Note on Relative Stiefel Manifolds

By HIDEYUKI KACHI

Department of Mathematics, Faculty of Science Shinshu University (Recieved October 24, 1984)

1. Introduction

Using the standard embedding of the quaternionic Stiefel manifold $X_{n,k}$ in the complex Stiefel manifold $W_{2n,2k}$, we write

 $X'_{n,k} = (W_{2n,2k}, X_{n,k}) (k=1, 2, \cdots).$

There is the natural projection

 $p': X'_{n, k} \longrightarrow X'_{n, 1}$

induced by the natural projection

 $p: W_{2n, 2k} \longrightarrow W_{2n, 2}.$

Note that the inclusion

i:

$$(W_{2n-1,1}, e) \longrightarrow X'_{n,1}$$

induces an isomorphism

$$i_*: \pi_r(W_{2n-1,1}, e) \longrightarrow \pi_r(X'_{n,1})$$

for all values of r.

We say that a relative cross-section of $X'_{n,k}$ is an element $\alpha \in \pi_{4n-3}(X'_{n,k})$ such that $p'_{*}(\alpha)$ generates $\pi_{4n-3}(X'_{n,1}) \cong Z$.

Then we shall prove the following theorem :

Theorem. The relative Stiefel manifold $X'_{n,k}$ admits a relative cross-section if and only if k = 1, or

k = 2 and $n \equiv 2 \mod 24$.

For the pair of spaces $W'_{n,k} = (V_{2n,2k}, W_{n,k})$, James [1], [2] proved that the relative Stiefel manifold $W'_{n,k}$ admits a relative cross-section if and only if either k = 1, or

k = 2 and $n \equiv 0 \mod 2$, or k = 3 or 4 and $n \equiv 4 \mod 24$.

2. Preliminary

Consider the factor space $X_n = U(2n) / Sp(n)$ $(n = 1, 2, \dots)$, with the obvious embeddings $X_1 \subset X_2 \subset X_3 \subset \dots$. The triad homotopy groups

$$\pi_r(U(2n); Sp(n), U(2n-2k))$$

can be identified with the relative homotopy group

 $\pi_r(X_n, X_{n-k})$

on the one hand, or with

 $\pi_r(W_{2n, 2k}, X_{n, k})$

on the other. Thus we can identify

(2.1) $\pi_r(X'_{n,k}) = \pi_r(X_n, X_{n-k}).$

The homotopy exact sequence of the triple (X_n, X_{n-1}, X_{n-k}) can be written in the form

where j' denotes the inclusion $X'_{n-1, k-1} \longrightarrow X'_{n, k}$ and ∂' the boundary homomorphism.

The image of the generator (ι_{4m-3}) of $\pi_{4n-3}(W_{2n-1,1}) \cong Z$ by i_* will be denoted by $[\iota_{4n-3}] \in \pi_{4n-3}(X'_{n,1})$. Equivalently, by a relative cross-section of $X'_{n,k}$ we mean an element of $\pi_{4n-3}(X'_{n,k})$ (or the representative of such an element) which projects into $[\iota_{4n-3}]$ under

$$p_{*}': \pi_{4n-3}(X'_{n,k}) \longrightarrow \pi_{4n-3}(X'_{n,1}).$$

Thus we have

(2.3) $X'_{n,k}$ admits a relative cross-section if and only if the homomorphism ∂' : $\pi_{4n-3}(X'_{n,1}) \longrightarrow \pi_{4n-4}(X'_{n-1,k-1})$ is trivial.

For example, take n = k. Then the relative Stiefel manifold $X'_{n,n} = (U(2n), Sp(n))$ admits a relative cross-section if and only if the fibration $X_n \longrightarrow S^{4n-3}$ admits a cross-section in the ordinary sense, i.e., if and only if n = 2 ([3]).

Clearly

(2.4) $X'_{n,1}$ admits a relative cross-section for all values of n. Also

(2.5) $X'_{n, k-1}$ admits a relative cross-section if $X'_{n, k}$ does.

3. Proof of Theorem

Let (a,b) be the g. c. d. of a and b.

Lemma 3.1. $\pi_{4n-4}(X'_{n,2}) \cong Z_{(n-2,24)}$.

proof. From (2.1) and the homotopy exact sequence of the pair (X_n, X_{n-2}) , we have the exact sequence

$$\pi_{4n-4}(X_n) \longrightarrow \pi_{4n-4}(X'_{n,2}) \longrightarrow \pi_{4n-5}(X_{n-2}) \longrightarrow \pi_{4n-5}(X_n).$$

This sequence is as follows ([4]);

$$\begin{array}{cccc} 0 \longrightarrow \pi_{4n-4} \left(X'_{n,2} \right) \longrightarrow Z_{(n-2,24)} \longrightarrow 0 & \text{for } n \text{ even,} \\ 0 \longrightarrow \pi_{4n-4} \left(X'_{n,2} \right) \longrightarrow Z_{(n-2,24)} \bigoplus Z_2 \longrightarrow Z_2 \longrightarrow 0 & \text{for } n \text{ odd.} \end{array}$$

Thus we have Lemma.

118

Lemma 3.2. The relative Stiefel manifold $X'_{n,2}$ admits a relative cross-section if and only if $n \equiv 2 \mod 24$.

Proof. Consider the exact sequence

$$\pi_{4n-3}(X'_{n,2}) \longrightarrow \pi_{4n-3}(X'_{n,1}) \xrightarrow{\partial'} \pi_{4n-4}(X'_{n-1,1}) \\ \longrightarrow \pi_{4n-4}(X'_{n,2}) \longrightarrow \pi_{4n-4}(X'_{n,1}) = 0$$

of (2.2). Let $[\nu_{4n-7}]$ be the generator of $\pi_{4n-4}(X'_{n-1,1}) \cong Z_{24}$

for $n \ge 3$. From the exactness of above sequence and Lemma 3.1, we have

 $\partial'([\iota_{4n-3}]) = (n-2, 24) [\nu_{4n-7}].$

Thus, from (2.3), we have Lemma.

Lemma 3.3. The relative Stiefel manifold $X'_{n,3}$ does not admit a relative cross-section for all $n \ge 3$.

Proof. Suppose that $X'_{n,3}$ admits a relative cross-section.

Then, from (2.5) and Lemma 3.2, $n \equiv 2 \mod 24$ and $\partial' : \pi_{4n-3}(X'_{n,1}) \longrightarrow \pi_{4n-4}(X'_{n-1,2})$ is trivial by (2.3).

Consider the commutative diagram

The right hand column of sequence is the homotopy exact sequence of the pair $(W_{2n-2,4}, X_{n-1,2})$ and ∂_5 is the boundary homomorphism associated the fibration $W_{2n-1,5} \longrightarrow W_{2n-1,1} = s^{4n-3}$.

Then, from commutativity of the diagram,

 ∂_5

$$((\iota_{4n-3})) \in \text{Image of } j_*$$

Let $b_{2n-1,5}$ denote the order of $\partial_5((\iota_{4n-3}))$ in $\pi_{4n-4}(W_{2n-2,4})$. Then $b_{2n-1,5}$ is 2 at most, since $\pi_{4n-4}(X_{n-1,2}) \cong Z_2$ ([6]).

By Walker [7],

$$\frac{(2n-6)!}{(2n-2)!} M(n-1, n-3) b_{2n-1,5} \in \mathbb{Z}$$

where $M(n-1, n-3) = (n-3)(n-2)(2n-5)(10n^3-57n^2+95n-48)/2^33^25$. $\frac{(2n-6)!}{(2n-6)!}M(n-1, n-3) = \frac{(n-3)(10n^3-57n^2+95n-48)}{(2n-6)!}$

$$\frac{1}{(2n-2)!} M(n-1, n-3) = \frac{1}{2^5 3^2 5(n-1)(2n-3)}$$

If $n \equiv 2 \mod 24$, then

$$10n^3 - 57n^2 + 95n - 48 \equiv 0 \mod 4,$$

$$10n^3 - 57n^2 + 95n - 48 \equiv 0 \mod 2$$

$$10n^3 - 57n^2 + 95n - 48 \equiv 0 \mod 2$$

This shows that $b_{2n-1,5}$ is a multiple of 2⁴. Thus, we have a contradiction.

From (2.5), Lemmas 3.2 and 3.3, the proof of Theorem is complete.

References

- 1. I.M. JAMES, Relative Stiefel Manifolds, J. London Math. Soc. (2) 13(1976)331-335.
- 2. _____, The topology of Stiefel manifolds, London Math. Soc. Lecture note 24, Cambridge, 1976.
- 3. B.HARRIS, Some calculations of homotopy groups of symmetric spaces, Trans. Amer. Math. Soc. (1963)174-184.
- M.MIMURA, Quelques groupes d'homotopie metasteble des espaces symetriques Sp(n) et U(2n)/ Sp(n), C. R. Acad. Sci. Paris t.262(1966).
- 5. Y.NOMURA and Y.FURUKAWA, Some homotopy groups of complex Stiefel Manifolds $W_{n,2}$ and $W_{n,3}$, Sci. Rep. Col. Gen. Educ. Osaka Univ. vol.25(1967)1-17.
- 6. K.OGUCHI, Homotopy groups of Sp(n)/Sp(n-2), J. Fac. Sci. Univ. Tokyo, 16(1969)179-201.
- G.WALKER, Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford, 32(1981)467-489.