On Rings Satisfying the Polynomial
 1 dentity $\left(x+x^{2}\right)^{2}=0$

By Masayuki Ôhori
Department of Mathematics, Faculty of Science
Shinshu University
(Received 8th June, 1983)

Throughout, R will represent a ring with center C. Let N be the set of nilpotents in R, and E the set of idempotents in R. If E is contained in C, R is said to be normal. It is well known that R is normal if and only if $[E, N]=0$ (resp. $[E, E]=0)$.

Let n be a positive integer, and consider the following property:
$\left(^{*}\right)_{n}\left(x+x^{2}+\cdots+x^{n}\right)^{(n)}\left(=\left(1+x+x^{2}+\cdots+x^{n}\right)^{n}-1\right)=0$ for all $x \in R$.
If $2 R=0$ then $\left({ }^{*}\right)_{2}$ becomes $\left(x+x^{2}\right)^{2}\left(=x^{2}+x^{4}\right)=0$. In [2], R is called a generalized Boolean-like ring if $2 R=0$ and $\left(x+x^{2}\right)\left(y+y^{2}\right)=0$ for all $x, y \in R$. According to [2, Theorem 2], a ring with $2 R=0$ is a generalized Boolean-like ring if and only if N is an ideal with $N^{2}=0$ and R / N is a Boolean ring.

The present objective is to generalize [2, Theorems 3 and 4] as follows:
Theorem 1. Suppose that $2 R=0$ and R satisfies the polynomial identity $\left(x+x^{2}\right)^{2}=0$. Then the following are equivalent:

1) R is commutative.
2) E is an additive subsemigroup of R.
3) E is a subring of R.
4) $[E, N]=0$.
5) N is central.
6) Every element of R can be uniquely written as the sum of an element in E and an element in N.

In preparation for proving the theorem, we state four lemmas. First, we quote [1, Lemma 3].

Lemma 1. If R satisfies $\left({ }^{*}\right)_{2 k}$ and $2^{\alpha} R=0$, then N is an ideal and R / N is a Boolean ring.

Corollary 1 (cf. [2, Theorem 2]). Suppose that $2 R=0$. If R satisfies the polynomial identity $\left(x+x^{2}\right)^{2}=0$, then N is a commutative nil ideal of bounded index 2 and R / N is a Boolean ring (and conversely).

Lemma 2. Suppose that $2^{\alpha} R=0$. If E is an additive subsemigroup of R, then R
is normal and E is a Boolean ring.
Proof. We claim first that E is a group. In fact, if $e \in E$ then $2 e \in E \cap N=0$, and therefore $-e=e \in E$. Moreover, for any $x \in R$ we have $e+e x(1-e) \in E$, and therefore $e x(1-e) \in E \cap N=0$, namely $e x=$ exe. Similarly, $x e=e x e$. Hence, R is normal and E is a Boolean ring.

Lemma 3. Suppose that N is an ideal and R / N is a Boolean ring. Then the following are equivalent:

1) R is commutative.
2) R is normal and N is commutative.
3) $[E, N]=0$ and N is commutative.
4) N is central.

Proof. As is well known, every idempotent of R / N can be lifted to an idempotent of R. Thus, every element of R is the sum of an element in E and an element in N, and the equivalence of 1)-4) is almost clear.

Lemma 4. Suppose that N is commutative and every element of R can be uniquely written as the sum of an element in E and an element in N. Then R is commutative.

Proof. Given $e \in E$ and $x \in R$, we have $e+e x(1-e) \in E$ and $e+(1-e) x e \in E$. Hence, by the uniqueness, $e x(1-e)=0=(1-e) x e$, namely $e x=e x e=x e$. This proves that R is normal, and therefore R is commutative

We are now ready to complete the proof of our theorem.
Proof of Theorem 1. According to Corollary $1, N$ is a commutative ideal and R / N is a Boolean ring. Obviously, 1), 4) and 5) are equivalent by Lemma 3, and 1), 2) and 3) are so by Lemmas 2 and 3. Finally, if R is commutative, then E is a Boolean ring and $R=E \oplus N$ (grouptheoretic direct sum). Hence, 1) and 6) are equivalent by Lemma 4.

References

[1] Y. Hirano, H. Tominaga aud A. Yaqub : On rings satisfying the identity $\left(x+x^{2}\right.$ $\left.+\cdots+x^{n}\right)^{(n)}=0$, Math. J. Okayama Univ. 25 (1983), 13-18.
[2] I. Yakabe : Generalized Boolean-like rings, Math. Rep. College General Ed. Kyushu Univ. 13 (1982), 79-85.

