilistic
structure related to conditional dependence. From this point of view, we often use
the notation (X, 7(t)) instead of X ([3]). We note that there exists a one-to-one
correspondence between the class of these G.r.f.'s (X, #(f)) on ¢% and the class &
of all the functions 7(¢) on [0, o) expressed as follows:

oo

ri=ctt+] (- udre)  (120)
0

where ¢ is a non-negative constant and 7 denotes a measure on (0, o) such -that
J;o(1+u)'1dr(u)<oo and #(1)=1 ([7]). An important subclass of & is given by
L= {r{t)=t*; 0<a<2},
which corresponds to the class of G.r.f.’s with projective invariance in the sense
of [6].
We now proceed to the definition of the conjugate sets associated with. (X, 7(f).
Given Ec /2 (E=kg), we denote by Ry(x,y|E) the conditional covariance function
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of (X, 7(t)) relative to E, i.e.,
R, (x, y| E)= E[(X(x)— p(x| E)X(y)— (W E)]  (x,y< £3),
where p.(x)E) stands for the conditional expectation of X(x) under the conditioning
by {X(2); z€E} (see Section 2). Then, for every x& £2, the maximal conjugate set
(or shortly conjugate set) s x(x|E) of x relative to E is defined as follows:
S x(x|E)={ye {*; R,(x,y|E)=0}.

Since (X, #(¢)) is a Gaussian system, the set . y(x|E) proves to be the locus of
ye{? for which X(x) and X(y) are independent conditioned by {X(z); z<E}. In
this paper, we assume that £ is finite and contains at least two points:

(1.1) E={ar}1<p<n and n=§E>2,

where #E denotes the cardinal number of E. Then p,(x|E) can be expressed in the

form
pAHE)= 31Xl Ml E) (o £
where 7,%(x|E) (1<Ch<{n#) stand for certain real numbers satisfying the equation
ﬁ_‘,rrk(xlE)zl. A mapping Pz: {2—R" is defined by Op(x)=(x—a;l, -, |x—a,])
Z:le Z%. By an inversion on /2 with center z& ¢% and radius £>0, we mean the
following transformation 7 on £2:
Tx=#x—z|"%x—z)+z (x=Fz) and Tz=z.

We denote by #( £?) the set of all inversions on ¢2. We are now in a position to

state our main result.

THECREM 1. Let (X, 7)) be a G.r. f. on £* rigged with {a, E}, where +(t)c.57,
asE and E is given by (1.1). Suppose that {a, E,r(t)} satisfies the following cond-
itions:

(1.2) Op(F xlalE)) contains an interior point; and

(1.3) rri(UaIUE)rrf'(UalUE):i:O for some Uc 7 ({?) with center zycE and some
i, (i=F7).

Then it holds that r(tye .&Z if and only if

(1.4) Fx(Ta|TE)=T5 x(a|E) for any T ({2 with center zy.

We note that Theorem 1 remains true even if ¢? is replaced by R?. Formerly
we obtained an analogous result with respect to similar transformations on R? (see
Theorem 1 of {3]). The proof of Theorem 1 is given in Section 2 based on a certain
functional equation. Finally, in Section 3, we shall give a simplified version of

this theorem by specializing the set E.
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2. Proof of the main theorem

Let (X, 7{t) be a G.r.f. on £% and E be a non-empty subset of /2. First we
note that the conditional expectation p,(x|E) is defined in the sense of [5]. In other
words, we set

(%) E)=X(z0)+ ELX(x)— X(20)| X(2)— X(20); 2€E] (¥€4*, zEE).

Here the right side does not depend on the choice of z,€E. In the special case
E={2}, we have p,(x|z)=X(z) and so the conditional covariance function R,(x,y)z)
is given by

R, x, ylz)={r(lx—z))+rly—2z)—r(lx—yl} /2 (x,ysl?.

In general, if E is given by (1.1), we have the following expression: For any wx,
yel?,

2.1) 2R (x, y| EY=r(|x—a|)+ 4 (x, y| E)—r(|x—y|)— 4, (%, a;| E),

where we set 4,(x, y|FE) :Er ly—ay))y*(x|E). As for the class &, we know some
=1

interesting properties ( [3] Among them, we note that each function #{f)e.5?, as
well as its inverse function » *(x), is strictly increasing and analytic.

Proof of Theorem I. The “only if” part immediately follows from the projective
invariance of (X, r{f)) in the sense of [6]. Therefore it suffices to prove the “if”
part. Without loss of generality, we may assume that y,{Tsa|T:E)y,/(Tsa|TsE)==0
for some s>>0 and some i, j (i=Fj), where T denotes the inversion on ¢? with
center a, and radius ¢ (#£>>0). Because of the assumption (1.2), there exist open

n
intervals I, (1<Ch<n) contained in (0, ) such that Il I,cO@x( 5 x(@|E). It follows
k=1

3
that, for each w=(u,, -, u,)& Il I, there exists yplu]e 7 x(a|E) such that
Fe=1

Or(ylul)=u or equivalently |ylul—ar|=usr (1<<k<n). Then we see by (1.4) that
n
Twylule 7 x(T:a|T:E) for any (, u)e(0, o)x I1 I.
k=1
In other words, by using the expression (2.1), we have the following: For any (¢, u)

n
E(O’ oo) X HIk:
k=1
n

2.2) r(|Tra—Twylull)= ; A Twlul—Tiwar)r Tl T:E)

+H{(|Tra—T)— 4T @, T10,|TE).

For the sake of convenience, we set [p=|a;—a,} (2<<k<n) and further introduce the
following functions:
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pu)=7, T ral T 7E) (£>0, 1<k<n),
gO)=r(ITy7a— T;/Tall) (T,/Ta T, 7a:|T/7E) (#>0) and
it )= ()0 3o ( oty +gtr) (we I11,)

3
Then it follows from (2.2) that, for any (¢, u)e(0, co)x 11 Iy,
} ‘ : k=1

2.3) b, -, w)=r( ) 201 33 () pute+ )

Now we set

D,(a, E)={(vs, -, va); 7)1:*611 and l’%)f—EIk (2<<k<m)} and

1

Wy, -, v)=h weD,(a, E).

H >

(L b o)
vy Uy N
Then the equation (2.3) is replaced by the following: For any (¢, v)€(0, «0)x D,(a, E),
7n '

(2.4) r(th{vs, -, va)= > r(tvk)p/e(t)+g(t)-

k=1

It should be noted that p;{s?)p;(s?==0 and ;z(v,, «, v,)>0 on the domain D,(a, E) of
R". By applying Lemma 7 of [3] to the equation (2.4), we see that #(f) can be
expressed in the form

r{f)=Ci1*+C; or r{t)=plog t+Cs ‘(t>0),‘
where @, § and Cp (1<k<(3) are real constants (@C;==0, B==0). Therefore we obtain

the desired expressmn r() t* (0<a<(2) by using the conditions #(0)=0, #(1)=1 and
the concavity of #(+/%) ([3]). The proof is thus completed.

3. A simplified result

In this section we shall give an interesting version of Theorem 1 by specializing
the set E. Let {e,},>: be the canonical orthonormal basis of /2. We mean by E,
(n>2) the subsets of £ defined as follows:

E, = {@u} 1<r<n and Anp=Cpsr— — — Dejn (1<k<n).
=

For each £>0, T,; denotes an inversion on ¢* with center a,: and radius #, and

further S; denotes a similar transformation on £2 given by S;x=f¢x. Then we have
the following theorem.

© THEOREM 2. Let (X, 7)) be a G.v.f. on 4% with v()&57. Then the following
three conditions are equivalent: :
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i rhez;
(U) ﬁ—X(TnlellTntEn):TntyX(ellEn) Jor any n>>2 and any 1>0;
(iil) F x(S:e:d|StE) =S5 xles| E,) for any n>2 and any >0,

Preof. In order to apply Theorem 1 we shall prove that {e, E,, #(#)} satisfies
the conditions (1.2) and (1.3) for sufficiently large »n. First we note that le;—a,x|=
V=10, lau)=v/@=Tn (1<k<n) and |a,—anl=v2 (1<j<k<n). Then we
see by (2.1) that

lim 2R, (e:, —ei| Ey)

n—roo

=tim {2rler—apl)=r(12ei) =~ >Irllan—anl)

71--00

= 7(y/ 2)—#2)<0.

Therefore we have R,(e;, —e;| E,)<0 for sufficiently large ». In addition, the points
of £, are independent and the point e, lies in the orthogonal complement of E,.
Thus we see by Proposition 1 of [3] that {e, E,, 7(f)} satisfies the condition (1.2) for
sufficiently large #. On the other hand, we can easily show that there exists a
sequence {g,()} > of functions on (0, o) such thatnl_igl g,(H)=1 ({>0) and

Trk(TntellTntEn):gn(t)/n >0, 2<<h<n, n>2)7

which guarantees the condition (1. 3) for sufficiently large n. Consequently by applying
Theorem 1, we have the equivalence of (i) and (ii). Moreover, we easily obtain the
equivalence of (i) and (iii) by using Theorem 1 of [3].
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