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                           1. Entrodiwactioee

   Using the standard embedding of the quaternionic Stiefel manifold Xh,h in the

complex Stiefel manifo}d I>T'5n,2k, we write

              X'n, lt = ( WEn,2k, X)i,k) (k=1, 2,''').

There is the natural projection

              P' : X'n,h- X'n,i

induced by the natural projection

              P : I>l)>n,2k - I}iSn,2･

   Note that the inclusion

              i: (VP'5.-i,b e) - X'n,i

induces an isomorphism

              i,: rrr(l?L'>nrmi,i, e) - rrr(X'n,i)

for all values of r.

   We say that a relative cross-section of X'n,h is an element cr ff 7r4nrm3(X'n,k) such

that p', (a) generates ,xunrm3(X'n,i) 21 l

    .   Then we shall prove the following theorem :

    7Iheorem. T]ige relative Stidel manij2)ld X'., k admits a 7'elative cross-section of and

on ly if k = 1, or

     ,k == 2 andn i!i 2 mod 24.

   For the pair of spaces W'n,k= (%.,2k, va;,,k), James [1], [2] proved that the

relative Stiefel manifold W'., k admits a relative cross-section if and only if either k =

1, or

                     k -- 2 and niO mod 2, or

                     k=3 or 4 and n ii 4 mod 24,

                           2. Pree]imainary

   Consider the factor space X), ::: U(2n)/SP(n) (n : 1, 2,･･･), with the obvious

embeddings Xic X> cX5 a -･･. The triad homotopy groups

              rr,(U(2n) ; Sb(n), U(2n-2k))
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can be identified with the relative homotopy group

              rrr(Xh, Xh-h)

on the one hand, or with

              rrr( Vl'>n,2h, k i, k)

on the other. Thus we can identify

(2.1) 7Tr(X'n,h) = rrr(X}t, XLi-lt)･

   The homotopy exact sequence of the triple (X),, JC,-i, Xh-h) can be written in the

form
(2･2) ''' - rrr(X'n-i,knti) L" rrr(X'n,k) L" rr,(X'.,,)

                                      -aL'> rrr"i(X'n-i, ft-i) - '''''''

where 1" denotes the inclusion X'n-i,k-i - X'.,k and O' the boundary

homomorphism.

   The image of the generator (e4.rm3) of 7rz.-3( W>.-i,i) !II Z by i, will be denoted by

[L4n-3] cii 7T4n-3(X'n,i). Equivalently, by a relative cross-section of X'.,k we mean an

element of zin-3 (X'n, h) (or the representative of such an element) which projects into

[L4n-3] un.der

              P.':7Z4n-3(X'n,k) - 7T4n-3(X'n,i)･

   Thus we have

(2.3) X'n,k admits a relative cross-section if and only if the homomorphism O' :

7X4n-3(X'n,i) - 7Tlin-4(X'n.i,h"i) iS triVial.

   For example, take n = k. Then the relative Stiefel manifold X'.,. = (U(2n), SZ)

(n) ) admits a relative cross-section if and only if the fibration XL, - S`"-3 admits a

cross-section in the ordinary sense, i.e., if and only if n = 2 ([3]).

   Clearly

(2.4) X'n,i admits a relative cross-section for all values of n.

   Also
(2.5) X'., k-i admits a relative cross-section if X'.,k does.

                        3. PreofefTheorewa

   Let (a,b) be the g. c. d. of a and b.

   Lemma 3.1. 7t4n-4(X'n,2) ; ln-2,24)･

   proof. From (2.1) and the homotopy exact sequence of the pair (X),, Xh-2), we

have the exact sequence

           ft)in-4(X)i) rmm> 7:Lin-4(X'n,2) - 7t4n-s(I¥)i-2) - 7Z4n-s(XLt)･

This sequence is as follows ([4]) ';

       O--)F 7zun-4(X'n,2) --> Z(.m2,24)-O forneven,
       O- Zan-4(X'n,2) m-> Z(n-2,24>OZ2 -t-m)' Z2 ----> O for n odd.

Thus we have Lemma.
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   Lemma 3.2. Tll2e relative Stiojiel neanofbld X'.,2 admits a relative cross-section ij

and only of n ii 2 neod 24.

   Proof. Consider the exact sequence

       7Lin-3(X'n,2) - 71r4n-3(X'n,1) A' 7:Zn-4(X'nni,1)

                                - 7Z4n-4(X'n,2) - 7ZLin-4(X'n,1) = O

of (2.2). Let [v4.-7] be the generator ef 7T;in-4(X'n-i,i) N= 44

for n23. From the exactness of above sequence and Lemma 3.1, we have

              a'([L4n"3]) := (n-2, 24)[v4n-7].

Thus, frorR (2.3), we have Lemma.

   Lemma 3.3. 7)lze relative Stidel manij)id X'.,3 dbes not adwit a relative

cross-section for all nk3.

   Proo£ Suppose that X'.,3 admits a relative cross-section.

Then, from (2.5) and Lemma 3.2, n E- 2 mod 24 and O' : 7z4nL3(X'n,i) - 7zan-4

(X'.-i,2) is trivial by (2.3).

   Consider the commutative diagram

              7T4 n-3 (X'n, i) af 7Z4 n- (X' n-i, 2)

                  lz T
              7Z4n-3(VL/Sn,2) - 7Xlin-4(M)Sn-2,4)

                       X,,,r:Vr,(uh.-97S 1"*

                                   7r4n-4(X}i-i,2)

The right hand column of sequence is the homotopy exact sequence of the pair

(PILn.2,4, Xh-i,2) and as is the boundary homomorphism associated the fibration

Mt>n-},s - Vl)5n-i,i = s4n-3.

   Then, from commutativity of the diagram,

              as((L4n-3)) Ei Image ofi,.

Let b2.-i,s denote the order of as((t4nL3)) in za.-4(Pl'>nL2,4).

Then b2n-i,s is 2 at most, since 7:k.-4(JS,Li,2) r-N'- a ([6]).

   By Walker [7],

              (2n-6)!                      M(n-1, n-3) b2nmi,s GZ
              (2n-2)!

where M(n-1, n-3) == (n-3)(n-2) (2n-5) (10n3-57n2+95n-48)/23325.

              [i:IISil, M(fa-i, n-3) == ("-31,¥8"diT-5,%;l;25,?-48)

If n iii 2 mod 24, then

              10n3-57n2+95n-48 # O mod 4,

              10n3-57n2÷95n-48 =- O mod 2.
This shows that b2n"i,s is a multiple of 2". Thus, we have a contradiction.
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From (2.5), Lemmas 3.2 and 3.3, the proof of Theorem is complete.
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