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    l. Introdnction. It is well known that there are two cannonical bilinear forms on

the tangent bundle of a smooth oriented surface which is immersed in the 3-

dimensional Euclidian space. These are called the first fundamental form and the

second fundamental form. The principal curvature of the surface are defined by

comparing these two forms. And a point where two principal curvatures coinside is

called a umbilic point. Except for umblic points there exists a decomposition of the

tangent space into two direct summands, each of which is tangent to the one of

principal curvatures. And if a curve tangents t6 those tangent lines of direct summands

at any points of it, it is called a curvature curve.

    In general for a given symmetric bilinear form on a 2-dimensional Riemannian

manifold, we define the corresponding curve fammily with singularities and its local

topological classification in the section 10. And we show the structurally stable

condition of curve ･families on 2-dimensional closed Riemannian manifolds in the

section 15.

    2. Let M be a 2-dimensional Riemannian manifold, and G a given Riemannian

metric of ML For a given symmetric bilinear from Q on the tangent bundle of M] we

call a real number A the eigen value of Q at a point P of M (with respect to G) , if the

bilinear form (Q-AG) degenerates, The eigenvecter space of the tangent space TMb

at the point P is defined by

           Li={u E TMbl((?-AG)p(u, v)=O for any v e TMh},

    If these two eigen values are different at P, the eigen spaces are 1-dimensional and

are mutualy perpendicular with respect to G Let S be the subset of M such thet a point

of S hes multiple eigen values. And L a = TII4b on S. On the open submanifiold M-S

we have two tangent line fields. Let L be the tangent line field corresponding to the

larger eigen value. Since L is a smooth Iine field, by integration there is curve family

on M. We call it the curve family with singularities S defined by Q.

    In general a curve family with singuiar points on M is defined by a 1 -dimensional
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foliation of M -S where S is a ciosed subset of M. We call S the set of singular points.

Given two curve families with singularities, if there exists a homeomorphism such that

the singular set corresponds to the other singular set, and each curve of the foliation

corresponds to the others, then we call these curve families are topologically

equivalent. Similar}y locai topological equivalency is defined. Our purpose of this papar

is the classification of generic topological types of the curve families wish singular

points defined by symmetric bilinear forms on a 2-dimensional Riemannian manifoid.

   3. Let M and Ai be Riemannian 2-manifolds and Q a symmetric bilinear form on

M. And let f be a diffeomorphism from IV to M. We have a induced bilinear from on

N
          f"Q(za, v)p=:Q(f,za, f,v)flp),

where za and v are tangent vectors of IV at P, and f, denotes the differntial map off

   Proposition. if f is a conformal diffeomorphism from N to M then f is a

topological equivalence from the curve famiiy with singular points defined by f"Q to

the other defined by Q.

   Proof. There exists a positive smooth function ip such that

          f"G M= diG Ar,

where G M and G N are given Riemannian metrics of M and IV respectively.

   If (f'Q-AdiG.)p(bl, v)p=O,
then (Q-AG M) flp) (f,u, f,v) flp)=O.

   Therefore for any point P the eigen value is di-times of the corresponding

eigenvalue at f(P) and each eigenvector space corresponds to the other defined by f,.

So f gives a required topological equivalence.

   4. It is well known that on a 2-dimensional Riemanian manifold there exist

isothermal local coordinates, [BE]. By the last proposition it is enough to consider

local topologicai types of curve families with singularities defined by symmetric

bilinear forms, we may assume that M is a Euclidian 2-plane R2. Except for

singulaities the local topolgical types are trivial. Now we consider the local toplogical

types at the singular points.

    Let A be a symmetric 2×2 matrix valued smooth function defined on some
neighbourhood U of the origin which represents a symmetric bilinear form :

           A== (z 2)･

where a, b and c are some smooth functions on CL

    If we subtract (a÷c)/2eE from A then each eigenvalue decreases by (a+c)/2
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and it has the same eigenspaces as A. So we may assume that a= - c. The eigenvalues

of A are ± (a2+b2) i'2, and a point of U is a singular point if and only if a(x) =b(x) =

O. The eigenvecter space which corresponds to (a2+b2)it2 is

          L={(z4 v) E U i au+bv=u(a2 -l- b2) i,2}.

   Now let a == det (A) .

   Generic condition I. For any singular point P, a #O.

   It is easy to see that this condition is generic. And by the inverse function theorem,

this condition implies that the singular points are isolated singular points.

   5. For a smooth curve family on a neighbourhood U of the origin O in R2 we

assume that O is an isolated singlar point, and let S g be a circle in U with the center

O and a sufficiently small radius E. For a point P of the unit circle Si we define a smooth

mapf, : Si-Pi such thatf, (P) is the tangent line of the curve at EP, where P'

denotes the 1-dimensional real projective space which consists of all lines through O.

P' is cannonically orientd by the orientation of a so we can define the mapping degree

degif) off,.

   The mapping degree is homotopically invariant, and deg CIC) is invariant for E. We

define index t of the curve family at the isolated singular point by L =r:deg(f)/2.

   6. Now we calculate the index of the singular point of a curve family defined by

A, a bilinear form with the generic condition I in section 4 at the isolated singular

point.

   The direction [cos(0): sin(0)] of the line defined by the eigenspace of A

corresponding to the larger eigen value is given by

           (Z -Z) (gl.S e,) -(a2+b2)"2 (g,O..S S,) , where A== (Z -Z) .

That is

          a2 cos2 e+2ab cos 0 sin 0+b2 sin2 0=a2 cos2 0+b2 sin2 0

and

          a sin(2e) ::: b cos(2e).

Therefore the argument of (a, b) is 20. We have

   Proposition. If Di of A at singular point O is positive then the index of the curve

family at O is 1/2. Similariy, if Di of A is negative then the index is -1/2.

   Proof, In the case of positive a, by the inverse function theorem (a, b) is the

orientation preserving local diffeomorfism at O. A sufllciently small circle with center

O is mapped to the neighbourhood of O with degree 1. By definition, we have the index

t = 1/2.



   7. At first we assume that A is Iinear, that is

          A=: (Z -2) , a=a'x+a"M b= b'x+b"M

where a', a", b' and b" are constant, and (eq y) is the canonical coordinates on U

   Then Di =a'b"-a"b', which is non zero by the generic condition I, Dt tO. Now we

use the exponential map

          exp(ny 0) = (ercos 0, e'sin 0).

It is a well known conformal map, and is a local topological equivalence from the curve

family defined by exp"A to the other deined by A,

          exp"A=`(1 (exp) ) (A exp) U (exp) ) ,

where J(exp) is the Jacobian matrix of exp. Therefore,

          1(exp) (z e) ==er(sC MSc),where c=cos0 and s =:sin 0,

and

          ,.,*A-,3r(-g s,) (zlc,:a,11g -Zls'-211g) (g -2).

   And we assume that (1, O) is one of eigen vectors of exp*A. Then we have

    (*) (-s, c)A (g) =:o.

And if the eigen Value is positive,

    (**) (a s)A (g)>o.

These conditions are invariant for r and are homogeneous of degree 3 with respect to

c and s. Let 0 be one of the solution of (*), then (0+ w) is also a solution of (*). But

the signature of (**) are different, Let Q be the discriminant of (*). If D] is positive

then (*) has 3 solutions in [O, rr), and if a is negative then (*) has a unique solusion

in [O, rr). And these are corresponding to solutions (*) and (**) in [O, 2rr). Now we

assume the foJlowing second generic conditjon :

   Generic conditiom II. For any singularpoint with generic condition I, a #O.

   8. There exist solutions of (*) and (**), and by rotating the coordinates, we may

assume that one solution, say e, is equal to O. From these assumptions (*) and (**)

imply

    (,t) b'=O,
    (**') a">O.

the eigenvector spaces are invariant under multiplication of positive numbers to A.
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Without loss of generalities, we may assume that a'=1. By the condition (*'),

           (- ,, ,) (z.,' a"s rm 2"S- .,,,) (g) -o,

           (2-b")c2s+2a"cs2+b"s3=O.

The discriminant is I),=b"2(a"2+(b"-1)2-1). '
   And Di==b, we can classify singular points of symmetric bilinear ferm with

generic conditions I and II, to the following three types,

   I. D,<O,h>O.
   II. D,>O,JQ,>O･

   m a>o, a<o.

   9. Let op(0) be the augument of the eigenvector space which corresponds to the

positive eigenvalue. Its valuation is the followings. When e increases to 0+2rr, op

decreases to op - rr in the case I, decreases to op -3rr in the cases II and III, because the

indexdepends on Di and is 1/2 in the case I, -1/2 in the cases II and III, at a solution

of (*) and (**) (op iii O (mod rr)), the differential arp/aO has following signature.

   In the case I, Oop/OO<O on three solutions in [O, 2T).

   In the case II, aop/OO<O on two solutions, and Oij/aO>O at one solution.

   In the case III, Oty/aO<O at the unique solution.

   By lemmas in the section 11, we can classify the topological types of the curve

family defined by exp"A on the region between two solutions of (*) and (**). And

lemma 4 gives the global topological equivalence for the representative curve families.

   IO, Theorem I. Topological types at the singular point O of curve families defined

by linear symmetric bilinear forms are classified by Di and a into three types I, II and

III of the last section 9.

    Before the proof of the theorem, we give some examples of curve families.

    (1) Let A= (-: rm-Yx). The bilinear form A defines a curve family with a

singular point of type I. Preciseiy the curve family is defined by xcix+ydy : (x2+y2)it2

du and solution curves are parabolic curves y2==2ha+fe2(le>O), and y=O (x>O). See

Fig. I.

    (2) Let A : (3: -3Yx) . The bilinear form A defines a curve family with a singiular

point of type II. See Fig. II.

    (3) Let A== (: -Yx) . The bilinetir form A defines a curve family with a singular

point O of type III. See Fig. III.
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         Fig.I Fig. II Fig. III
   11. Let X be a smooth vector field defined on Rx[0i, a].

   Lemrrta 1. If X is represented by the form (op, 1), then the integral curve farnily

of X is topologically equivalent to the curve familiy {[ei, a]×k c[0i, a] ×R 1 le G

R}. where vector field (op, 1) means opa/aO+O/Ot.

   Proef. Let ¢ be the integral flow of X; the following diffeomorfism f is the

required topological equivalence.

          f(t 0) =¢ (e-e)(L ei), tE R, 0 Ei [0i, eh].
                       L

   The restriction off to (0i ×R) is the identity map and the restiction to (e×R) is

an orientation preserving diffeomorphism onto itself for 0 E [0i, a],

   Lemma 2. Let X be a smooth vecter field of type (1, 4), where 4 satisfies that 4

(t 0,)>O, 4(t, &)<O and ag/ae(t 0)<c, tE R, 0e[0i, &], for some negative

constant c. Then this integral curve family is equivalent to the integral curve family

defined by the vector field Y== (1, (0i+02)/2-e).

   Proo£ We define a diffeomorphism f on R× [ei, a] such that

          f(¢.(t 0,)=aP,(t 0,), t2 O,

and f(¢,(t &) == aP,(4 &), t2 0,

where ¢ and W are integra} flows defined by X and Y respectively. If this map f is

smoothly defined then f is the required topological equivalence.

   Since {ops(4 0i)i t G R, s E [O, oo)}, (i=1, 2) are disjoint open sets of the region

Rx[0i, a], there exists an integral curve except for the curves starting from

boundaries : 0=: ei or 02. We show that this orbit uniquely exists. If two orbits through

two points (L &) and (t &), where (03 < a), then these orbits rps(4 &), Os(4 E4) are

defined for any s E R, and Os(4 0i) is on (t+s) ×[ei, e2]･

By the assumption
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          1 4(4 61i)-4(4 a)1>c l tl,-61ii,
            '
and

           1 ops(4 6k)-¢s(4 614)i>-c 1 65-&I s.

   For sufficiently small s<O, the left side member is greater than 1 a- 0i 1. Then one

of the orbit starts from a point of boundary.

Similarly for aij, and we may define f by the following

          f(¢s(t &)) ==Vs(4 &)･

   Then f is defined on R× [0i, &] and it is easy to see that f is a hemeomorphism

onto itself. The mapping f is a required topological equivlence.

   Lernma 3. Let X be a smmoth vector fleld of type (1, 4), where 4(4 Ei) <O, 4(L

a)>O, 04/OO(L 0)>c, for some positive constant c, and tE R, eE[0i, a]. The

integral curve family defined by X is topologically equivalent to the integral curve

family defined by the vector field Y=: (1, --(0i+&)/2+e),

   The proof is similar to the proof of lemma 2.

   Lemarvta 4. Let Y=(1, -0) be a vector field defined on Rx[O, 1], and g be an

orientation preserving diffeomorphism of R such that {g(x) -x i x E R} is bounded.

There exists a topological equivalence f of the curve family defined by Y to itself such

that the homeomorphism f coincides with the given diffeomorphism g on R× {1}.

   Proof. At first step we make a smooth isotopy from the identity map of R to g;

op : R× [O, 1]-R such that aop/at(t) >-1/t. Let M be a upper bound of (x-g(x)),

and Y=:(-1/(t+6), 1) a smooth vector field on Rx[O, 1] Where 6 is a positive

constant. For sufficiently small 6 (precisely 6<min<exp(-M-1), O.1}, the integral

flow Ot(x, O) satisfies that

           aep/at= -1/(t+ 6) -1/ t,

          x-¢,,, (x, O) < M.

   On the other hand we give an isotopy aP : R× [1/2, 1]-R

          au(x, t) -- (2t-1)g(x)+(2-2t)¢o.s(x, e).

Then aW/Ot=2(g(x)-¢o,s(x, O)
                >2(x-M+M-x) =O.

    Let {pti, pt2} be a partition of unity on [O, 1] for the covering {[O, 1), (O, 1]}. We

define the required isotopy

           ¢(X} t)=pti(t)Ot(X, O)+pt2(t)W(X, t).

    Next we define the topological equivalence f Let (x, t) be a point on the integral

curve of Y starting at (Jtlo, 1) , we define f(x, t) as the intersection point of the integral

orbit of IY starting at (g(tb), 1) and the curve {(¢(x, s), s)lsE [O, 1]}. Let (y, s) be

an intersection point, we show that it is uniquely and smoothly determined. Since (M
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s) is on the integral orbit of Y starting at (g(xb), 1),

          y-g(Ah)=-log(s)

and ¢(x, s)=y.
   Let a(s) =¢(x, s) -g(xb)+log(s),
then aev/Os=aop/as+1/s>O,
          a(1) =g(x) -f(ab) > O,

and lima(s)=-oo.
          S -}oo

   Therefore the intersection point is uniqueiy and smoothly determined. Sof(n t) :::

(y, s) defines a diffeomorphism of R× [O, 1], and we get the topologicai equivalence of

the curve families.

   12. In general let A be a smooth symmetric bilinear form on a neighbourhood of

an isolated singular point O Ei R2, say

          A- (z -2)･

   where a, b are smooth functions defined on some O-neighbourhood and a(O) =b

(o) =o.

   Let L be a linear approximation of A. That is

          L=(ZIX.++"bllY, th£1.Xt.bl,',Y),

where a'=aa/ax (O), a"=aa/ay (O), b' =:: ab/Ox(O) and b"=ab/ay(O).

          exp"A=exp*(L+ll),

where H is a bilinear form of higher order, and

          exp"A=::e3r(-sC Sc) L (sC MSc)+e4rll'

where H' is a some smooth matrix.

   For a sufliciently small z eigenvector spaces of exp"A are approximated by those

of ( - sC Sc ) L ( sC M Sc ) . Since a simple root of a polynomial equation depends on its

coefficients smoothly, if ca is a root of (*) and (**) of exp"L and if it satisfies one of

the conditions of lemmas 1, 2, and 3, on some neighbourhood of e, then exp"A satisfies

the same condition on (-oo, 4)×[0i, &] for some 4, Therefore on the region, the

curve family defined by exp*A is topologically equivalent to the curve family defined

by exp'L. Similarly to the linear case, the curve family is defined on the common

isolated singular point O.

   Theorem II. Let M be a 2-dimensional Riemannian manifold and Q a smooth
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symmetric bilinear form of A41 If the linear part of Q satisfies generic conditions I and

II in the sectioR 5, at the isolated singuir points of the curve family defined by (IL the

curve family is locally equivalent to the one of the examples in section 10.

   13. Let M be a compact 2-dimensional Riemannian manifold. For a given curve

family without non-isolated singular po'ints, the following index theorem is known.

   Tkeorern III. [BA] The index sum of all singular points of the curve family

coincides with the Euler characteristic number x (M) :

           2 ep==x(M),
          PES

where S is the singular point set of the curve family.

   Proof. Let $ be the subset of S which consists of all singular points with integral

indices, and $ be that with nonintegral indices. Since a curve family is locally

orientable on M-S we may construct a covering space M-S for its orientations. On the

neighbourhood of an isolted singular point with an integrai index, the curve family is

oientable, and MS is extendable to Mb =M-S U & U &', where &' is a copy of &. Now

for some coordinates neighbourhood of a singular point p of $, where P corresponds

to O; We give the following branched covering rr : R2 - R2, rr(ag y) = (x2-y2, 2ay).

   Except for O, it is a local diffeomorphism, and the pullback of the curve family

exists and it is the orientation double covering of the foliation without O. At the

singular point O, the index of the covering curve family is 2-times of the index at O

minus 1, Threfore there exists a branched covering space for orientations, M= II4b U

$ with the oriented curve family. The curve family has two times number of singular

points of integral indices in an and has the same number of singular points of

nonintegrai indices as in M.

   Then the total index of singular points on M is

          L (M) =2 :ii) L (P) +: (2L (P) -1),

                   pe& peSi

And the Euler characteristic number of M is

          x(va =2x (M) -# (S).

By the index theorem of Hopf L(M)::x(M), we have

          2e(p)=x(M),
          PEM

   14. Remark. Let M be a compact 2-dimensional Riemannian manifold. For a

given flow X on M) by forgetting the orientation of integral curve family of the fiow,

we get a curve family with singular points This curve family is equal to the curve

family defined by the following symmetric bilinear form :
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           A(u, v)=<u, X> <v, X>.

   Eigenvalues of this bilinear form are O and I X I2, so if X:#O then X is a tangent

vector to the corrsponding curve family. But all the singular points of the curve family

do not satisfy the generic condition I.

   For example, let X be a following vector field with singular point O defined by

           x=:xo/ox-a/ay,

then the related bilinear form is

           A- llL2,M'612 :.`2,"Y.,,).               (

Di of A is O at O, but by deforming this matrix for sufliciently small E>O, we get

           A+Eiir== (tt2-ayY2+E Ixlv,+y2+E),

which defines a curve family with two generic singular points of index -1/2.

    15. Peixoto shows in [PE] the condition for the structurally stability of a flow on

a 2-dimensional closed manifold, Analogously we define the structurally stability of a

curve family, Let Q(M) be the set of all smooth bilenear forms on a 2-dimensional

closed Riemannian manifold II4; which has the compact-open topology.

    For Q EQ(M), if there exists the Q-neighbourhood (7b in Q(M) and any

bilinear form on (Llk? defines a curve family which is topologically equialent to the

curve family defined by (Z we call it a structurally stable curve family, Except for

singular points, the curve family is locally orientable, and the same method holds and

the same properties are given as in [PE]. We define a sigular curve (corresponds to the

separatrix in [PE]) of curve family. If some one side closure of the curve contains the

singular point p, and there exists a enoughly near curve of curve family such that the

same one side closure do not contain p, then we call a curve in the curve family a

separatrix of the singular point p. In examples of the section 11, a singular point of

type I, II and III has 3, 2 and 1 separatrices, respectively. We may modify the condition

of having no saddle connection to the condition 3 in the following theorem. The

conditions of generic singular points are given in last sections. Therefore we get the

following theorem.

    Theorem IV. If the curve family defined by a bilinear form on a 2-dimensional

closed Riemannian manifold, satisfies following conditions, then the curve family is

structurally stable,

    1. All singular points of the curve family are generic in the sense of generic

conditions I and II.

    2. Any one side limit set of a curve is a closed cuve or a singular point.
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    3. Separatrices in common with double sides don't exist in the curve family.

    4. The number of closed curves is finite, and by giving some orientation for its

neighbourhood, closed curves are stable periodic orbits in the sense of flow in [PE].
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