Non-symmetry of the Freudenthal's magic square

By Ichiro Yokota

Department of Mathematics, Faculty of Science Shinshu University (Received May 5, 1985)

In the theory of simple Lie algebras, the following chart is called the Freudenthal's magic square [1].

B_1	A_2	C_3	F_4
A_2	$A_2 \oplus A_2$	A_5	E_6
C_3	A_5	D_6	E_7
F_4	E_6	E_7	E_8

One of the meaning is as follows. To define exceptional Lie algebras F_4 , E_6 , E_7 and E_8 of the last column, we use usually the Caylay algebra \mathfrak{G} . If we replace \mathfrak{G} with the fields of real numbers \mathbf{R} , complex numbers \mathbf{C} and quaternions \mathbf{H} , then the first, second and third columns are obtained, respectively. The beauty of this chart is in its symmetry.

We have constructed simply connected compact exceptional Lie groups F_4 , E_6 , E_7 and E_8 ([2], [3], [4]). Of course we used the Cayley algebra & in these constructions. Now, we do the same replacement as above, then we have the following chart.

SO(3)	$(SU(3)/\mathbb{Z}_3) \cdot \mathbb{Z}_2$	$Sp(3)/\mathbb{Z}_2$	F_4
SU(3)	$((SU(3) \times SU(3))/\mathbb{Z}_3) \cdot \mathbb{Z}_2$	$SU(6)/Z_2$	E_6
Sp(3)	$(SU(6)/\mathbb{Z}_3) \cdot \mathbb{Z}_2$	Ss (12)	E_7
F_4	$(E_6/Z_3)ullet Z_2$	E_{7}/Z_{2}	E_8

We can see a slight non-symmetry in this chart.

References

- H. FREUDENTHAL, Lie Groups in Foundations of Geometry, Advances in Math., vol. 1 (1964), 145
 –190.
- [2] I. YOKOTA, Simply connected compact simple Lie group $E_{6(-78)}$ of type E_6 and its involutive automorphisms, Jour. Math. of kyoto Univ., vol. 20 (1980), 447-473.
- [3] T. IMAI-I. YOKOTA, Another definitions of exceptional simple Lie groups of type E₇₍₋₂₅₎ and E₇₍₋₁₃₃₎, Jour. Fac., Sci., Shinshu Univ., vol. 15 (1980), 47-52.
- [4] T, IMAI-I. YOKOTA, Simply connected compact simple Lie groups E₈₍₋₂₄₈₎ of type E₈, Jour. Math. of Kyoto Univ., vol. 21 (1981), 741–762.