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J. A. Wolf and A. Gray [1] classified automorphisms ¢ of order 3 and the fixed
subgroups G ° of connected compact simple Lie groups G of centerfree. In this paper,
we find these automorphisms ¢ and realize G° for simply connected compact
exceptional Lie groups G=G,, F, and E;. (As for E, and E;, they will appear in the
next issue). Our result is the following second column. The first column is the chart of
involutive automorphisms and the fixed subgroups which are connected our cases.

Gy (SpA)YXSHAN/Z v (UQ)XSp1))/Z,
w SUGB)
Fooy (SpOXSp3))/ 2, v» (UA)XSp3))/Z
g Spin(9) o (UQ)XSpin(1))/Z,
w  (SUBYXSU3))/Z,
E oy (SpA)XSU6))/Z v (UQ)XSU6))/Z,
¥ (SpOXSWUA XUG)))/2,
o (U XSpin(10))/Z, o (UQ)XUQ)XSpin(8))/(Z, X Z,)

o’ (U)X Spin(10))/Z,
——— w  (SUGXSUB)XSUB))/Z,

Notations. (1) Let G be a group and ¢ an automorphism of G. G ¢ denotes {g

& G | gg=g}. If ¢ is an inner automorphism Ads induced by s € G, G Ads 4 briefly
denoted by G*: G*={g = G | sg=gs}. Moreover, for a subset S of G, the centralizer
of Sin Gisdenoted by G°: G¥={g € G | sg=gs for all s & S}.

(2> When two groups G, G’ are isomorphic: G = G/, we often identify these
groups: G=G".

(3) For an R-vector space V, its complexification {u#+iv | », v & V'} is denoted
by V . The complex conjugation in V Cis denoted by 7: 7(u+iv) =u—iv.

(4) The definitions of classical Lie groups U(xn), SU(#x) and Sp(n), n=1, 3
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appeared in this paper are usual ones: U(n)={A e M(n, C) | A*A=E}, SUn)=
{A e Un) | detA=1} and Sp (m)={A € M(n, H) | A*A=FE}.

1. The group G,

7
Let € =3 Re; be the Cayley division algebra
i=0

with the multiplication such that ¢ =1 is the unit,
el=—1,1=<i<7, ;= —ee;,1<i#7=7 and e, ¢, =e;,
G0 =05, &65= ¢ etc. ... .In @, the conjugation x, the e €
inner product (x, ¥) and the length | x | are naturally
defined. The Cayley algebra @ contains the field of €
real numbers R naturally, furthermore the fields of

complex numbers C, C; and quaternions H : e e €

C={&+nal & 7€ R}, C={&+nalé n € R},
H={(+&e+&eaté&al & & = R).

Hereafter ¢, is briefly denoted by e.
The automorphism group G, of the Cayley algebra ¢,

G={a € Isop(@, &) alxy)="(ax)(ay)}
is a simply connected compact simple Lie group of type G, [8]. To find some subgroups
of G,, we will give alternative definitions of the Cayley algebra .

1. In € = H @ He, we define a multiplication, a conjugation  and an inner product
( , ) respectively by

(a+be)(c+de)=(ac—db)+ (bc+dade,
atbe=a—be,
Ca+be c+de)="C(a c)+(b d).

2. In ¢ =C @ C?, we define a multiplication etc. by
(a+m)(b+n)=(ab—m*n)+ (an+bm-+mxn),

afm=a—m,
(a+m, b+n)=(a b)+(m, n)
where mx n € C? is the exterior product of m, n « C® and (i, n):-%-(m*nJrn*m).
1.1. Automorphism ¥, of order 3 and subgroup (U)X Sp(1))/Z, of G,
We define an R-linear transformation y of ¢ by

y(a+bed)=a—be, at+be € HPO He=6.

Then we have y « G, and y*=1.
Known result 1.1 [2]. The group (G,)" is isomorphic to the group (Sp(1)XSp
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A/ Z, (=2S5004)) by an isomorphism induced from the homomorphism  : Sp(1) X
Sp(H— (G,

v (b, @)(a+bed=qaqg+(pbpe, a+be € HD He=¢

with Kery=2,={(1, 1), (—1, —1)}.

Let wlz—%—p/% e € Sp(1) ¢ H c¢. Denote ¥(w,, 1) by y:

wla+be)=a+(wble, atbe @ HPHe=6.

Of course vs = G, and y*=1.

Theorem 1. 2. The group (G is isomorphic to the group (UL xSp(1))/Z, (=
U(2)) where Z,={(, 1), (-1, —D}.

Proof. Let U ={s € Cllsl=1} c $HQA) c H c¢. We define a
homomorphism : U(1) X Sp (1D—(G,)™ by the restriction of ¥ of Known result 1. 1.
Clearly % (s, @)=+, @)y for (s, ¢) € U)X S5p(1), so ¢ is well-defined. We shall
show that ¢ is onto. Let & € (G)™. Since @ commutes with %, & yaz{x el px=
x}=H is invariant under «. So a also commutes with y: ¢ € (G;)”. Hence, from
Known result 1.1, there exist s, ¢ € Sp(1) such that a=+(s, ¢). From the
commutativity ysa = ays, that is, ¥ (ws, ¢) =¥ (se,, q), we have (@S, ¢) =+ (s@,, q),
S0 @S = Swy, therefore s € U(1). Hence ¢ is onto, Obviously Kery- = Z,. Thus we have
the isomorphism (U (1) X Sp(1))/Z,=(G,)".

Corollary 1. 3. (Gz)"a:(Gz)S where S=¢ (U, 1). In particular, the manifold
G/ (G has a homogeneous complex structure.

1. 2. Autonllorsl?l)_ism w of order 3 and subgroup SU(3) of G,

Let w= —7—!— e e C c ¢. We define an R-linear transformation w of ¢ by

wlat+tm)=a+wm, at+tme CPBC=¢.

Then we have w € G, and w®=1.

Remark. We have the following

Proposition 1. 4. For a € § such that | a | =1, the condition that the mapping a, :
C— 6, ax=axa belongs to the group G, is a®=+1.

Now, w is nothing but the mapping @ : wxr=wrw, ¥ .

Known result 1.5 [7], [8]. The group (). ={a € Gyl ae=2¢}is isomorphic to the
group SU(3) by the isomorphism + : SUB)—=(G)e,

YA @+m)=a+Am, a+m €CPC*= ¢.

Theorem 1. 6. The group (G)® coincides with the group (Gp)e, so it is isomorphic
to the group SU(3).

Proof. We shall show (G)?=(G).. Clearly (G).=¢(SU®B)) c (G)Y
Conversely, let @« €(G)% Since @ commutes with w, € ,={x e gl wx=x}=C is
invariant under a. So @ induces an automorphism of C, hence
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ae=e¢ Or ae=—e,

In the latter case, consider a mapping y: € — @, y(a+m)=a+m. Then y € G, and
ye=—e. (This y is the same one as y of the preceding section 1. 1). Put #=ya. Since
Be=¢, we have g = (Gy)e C{(Gy)%. Therefore y=ga' €(()?. However this is a
contradiction. In fact, wm=wm=w (ym) =y (wm)=wm=w m for all m € C® which
is false. Hence ae=¢, so @ € ((G,).. Thus we have (G,)¥ c(Gy)e.

2. The group F,

Let 3={X € M(@3, 68)! X*=X} be the exceptional Jordan algebra with the
Jordan multiplication

X Y:%(XY%— YX).

In &, we define a positive definite inner product (X, Y) by tr(X - Y). Moreover, in
3, we define a multiplication X X Y called the Freudenthal multiplication, a trilinear
form (X, Y, Z) and the determinant detX respectively by

X % Y:%{zx o YV —tr (X)) Y —tr( V)X +r(Ote(Y)— (X, Y)E),
(X Y, 2)=(X, YX2), detX:%(X, X X).

The algebra § with the multiplication X X Y and the inner product (X, ¥) will be
called the Freudenthal algebra.
The automorphism group F, of the Jordan algebra 3,

Fi={a €lsop(3, DN aX - Y)=aX -al}
={a €1Is0p(y, )| detaX =detX, (aX, aY)z(X, YO
={a €Ilsop(y, Pl a(XXV)=aXXaY}

is a simply connected compact simple Lie group of type F, [3], [8]. The group F,
contains G, as a subgroup naturally, that is, any &« € G, is regarded as « = F; by

& X% P & ax ZE
alxs & x| =|au & axy
X2 7;1 & aX; ax &

To find some subgroups of F,, we will give alternative definitions of Freudenthal
algebra . For K=R, C, let J,=3@, K)={X € M@, K)| X*=X} be the
Freudenthal algebra with the multiplication X X Y and the inner product (X, Y) as
analogous to ones in .

1. In = 3@, HYD H?® (where H?*={(a, @, &) “row vector”| a; & H}), we define
a multiplication and an inner product respectively by

(X+a)X (Y +b)=(X x Y—%(a*b+b*a))~—%~(aY+bX),
(X+a Y+b)=(X, Y)+ 2(a, b)
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where (a, b):%{ab*qua*)z%tr(a*bﬂLb*a).
2. In I=3(3, C)YP M (@3, C), we define a multiplication etc. by

(X+M)X (Y +N)=(X X Y——%—(M*N —|—N*M))~~%(MY+NX+M><N)
(X+M, Y+N)=(X, Y)+ 2 (M, N)

where, for M =(my, m,, my), N=(n, mp, i) € M3, C), M xN € M (3, C) is defined
by

M, Xny mpXn myXn
MXN= + + +
My Xy Ry Xmy 1y XAy

and (M, N)=3-tr(M*N+N*M).
2. 1. Automorphism y; of order 3 and subgroup (U)X Sp(3))/Z, of F,
We consider R-linear transformations y, y; of 3 which are extensions of y, v
G, to F, respectively. Of course v, 5 € I, and y?=1, yp°=1.
Known result 2.1 [5]. The group (F,)? is isomorphic to the group (Sp(1)xSp
3))/Z, by an isomorphism induced from the homomorphism + : Sp(1)XSp(3)—
(FD7,

P, A)(X+a)=AXA*+paA*, X+ac 3G HPH=3

with Kery=4Z,={(1, E), (=1, —E)}.

Theorem 2.2. The group (FDY is isomorphic to the group (U)X Sp(3))/Z,
where Z,={(, E), (-1, —E)}.

Proof. Let UD)={s e Cllsi=1}c S$H) c H cg. We define a
homomorphism v : U(1) X Sp(3)—(F,)” by the restriction of ¢ of Known result 2. 1.
Then ¢ induces an isomorphism (U (1) X Sp(3))/Z,=(F,)" whose proof is similar to
Theorem 1. 2.

Corollary 2.3. (F)"=(F)° where S=y (U, 1). In particular, the manifold
F./(ED™ has a homogeneous complex structure.

2. 2. Automorphism o; of order 3 and subgroup (U (1) X Spin(7))/Z, of F,

Let U)={a = C|la|=1}. For a € U(1), we define an R-linear transformation
D, of ¥ by

& % X2 & ma ?l}a—
Da 2?3 t‘;'-z Xy —_ Xzl gz ax,a
Xz X & av, axa &

Then we have D, € F,. Denote D_; by ¢. Of course ¢ e F, and ¢?=1.
Hereafter we use the following notations in & [6].
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1 0 0 0 0 0 0 0
E=10 0 0|, BE=|0 1 0|, B=|0 0 ]
0 0 0 0 0 0 0
0 0 0 0 0 «x 0 x
Fo=|10 0 x|, BE@=[0 0 0|, R®=|x 0 0
0 x 0 x 0 0 0 0 0

Known result 2. 4. [4], [8]. The group (F,)° coincides with the group (Fog={a
€ Fil aky=E,}, so it is isomorphic to the group Spin(9) which is the universal covering
group of SO = SO(V*’) where V°={X € J| E - X=0, tr(X)=0}.

Let w = —%—1—“’% ¢ € U(l) ¢ € c ¢ and denote Dw by 6;. Of course ¢; € F, and
0;*=1. To investigate the group (F,)*, we consider R-vector subspaces 5 (%63) 1

of J:

§,={X €l aX=X}={4E+&E+&E+R(MI & € R, t € CL),
(g )J— the orthogonal complement of < R in$
={A+ R +FE@)se €, xe ¢)

where C- is the orthogonal complement of € in J. Then § = Saa@< %US) 1 and %63,
( 63) L are invariant under the group (F)™.

Lemma 2.5. For a € (F)®, we have aFE,=E,. Hence (F)® is a subgroup of
(FD g =5pin(9).

Proof is similar to [6, Lemma 9], however we need some modifications. To show
ab,e 3@, C)={&EB+&EEBE+F W & e R xe ¢, put el =6 E+ B+ &E+F
W, &R, te CL and suppose & 0. From oF, X aE, =0, we see that & =&=1{=
0, that is, aF, = & E,. Next use aF; X oF; (1) =0, then we see that «F, (1) = »E, for some
0+ # e R which contradicts to aF, =& E;. Hence & =0. Thus we have aF; e ¢ (2, I).
Similarly aF; e (2, €). Therefore aF, &3 (2, 6) moreover aF, = &EF,; by the same
argument of [6, Lemma 9]. Finally from the relation aF, - aE;,=akFE,, £ must be 1.
Thus we have aF, =E,

From Lemma 2.5, we see that R-vector subspaces

{E+EE+F MV E e R, t e CJ‘}y (B +FRG)lxees), {(Fil(s)lseC}

of & are invariant under the group (F,)®.
We define a subgroup <F4>E,,Fl(s) of the group F, by

(E)El,Fl(s):{a e FilaE,=E, aF,(s)=F,(s) for all s € C}
={a € Spin(D| aF D) =F (1), aFi(e)=F (e)}.

This group (F) E. Fi(s) is isomorphic to the group Spin(7) which is the universal
covering group of SO(7)=S0(V") where V'={&(F,—E)+F ()| & e R, t € CL}.
Furthermore we use the following notation.
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(F)YV={a € F,| Dja=aD, for all « € U)}.

Lemma 2.6. Spin(1)=F)p g (g s a subgroup of (FHYD.
Proof. Let § = Spin(7). Then for D,, a € U(1) we have

BD.F,(2)=pF, (aza) =BF,(a*s+1t) (z=s+t s C t & CL)
=R (@*)+FR(D=F(@*)+(&E+&E+F ()

(for some & € R, I’ € Ci). On the other hand,

DaﬁFl<z>:DaﬁF1 (S’I't):Da(E (S>+ﬁF1(f>>
=D, (F()+&EE+&E+FRU)) =R(as)+&E+&E+F ().

Thus we have gD, F,(z)=D,8F,(z), z = ¢. Next, for 2 € ¢,

BD,F; (2)=pF,(az) =48 (F,() X F,(2)) X Fy (@)) =4(F,(1) X F3(z)) X F (@)
=4(F (D)X (F (%) +F %) X F(a) (for some v, € 6)
=, (an) + F(aa) =D, (Fy () + Fy (1)) = DI, (2).

Similarly gD, F;(z) =D,8F;(2). Clearly D,8=8D, on E,. Finally
Dyl = Do( & B+ &+ FL (D)) =&l + & B+ FL () = BE, = D, E,

(forsome & € R, |t CJ—). Similarly D,B8F; =BD,E;. Thus we have D,8=8D,, that
is, B & (FHUD,

Theorem 2.7. The group (F,;)Ga s isomorphic o the group (U (1) X Spin(7))/Z,
where Z,={(1, 1), (—1, —=D}.

Proof. We define a mapping ¥ : U)X Spin(7)—(F)® by

¥(a B)=D.B.
Obviously ¢ is well-defined : ¥ (a, 8) € (F)® (Lemma 2. 6). Since D,(a € U(1)) and

B € Spin(7) commute (Lemma 2.6), ¢ is a homomorphism. We shall show that  is
onto. Let @ & (F)®. Put aF (1)=F,(s), s € C. Then we have

aF(@)=aF(wlw)=aD F(1)=D, aF,(1)=D_ F (s%)=F (%), @
aF(@)=aD, D, F,(1)=D, D, aFi(1)=D, D, F,(s)="F (o%). @

Taking (1)—(2), we have aF,(e)=F,;(es). Now, choose @, € C such that a’=s,.
Then

aF\(D=F(s)=F(a)=D,F 1), aFi(e)=F(es)=F(ae)=D,F (e.
Put p’:Dao—la, then BF, (1) =F (1), BF(e)=F,(¢) and BE,=FE, (Lemma 2.5),s0 8
Spin(7). Thus we have

«=D,  D,€ U, B € Spin(D),

that is, ¥ is onto. Obviously Kery-=2;. Thus we have the isomorphism (U (1) X Spin
(T /2o =(F)™.
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Corollary 2.8. (F)%=(F,)S where S=y (U, 1). In particular, the manifold
F,/(FD® has a homogeneous complex structure.

2. 3. Automorphism w of order 3 and subgroup (SUB)XSU(3))/Z; of F,

Let w= w—%«%-"/% ¢ € C < ¢ and we define an R-linear transformation w of & by

wX+M)=X+oM, X+M 3G ODPME C) =3 .

This w is the same one as w € G, C F,. Of course w®=1.

Theorem 2. 9. The group (F)Y is isomorphic to the group (SU3)XSU(3))/Z,
where Z;={(E, E), (wE, ok), (0*FE, &@*E)}.

Proof. We define a mapping ¢ : SU(3) X SU(3)—(F)" by

P(P, AY(X+M)=AXA*+PMA*, X+MeJG@ OOPME, C)=3.

Y is well-defined: (P, A) € F,[6] moreover = (F,)". Obviously ¢ is a
homomorphism. We shall show that 1 is onto. Let &« = (F,)". Since the restriction «’
of e to J,={X e JlwX=X}= J(, C) belongs to the group F, ¢ ={a & Isop(J¢,
Sl a(X e Y)=aX - al}, there exists A € SU(3) such that

aX=AXA* or aX=AXA*, Xe3@G C)

[7]. In the former case, put S=%(E, A)~'a, then £ J(3, C)=1. Hence 8 € G,
moreover 8 € (().=(G;)" (Theorem 1.1)=SU(3). Hence there exists P & SU(3)
such that

BXA+M=X+PM=y(P, EYIX+M), X+Mec J;PDMEB, C)=3.

Therefore we have a =y (E, A=y (E, A)¥ (P, E)=v¢(F, A). In the latter case,
consider the mapping y: 3— &, y(X4+M)=X+M, X+M € S andrecally € G, <
F,. Put B=a "¢ (E, Ay, then 8§ € F, and 813 ¢=1. Hence 8 €(G).=(G)"
(F)®. Since B, a, Y(E, A) € (FDY, v also € (F,)%, so v e(G)Y which is a
contradiction (Theorem 1. 6). Thus we see that i is onto. Keryr = Z; is easily obtained.
Thus we have the isomorphism (SU(3) XSU(3))/Z; = (F)Y.

3. The group FE;

Let SC={X,+iX,| X; € 3 }(called the complex exceptional Jordan algebra) be
the complexification of . As in &, in §° also, we define multiplications X - ¥, X x
Y, the inner product (X, Y), the trilinear form (X, Y, Z) and the determinant detX.
Finally, in J € we define a positive definite Hermitian inner pruduct <X, ¥ > by (zX,
Y).

The group

E,={a € Is0 o(3° 3O detaX =detX, <aX, aV >=<X, Y >}
={a €150 o(3C IOI1aX, a¥, aZ)=(X, Y, Z), <aX, aV >=<X, Y >}
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={a €Is0o(3° IO aX xaV=rar(X X Y), <aX, aY >=<X, Y>}

is a simply connected compact simple Lie group of type E; [6]. For « € F,, its
complexification X € 5% belongs to E, so we can regard F, as a subgroup of E,
under the complexification.

3.1. Automorphism y; of order 3 and subgroup (U(1)xSU(6))/Z, of E;

We consider C-linear transformations y, v of € which are the complexifications
of y, 3 € Gy C F,, respectively. Of course y, 5 € F; and y*=1, y%=1.

Let C=RC={&+i& | & e R} and we define an R-linear mapping % : H — M (2,

C) by

&H+i& —&+ig
&+ig  &—i& )’

This % is naturally extended to R-linear mappings

R((&+ &)+ ea(s+&e))= & e R.

k: MG H)-M®, C), k: H->M(Q,S4 C).

Moreover these £ are extended to C-linear isomorphisms &2 : M (3, H) CM@6,0), k :
(H*®> M(2, 6, C) respectively by

R(Xi+iXy) = k(XD +1k(X), X: € MG, H),
k<a1+ia2> — k(a1)+ik(az>, a; EHa.

Finally, we define a C-vector space & (6, C) by
&6, OO={S € M(6, O)I'S=—-S5}
and a C-linear isomorphism &; . 3 (3, H)C—>(r5(6, C) by
k(X +iX) =k(XD] +ik(X)], Xie 3G, H)

‘ Jo 0 0
where /= |0 J 0 ,]'Z[(l) ~(1)J
0 ¢ J

Known result 3. 1. [6]. The group (E;)? is isomorphic to the group (Sp(1)xSU
(6))/Z, by an isomorphism induced from the homomorphism + : Sp(1) XSUB)—
(E)7,

(b, AN X+a)=k (Al (XD +pk (R(@AY), X+a & 3 yOHH =3
with Kery=2,={(, E), (—1, —E)}.

Theorem 3.2. The group (ED” is isomorphic io the group (U1 xSU(6))/Z,
where Z,={(1, E), (—~1, —E)}.

Proof. Let U =4{s e ClIsi=1} ¢ Sp) c H < ¢. We define a
homomorphism v : U(1) X SU(6)— (E)” by the restriction of ¢ of Known result 3. 1.
Then ¥ induces an isomorphism (U (1) xSU(6))/Z, =(E)” whose proof is similar to
Theorems 1.2, 2. 2.
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Corollary 3.3. (F)"=(FE)° where S=¢(UQ), V). In particular, the manifold
E./(ED” has a homogeneous complex structure.

3. 2. Automorphism ;" of order 3 and subgroup (Sp(1) XS(UA) XUB)))/Z, of
E;

. —1
Let v:exp«%L e € and put Av: v . € SU(6) < M6, C). Put
o

=y, Au) where ¢ is the mapping ¥ : Sp(1) xSU®B)—(E;)” defined in Known
result 3. 1. Of course ' € F; and y’?=1. Since Av3: VE € z(SU(6)) (the center of SU
)

(6)) and v(1, A®=w] (where w:—%-Jri-i € 0 e 2(E,)(the center of E), y'

induces an automorphism ;" of Ey of order 3,
wa)=yay™!, a€ k.
In order to investigate the group (EG)%I, we consider C-eigen vector subspaces
(39 iy i=0,1, .., 8 of ¢ with respect to v :
]9, ={X+ae 3LDHEH ¥ X+a)=v(X +a)}
={0+(@(a—1), @ a)la € H, @, & € H®},
(39,=(X+a € SFOH |y X +a)=v'(X +a)}
& (a+ida @m(a—D)

——— . & R
:{ <61+1>d3 0 0 +(a1(el+l)a 07 0) ‘ ) }’
@ (e —1) 0 0
(3%,={X+ae 3 LSOHE) y X+a)=v(X+a)}
0' (a—Da alea+iD) £ & e R
=t a-ba & a0 e H 4 oa e H
wlat+d @ £ ‘ o

(39, ={X+a € S LSBHHC vy (X +a)=v(X +a))
={0}, i=0,23,5,6,8.

These spaces are invariant under the group (Eﬁ)yal.

Theovem 3.4. The group (Ea)%’ is isomorphic to the group (Sp()xSUN) xU
(5I))/Zy where Z,={(1, (1, E)), (1, (=1, —E))}.

Proof. First we shall show that (H )€ is invariant under the group (Eﬁ)y3 From
the form of (& ) it is sufficient to show that we have aa € (H»)C for a €(E,)
a=(ale+1), 0, ) =F ((ale,+1))), a € H. Now, in fact,

aF ((ale;+1))e)=—4a(FL(DXFK((a—a)) X F(e)
=—4((aF, (1) X aF3((e,—1)a)) X zarFy(e)
CA(IEXIIOXHEH S5 HHC < (HHE.
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Thus we see that (H?) is invariant under the group (E;) 73', hence HC: ((HHG L=
X e 3 ) <X, Y>=0 for all Y = (H"‘)C} is also invariant under (Eﬁ)yar.
Consequently, @« € (E)” commutes with y: (5)” < (5&)”. Now, we define a
homomorphism ¥ : Sp(1) XSU) X U(5))—>(E6)73, by the restriction of ¥ of Known
result 3. 1. Clearly ¢ is well-defined. We shall show that  is onto. Let & & (&) '
Since (Eﬁ)y“l < (E)7, from Known result 3. 1, there exist p e Sp(1), A € SU(6) such
that & =4 (p, A). From the commutativity '@ = ay,’, that is, ¢ (p, Av A)=4(p, AAU),
we have AUA:AAU. Hence A € S(U1) xU(5)) (== U(B)). Thus ¢ is onto. Obviously
Keryr=Z,. Thus we have the isomorphism (Sp(1) xS(U) XU(S)))/ZZz(EB)%’.
a5

Corollary 3. 5. (Es)yal: (ES where S={¢1, A)| A= a' € SU(b),a
" a
U}, In particular, the manifold Es/ (EE)%, has a homogeneous complex structure.

3. 3. Automorphism o; of order 3 and subgroup (U)X U)X Spin(8))/(#, X
Z,) of E,

Let U)={¢ € C || § |=1} and we define an imbedding ¢ : U(1)— E; by

& % % 0's O O
(& X3 & x| = 6% 072 6%,
n o n & 6, 67%x 672§

Now, we regard o, 6z & F, as elements of E;. Of course ¢?=1, 6°=1.

Known result 3.6 [6]. (1) The group (Be)p={a € K| aE\=E} is 1somorphic to
the group Spin(10) which is the universal covering group of SO10)=SO(V) where
Ve={X & 3% 2E xX=—2X}. v

(2) The group (ED° is isomorphic to the growp (U(L)xSpin(10))/Z, by an
isomorphism induced from the homomorphism ¢ : U(L) X Spin(10)— (E)°,

¥(8, B =¢(0)B

with Kerypr=2Z,={(1, ¢ (1)), (=1, ¢(~1)), G, ¢, (—i, #(—iN}.
Lemma 3.7. For a € (E)%, there exists & e UQ) such that ok, =EE,.
Proof is similar to Lemma 2.5 and see [6, Lemma 9].
We define a subgroup (Fs) E, F.(s) of the group £ by

E g po={a € Bl aEi=E,, aFi(s)=F(s) for all s € C}
={a € Spin(10| a1 (D=F (1), aFi(e)=Fi(e)}.

This group (B g g (s I8 isomorphic to the group Spin(8) which is the universal
covering group of SO(8)=SO(V*®) where V®={ZE,—¢E,+F,(1)| £ € C, t € CL}.
Furthermore we use the following notation.

(E)YV={a € E| Dya=aD, for all « € U(1)}.
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Lemma 3.8. Spin(8)= (B g, p.(s) 5 @ subgroup of (EHU®,

Proof is similar to Lemma 2. 6.

Theorem 3. 9. The group (ED® is isomorphic to the group (U)X U)X Spin
@)Y/ (Zy X Zy) wheve Z,={(1,1,1), G, e, $(DD.), (—1, =1, 1), (—i, —¢, ¢p(1)D.)} and
Z,={(1,1,D, 4, -1, o)}.

Proof. We define a mapping v : U(1) X U (1) X Spin(8)— (E)™ by

v (0, a, )=¢(6)Defs.

Obviously v is well-defined : ¥ (8, a, 8) € (E;)®(Lemma 3. 7). Since ¢ (8)(8 € U()),
D, € U and g < Spim(8) commute with one another (Lemma 3.8), ¢ is a
homomorphism. We shall showi that ¢ is onto. Let & (E)®™. From Lemma 3. 7, there
exists § € U(1) such that

aE1 — 04E1 — ¢ (g)El

Put 8=¢(8)"'a, then BE, = E,, that is, 8 E((Es)US)El:{a e (E)® aE, =E,}. From
Lemma 3.7, we see that the vector space

{F©ls € C1={X (Y DL ExX=0, <E, X>=0, 2B x X =—1rX)

is invariant under the group ((Ee)da)E]. So we can put S (1)=F,(s), $% € C. Then
we have also BF,(e)=F,(es,) (cf. Theorem 2.7). Choose @ & C such that g?=s,.
Then ,()’Fl(l):Da0 ., p’Fl(e):Daﬂ F.(e). Put z)‘:Dao‘lp’, then ¢ = Spin(8). Hence
we have

a=¢(D, 5 6€UD, aec UQ),d e Spin®.

Thus ¢ is onto. Finally we shall determine Keryr. Let ¢ (8)D,6=1,6 € U(l),a € U
(D), ¢ € Spin(8). From ¢ (8)D,0F, = E,, we have 6*=1. Hence 6= +1, +1i. In the case
of 8=1, from D,8F,(1)=F,(1), we have F,(a*)=F,(1). so a*=1. Therefore a=1, =
lora=—1,86=D_,=0.50 (1,1, 1), {1, =1, 0) € Kery. In other cases of 8, we can
similarly determine elements of Kery. Thus

Kery={(, 1, 1, (G, ¢, (DD, (=1, =1, 1), (—1, —¢, (D Do),
(17 _1y G)a (_1’ —¢ QS(l)De)v (.._1’ 1y 6): (_1; ¢, ¢(_1>D€)}
:<<11 e, ¢<1)DE>> x<<17 _17 G)>:Z4XZZ.

Thus we have the isomorphism (U(1) X U (1) X Spin(8))/(Z, X Z,)==(E;) ™.
Corollary 3.10. (E)™=(FE)S where S,=¢ (1, UL, 1)
=(E)% where S,=y (U, UD), 1.
In particular, the manifold Es/(E)™ has a homogeneous complex structure.
3. 4. Automorphism o;" of order 3 and subgroup (U(1) X Spin(10))/Z, of E;
Let ¢ : U(1)— E; be the imbedding defined in Known result 3. 6. Now, let v=exp
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gg—l e C and denote ¢ (v) by ¢’. Of course ¢’ € F; and ¢’°=1. Since 0*=wl € 2(E),

¢’ induces an automorphism ;" of Es of order 3,
6'(a)=0'ac’™}, a € K.

Theorem 3.11. The group (Es)ga, coincides with the group (Es)°, so it is
isomorphic to the group (U)X Spin(10))/Z,.
Proof. Since

& % X% V& ws uy
oy 9;3 & x| = wj/a viE vin |,
% % & wy vy v

C-vector subspaces {¢Ei1 & € C}, (R +FE )| x € ) and (&E+&E +F (x)
1& €C, x e ¢° of 3 are invariant under the group (Eﬁ)%'. In particular, & €
(EB)‘TS’ commutes with o': (E;)‘Ta/ c (E)°®. The converse inclusion (EB)'y C (Es)”a’ is
clear because (E)?=¢(U1))Spin(10). Thus we have ()™ = (By) ==(U(1) X Spin
(10))/Z..

Corollary 3. 12, (Es)da,:(Ee)S where S=(UQD), ). In particular, the manifold
E/ (EB)US/ has a homogeneous complex structure.

3. 5. Automorphism w of order 3 and subgroup (SUB) X SUBYXSU(3))/Z, of

N3

Let w= —%%— o ee C c & and we define a C-linear transformation w of 3¢ by

wX+M)=X+oM, X+M c 33, OOP M3, )¢=3C

Es

This w is the same one as w € G, C F, < E. Of course wi=1.

Theorem 3.5. The group (E)¥ is isomorphic to the group (SU3) X SUB)XSU
(3))/Z; wheve Z,={(1, E, E), (wl, oFE, ok), (©%], @E, oE)}.

Proof. We define a mapping ¢ : SU3) XSU(3) x SU(3)—(F;)* by

(P, A, BY(X+M)=h(A, BYXh(A, B)*+PMzh(A, B)*
X+Me 3G OPMEG, C)C=3C

where h: M3, COXM(3, C)— M (3, O)C is the mapping defined by k(A4, B) =
A‘Z*B +142Bde o is welldefined: y(P, A, B) & B [7] moreover & (E)™.
Obviously ¥ is 2 homomorphism. The proof that 4 is onto is similar to Theorem 2. 9.
Thus we have the isomorphism (SU(3) x SU(3) x SU (3))/Z;==(E;)™.
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