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1. Introduction
Let #=1 be an integer. Let H(B,) denote the space of all holomorphic functions
in the open unit ball B, of the complex #~dimensional Euclidean space C*. Let
I denote the class of all functions defined on (—oo, o) which are nonconstant,

nonnegative, nondecreasing and convex. For each ¢=I', we define

ANB,)= (fEHB,); | pllogl f)da<eo)

HHB,)= (f€H(B,); sup |  fllog| firt)do()<eo)
0<7<1J8Bx

Here 1 is the usual Lebesgue measure on C"=R?* 3B, is the boundary of B, and
o is the rotation invariant positive Borel measure on 0B, for which ¢(©B,)=1. If
dt)=eP?, 0< p<loo, then A¥B,) are the Bergman spaces AP(B,) and H¥B,) are the
Hardy spaces H?(B,). If ¢(t)=max(0, #), then H¥B,) is the Nevanlinna space N(Bx)
and A#B,) is denoted by A%B,) throughout this paper. H®(B,) stands for the space
of all bounded holomorphic functions in B,,.

The open unit disc in the complex plane C will be denoted by U in place of
B,. It is well known that all of the spaces H?(U) (0<p==o0) and the space N(U)
admit the same zero sets which are completely characterized by the Blaschke
condition. (See e. g. [17], §2.2.) When »n=2, the situation is considerably more
complicated. It was proved by W.Rudin [5] that for two different values of p»>0
the zero sets of functions in the corresponding H?(B,) differ.

Regarding the Bergman spaces A?(lU), an analogous result was proved by C.
Horowitz [27]: If 0<{p<{qg< oo, then the zero sets of functions in A?(U) and those
of functions in AYU) are different. J.H. Shapiro [6] extended this theorem to the
weighted Bergman spaces and to the case of several variables.

The purpose of this paper is to amplify the above results of Rudin, Horowitz
and Shapiro. The summary of our results will be stated at the end of §2.
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2. Preliminaries
By definition, it holds that

HB,)c AP(B,)
for any p=(0, o), and that
H*B,)cHYB,)c H*B,)c N(B,),
H*(B,)c AYB,)c A?(B,)C A%B,)

if 0<p<gq<oo. For each p=(0, ), we define

Hp_(Bn>: U H!](Bﬂ), Hp+(Bn): ﬂ Hq(Bn>’

Hp<g<eo 0<g<p

Ar(By)= (U AUB.), A"(Bn= (] AUB.).

p<g<o 0<g<p

Then
H?(B,)CH?(B,)C H**(B,),
AP™(B,)C AXB,)C AP*(B,).

Let f be a holomorphic function in a connected open subset £ of C". Suppose

f = 0in £. Take a point a=£. Then a series

flz)= > Prlz—a)
fe=m
converges in some neighborhood of ¢ and represents f in this neighborhood. Here
Pr is a homogeneous polynomial of degree 2 and Pm = 0. The polynomials Pk

depend on f and « only. The integer
vr(a)=m=0

is called the zero multiplicity of f at a. The integer-valued function vy defined in
£ is called the zero-divisor of f.

Let p be a nonnegative integer—valued function in 2. Then p is called a positive
divisor on £ if and only if it is locally the zero—divisor of some holomorphic func-
tion, that is, for each point a=£ there exist a connected neighborhood V of ¢ and
a holomorphic function f in V such that f == 0 and p=vf in V.

We denote by ®*(B,) the set of all positive divisors on B,. Then we have the
divisor map v from H(B,)* into D+(B,) defined by letting »(f) for f in H(B,)* be vy.
Here, for any subspace X of H(B,) we write

We recall that pe®+(U) satisfies the Blaschke condition if and only if
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37 uz) (1—1zl) oo,

zel

The set of positive divisors on U which satisty the Blaschke condition will be
denoted by .. The following theorem is classical :
Theorem A (See e.g. [1], §2.2.). For any pe(0, ),

W HU)=u [ HUU )= HP(U))=o(HY(U))

0<g<o0

=uHPH(UM)=( [} HUU*)=oNU)*)

0<g<on
=Do.

The main result of W.Rudin [5] is the following :
Theorem B ([57], p.58). Fix n=2. Suppose ¢, =1 and

tlim () (t)=oo.

Then there exists an fEH¥B,) with the following property :

If be H*(B,), gcH(B,)*, and

h=(f+b)g,

then some constant multiple of h fails to be in H¥B,).

Applying Theorem B to the case

Bty =eP!, g(t)=(2+p e’ 0<p<oo,

Rudin showed the following :

Theorem C ([5], p.59). For any integer n=2 and any p<(0, oo),

V(H?"(B,)*)S o HP(B,)").

To describe the results of C.Horowitz and J. H. Shapiro, we define the “wei-
ghted” Bergman spaces A#‘ﬁ. From now on, g will denote a finite, positive, rotation
invariant Borel measure on U which gives positive mass to each annulus »<|z]<1.
For each ¢=l’, we define

A= {feHU); JU¢(1og|fl)dpz<°°}~

The main result of J.H.Shapiro [6] is the following :
Theorem D ([6], Theorem 2.1.). Assume that ¢ and ¢ are strictly positive,
convex, increasing, unbounded functions defined on (—co, ), and that

sup  ${t41)/glf)<loo, sup i+ 1)/¢(t) <o,
—co <t <o — o0 L <o
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lim g)=0,  lim gl)=0,  limg(t)/g(n=

t——o0
Then there is an f€ Ax® such that for any positive integer m, any beH*(U) and any
geHU)*,
(f™+b)ges Apm,
where gm(t)=¢(t/m).
C. Horowitz [ 2] considered the case dp(z)=(1—|z|)*dxdy, a>—1. Shapiro noticed
that with ¢(t)=e?’ and ¢(t)=(24+p*t%)e?? Theorem D gives the Horowitz’s result :

Theorem E ([27], Theorem 4.6 and Theorem 6.11; [6], Corollary 2.2 and Coro-
llary 2.5). For any integer n=1 and any p<(0, o),

WAL (Ba)* ) S AP(Ba)¥).

In §3, we shall prove some generalizations of Theorem D. In §4, making use
of them and Theorem B, we shall describe the zero sets of functions in the spaces
A?(B,) and H¥B,). The summary of our results is the following :

Theorem.

(@ » [ AYUM=ED., so that, () A= () HYU)

0<g<oo 0<a< oo 0<g<oo
(b) For any integer n=2 and any pc(0, oo),
W(H™( ( (N HUB))SUH (B,)*) S HY(B,))

0 <g<oo

SUHP B MS U HYB) SNBL)

0<g<eo
(c) For any integer n=1 and any pe(0, o),
WH*(B ( [ AYB)SUAP (By)*) U AP(B)*)

0<(1<°°

SUAPBNSU U AUBWSUAYB).

0<g<oo

3. Generalizations of the Shapiro’s theorem
Theorem 1. Suppose ¢, ¢’ and

lim ¢/ gl+1)=o0
Then there exists an f€ A% such that for any positive integer m, any beH*(U) and
any geHU)*,

o fr-rb)geEA,dm
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Jor some constant c, wheve ¢m(t)=d(t/m).

Proof. Our proof follows the same lines as [6], §3, pp. 248-251. (cf. [3], §3)
Without loss of generality, we may assume that ¢()=0 for ¢{=<0. For {=0, we
define

Ot)=¢(log t), Dot)=¢(log t+1), Tm(t)=¢m(log t).
Then @, is a continuous nondecreasing nonnegative function on [0, o), and

@o(0)=0, lim Do(t)=00, lim ¥(#)/Po(t)=c0.
[— o0 f—roo
Using a W.Rudin’s lemma (5], pp.59-60), we can show the following lemma (cf.
(67, p.248, Lemma; [3], §3, Lemma 2):
Lemma. There exist sequences {tr} and {ar} of positive numbers increasing to oo,
and {nr} of positive integers increasing to oo, and {re} and {pr} with

0<n<p<r<lpl+—1
such that if uriz)=arz" and Rr= {re<|z|=pr}, then for k=2 the following conditions
hold :

k—
(@) l‘k%éizlaj and W@/ Do(t)>k for t=tr ;

Jj=1

(b) JU@o(mkndy:k-z ;

@], o>

(d) lur(z)| =t if |z|=re ;
(&) lur@)=Zlur-1(2)l/5 if n=lz|l=pk-1.
We now define

f(z):,il}uk(z) (zeU).

The series converges uniformly on compact subsets of U, by (1—e). Hence feH(U).
By (1—a), (1—d) and (1—e), we have
(2) [ F1=5lurl/4+5lur+|/4 on {re=|z|=pk+1},
(3) [ fl=lur|/2 on Re.
Using (2), we have

o(1f1)dp=] O(5 k| /A-+Blauws | /D)

J(h«<|zl§7’k+1} {re<iz|Sree}

gj {D(5|url/2)+ DG ursi /D) dps
{re<|z|=ree}
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= B+ | Ollursildye
U U

It follows from (1—b) that

3

| ot map—| 1 f)dp
U

{lzisr) /e:1j{1‘1¢<IZI§rm}
=[ {1 <o
{izi=ri1} =

Thus feA,?.
Fix a positive integer m. Suppose that beH>™(U), g=H({U)* and h=(f"-1+b)g.
Put

p=supba), a=a1| logl gret®)|ds
zel -
Since loglgl is subharmonic in U,

(4) — oo o= (2ar | loglglre oo (r=r<1)

Choose a positive number ¢ so that
(5) log ¢+0—m log 4>0.
We shall see that ¢k is not in A,ﬁ”m.

Since tr—>oo, there exists a positive integer K=2 such that
{(tr/4Y">8 if k=K.

It follows from (1—d) and (3) that

(6) L/ +bl=(lur|/4)"  on Re

for k=K. Fix k=K and r&(rr, or]. By Jensen’s convexity theorem, (4), (6) and (5),
we have

@)t Tullchire®)dozg(2ar [ log lustre?)|do)
=W {lur(?))).
Hence

U(lurl)dp  for k=K.

k

(7) ijw‘m(;ch|>d,ij

By (1—d), (1—a) and (1-c),

JR Vg @R - for k=2.
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It follows from (7) that

o

' nich) d#)Zj Ulichl)d Z

Hence ch@Aﬂﬂl. This completes the proof.
Remark. If ¢ satisfies the growth condition

lirtn—}iup Gt 4-1)/ gty oo,

then A,%» is closed under scalar multiplication. (cf. [5], p.58) In that case, the
conclusion cheASm is simply that kA, %». Moreover, if ¢ also satisfies the

growth condition

lixgsup Blt+1)/p{t)< oo

then the condition lim ¢(f)/¢(t)=oco implies that lim ¢({t)/g(t+1)=co. Theorem D is
}—o0 {—o0

therefore a special case of Theorem 1.

Using Theorem 1, we obtain its analogue in the case of several complex
variables :

Theorem 2. Let n=2 be an integer. Assume that ¢ and ¢ are as in Theorem 1.
Then there exists an f< A¥B,) with the following property :

If m is a positive integer, b= H™(B,), gcH{B,)* with g(z, 0,...,0) = 0 in U,
and

=(f"+b)g,

then some constant mulptiple of h fails in A?n(B,).
Proof. (cf. [6], pp.246-247, Proof of Corollary 2.5.) By Theorem 1, there exists
an foe H(U) which satisfies the following two conditions :

@ |, #log] Alal) (1= Ial?)dxa)<oo ;

(b) If m is a positive integer, boeH™(U), gocH(U)¥, and ho=(fo"-+bo)go, then
there exists a constant ¢ such that

j’Ugbm(log leho(2)l) (L—|2]2)t di(z)= oo

Define
flzy, -+, zn)=folz1) for (21, ..., 2n)EB,.

By Fubini’s theorem and (a),

[, #0g] Fda=m""4 (=11 | pllog] flz)) (1~ Izl dite)<oo
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so that feA%B,).
Suppose that m is a positive integer, b€ H*(B,), g€ H(B,)* with glzi, 0,..., 0,)
=2 0 in U, and h=(f"+b)g. Define

ho(z1)=h(z1, 0, ..., 0),
bo<21):b(21, 0, ..., 0),
gilz1)=g(z1, 0, ..., 0),

for zielU. Then b= H(U), go=H(UY*, and ho=(fo"+bo)go. It follows from Fubini’s
theorem and (b) that for some constant ¢

®) JB gmlloglchlz, 0, -, O))dAzs, za, -, 2n)

— 1 1)) JUgbm(log leho(z)]) (1— |24]97~1 dalz)=oo.

Fix zi€U. Put plz1)=(1—121|)1/2 and
Dir)={(zz, ..., 20)EC""; |22+, .. +|2a|2<#?)
for »&(0, p{z:)]. Define

GI:Z1:| (22, ey Zn):(r/)flz(longl/L(Zl, 22y v v, 211)|)

for (2, .-, zn)eD[p(z1)]. Since ch&H(B,)* and ¢m is a nondecreasing convex func-
tion, G[zi] is plurisubharmonic in D[ p(z1)]. Hence
2 Y - DI (1 |2:|3)" " gm(logchlzs, O, ..., 0)])

= lim = (n— D)) 122 GL20, ..., 0)
¥ 1e(z1)

g lim J G[Zl] (Zz, ey, Zn) dZ(Zz, ey, Zn)
r1e(z1)) D[¥]

G[Zl] (22, ey, Zn) dZ(Z;z, ey Zn).

{D[ﬂ(ZO]

It follows form Fubini’s theorem that

©) JB dmlloglchizs, 0, .., O)) dizs, 22, - -, 2n)
:JUTE”_I (m—1)! (L] z1|2)Rt gl)m(logfch(zl, 0, ..., 0)]) da(z1)

gj dz(zl)J Glz](ze, - zn) dXzo, -, 20)
U Dlo(z1)]

- [ dmllog|chl)da.
J Bn

n

By (8) and (9), we have
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J dm(loglchl)di=co.
Bu
This completes the proof.

4. Zero sets of functions in the spaces AP(B,) and HP(B,)
Theorem 3. (cf. Theorem C and Theorem E in §2)
(a) For any p=(0, ) and any integer n=1,

WAL (B, S AP(B,)*) S AP*(B,)%).
(b} For any pe(0, ) and any integer n=2,

D(HI’_(B,,)*)EV(HD(B,,)*);D(HPJ'(B,,)*).

Proof. Put
t-1eb! (t=p"")
Pt} =
pe E<p "),
P(t)=eP! (— oo ¢ < o).

Then ¢ and ¢ satisfy the assumptions in Theorem 1. Hence Theorem 1 and

Theorem 2 give
AAP(B,)*) S A?*(B,y*) (n=1, 0<p <o),
Likewise, Theorem B gives
WHP(Bu)S v HP*(By)*) (n=2, 0<p o).
Theorem 4. (cf.[3], §4, Theorem 5; [4], §4, Theorem 3)

(a) For any integer n=1,

of U AXBWISHAAB ).
0<p<eo

(b) For any integer n=2,

o U BB )EuUNB)).

0<p< o
Proof. Put
#(t)=max(0, ) (oot < o0),
exp(y/ 1) (#=1)
#(t)=|
e (t<1).

By applying Theorem 1, Theorem 2 and Theorem B to these ¢ and ¢, we have
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W U APB.CUAYB,)NE wAXB,)*)=u(AYB,)*)
0<p<on
for any n=1 and
”(0 U Hp(Bn>*)DV(H¢(BM)*)%”(H¢(311)*)ZV(N(BH)*)
<p<oo

for any n=2.
Theorem 5. (cf. [4], §4, Theorem 2)

(a) For any integer n=1,
o [ AXB,)Z2uH *(B,)*).

0<p<oo

(b) For any integer n=2,
o [ HABL))Z2H ™(B,)*).

0<p< oo

Proof. Fix n=1. Put

exp(t?) (t=0)
#(t)—

1 (t<0)

exp(#¥) (t=0)
o=

1 {t<0).

Theorem 2 (or Theorem 1) then establishes the existence of an fe€A%(Bx) with the
following property :
If geH(B,* and g(z1, 0, ..., 0)=20 in U, then ¢ fgd A¥B,) for some constant c.
Suppose that vreu(H *(B,)*). Then there exists an heH*(B,)* and a g&H(B,)*
such that the zero set of g is empty and k= fg. Hence che AYB,) for some constant
¢. Since H™(B,)cA¥B,), it follows that che&H=(B,). This contradicts the fact
h=H*(B,). Thus vreu(H °(B,)*). On the other hand, vreu(A4B, )y () APB)*).

0<p<oo
Hence we chtain (a).
Apply Theorem B instead of Theorem 2 (or Theorem 1). The same reasoning
as above now gives (b).
Corollary. (cf. [3], §4, Remark 1 and §5, Remark 3)
(a) There exists an f& [} AP(U) whose zero set does not satisfy the Blaschke

0<p<oo
condition.
{b) N HWOE () AXU).
0<p<eo 0<D<o

Proof. These are immediate consequences of Theorem A and Theorem 5.
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