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                              1. gntroduction

   Let nlll be an integer. Let H<B.) denote the space of all holomorphic functions

in the open unit balt B. of the complex 7vdirnensional Euclidean space C". Let

r denote the class of all functions defined on (-oo, oo) which are nonconstant,

nonnegative, nondecreasing and convex. For each ipEiir, we define

                Aip(Bn) =: {fE H(Bn) ; i..ip(IOgl fDd2<OO} ･

                H¢(B") = {fE H<Bn) ; ,S.U,P. ,f,..¢(logl f(r4) 1 )da(C)< oo } ･

Here2 is the usual Lebesgue measure on C"=R2't, OB. is the boundary of Bn and

a is the rotation invariant positive Borel measure on aB. for which a(OBn)=1. If

¢(t)=eP`, O<P<oo, then Adi(B.) are the Bergman spaces AP(B.) and Hip(B.) are the

Hdrdy spaces HP(B.). If ip(t)=max(O, t), then Llip(B.) is the .IVizvanlinna space Al<Bn)

and Aip(B.) is denoted by AO(B.) throughout this paper. Hco(B.) stands for the space

of all bounded holomorphic functions in Bn.

   The open unit disc in the complex plane C will be denoted by U in place of

B,. It is well known that all of the spaces HP(U) (O<P:;Iloo) and the space N(U)

admit the same zero sets which are completely characterized by the Blaschke

condition. (See e. g. [1], g2.2.) When nlll2, the situation is considerably more

complicated. It was proved by W.Rudin [5] that for two different values of P>O

the zero sets of functions in the corresponding HP(B.) differ.

   Regarding the Bergman spaces AP(U), an analogous result was proved by C.

Horowitz [2]: If O<P<q<oo, then the zero sets of functions in AP(U) and those

of functions in Aq(U) are different. J.H.Shapiro [6] extended this theorem to the

weighted Bergman spaces and to the case of several variables.

    The purpose of this paper is to amplify the above results of Rudin, Horowitz

and Shapiro. The summary of our results will be stated at the end of 52.
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                              2. Preliminaries

    By definition, it holds that

                           HP(B.>cAP(B.)

for any PE(O, oo), and that

                        Hoo(Bn)CHq(Bn)CHP(Bn)CN(Bn),

                        H'OO(B.)cAq(B.)CAP(Bn)CAO(Bn)

if O<P<q<oo. For each PE(O, co), we define

               flP-(B.)== U Hq(B,,), llP'(B.)= n Hq(B.),

                        P<a<oo O<q<P

               AP"'(B.)= U Aq(B.), AP"(B.)== n Aq(B.).

                       P<a<eo O<a<P
Then

                       HP'(Bn)CHP(Bn)CHP"(Bn),

                       AP'(Bn)CAP(B")CAP'<Bn)･

    Let f be a holomorphic function in a coimected open subset 9 of C". Suppose

f l･ O in 9. Take a point aE9. Then a series

                              oo                        f(2)== = Pk(z-a)
                             k th- 7n

converges in some neighborhood of a and represents f in this neighborhood. Here

Ple isahomogeneous polynomial of degreek and P,n - O. The polynomiais Pk

depend on f and a only. The integer

                           vf(a) == m }IO

is called the zero multiplicity of f at a. The integer-valued function vf defined in

9 is called the zero-divisor of f

   Let Ft be a nonnegative integer-valued function in S2. Then tt is called a Positive

divisor on 9 if and only if it is locally the zero-divisor of some hoiomorphic func-

tion, that is, for each point aG9 there ekist a connected neighborhood V of a and

a holomorphic £unction f in Y such that fl O and tt=:vf in V.
   We denote by EE)'(B") the set of all positive divisors on Bn. Then we have the

divisor map v from H(B.)* into EE)+(B.) defined by letting v(f) for f in H(B.)* be vf.

Here, for anY subspace X of H<B.) we write

                     X" == {fEX; f ;zii O in Bn}.

   We recall that ptGD+(U) satisfies the Blaschfee condition if and only if
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                      = pt(z) (1-lzl) <oo･

                      zGU

The set of positive divisors on U which satisfy the BIaschke condition will be

denoted by EE)o. The following theorem is classical :

   Theorem A (See e.g. [1], g2.2.). For any PE(O,oo),

            v(Hco(u)*)=-.( n Hq(u)*)--v(Hp-(u)*)-v(Hp(u)*)

                       O<a<oo

                    ==v(HP"(U)")=v( A Hq(U)")=::v(N(U)")
                                  O<a<oo

                    == EDo.

   The main result of W.Rudin [5] is the following :

    Theorem B ([5], p.58). Fix n}l2. SmpPose ip, ipEl" and

                           lim ip(t)/ip(t) -- oo .

                           t-co

Then there exists an fEHdi(B.) zvith the follotving PrQPerty :

    if bEHCe(B.), gEH(B.)", and

                           h=(f+b)g,

then some constant multiple of h fails to be in Hip(B.).

    Applying TheoremBto the case /
                    ¢(t):=ePt, ip(t)::=(2+P2t2)eP', O<P<oo,

Rudin showed the following :

    Theerem C ([5], p.59). For anN integer nlll2 and any PG(O, oo),

                         v(HP"-(B,,)")gp(H'P(B.)").

    To describe the results of C.Horowitz and J.}I[.Shapiro, we define the "wei-

ghted" Berginan spaces A,ip. From now on, rt will denote a finite, positive, rotation

invariant Borel measure on U which gives positive mass to each annulus r<12I<1.

For each diEl", we define

                    A,, ip == {fE H( U) ; f.ip(loglfDdrt< oo } .

    The main result of J.H.Shapiro [6] is the following :

    TheoreAn D ([6], Theorem 2.1.). Assume that ¢ and ¢ are strictlly Positive,

convex, increasing, unbounded ft{nctions dojned on (-oo, oo), and that

             in ..S.U,P.. di(t + 1)/¢(t)< oo, , ..s.u,p. .. Q(t "im l)/ip(t)< oo,



66 YAsuo MATsuGu
             Iim ¢(t)=O, lim ip(t)=O, limip(t)/ip(t)-oo.
             t--oo t--oe teoo
Then there is an fEAgip such that for any Positive integer m, any bEHOO(U) and amp

gEH(U)",

                           (fm+b)geAp¢m,

where ¢m(t)=¢(t/m).

   C.Horowitz [2] considered the case dpt(z)=(1-121)adxdy, a>-1. Shapiro noticed

that with ¢(t)=ePt and ¢(t)=(2+P2t2)ePt Theorem D gives the Horowitz's result :

   Theorem E ([21, Theorem 4.6 and Theorem 6.11; [6], Corollary 2.2 and Coro-

IIary 2. 5). For any integer nll and any PE(O, oo),

                       v(APF(Bn)")Ev<AP(Bn)*).

   In g3, we shall prove some generalizations of Theorem D. In g4, making use

of them and Theorem B, we shall describe the zero sets of functions in the spaces

AP(Bn) and HP(Bn). The summary of our results is the foilowing :

   Theorem.

   (a) p( fi Ae(U)*):D,, so that, n Aq(U)S n Hq(U).
         e<a< oo O<a< oo O<a< oo
   (b) For any integer nlll2 and any PG(O, oo),

       v(Hco(Bn)")Sv( fi Hq(Bn)*)Sv(HP-(Bn)")Ev(IP(Bn)")
                   O <a<oo

                    gv(UP"(B.)'Ep( U H'q(B.)*)$v(AT(B.)*).
                                  O<q<oo

   (c) For any integer n}ll and any pE(O, oo),

     v(Hoo(B.)')Ev( n Aq(B.)*)$v(AP'(B.)*)Ev(AP(B.)*)
                 O<q<oo

                    !v(AP"(Bn)')$v( U Aq(B.)*)Sv(AO(Bn)*).
                                  e<a<oo

                 3. Generalizations of the Shapiro's theorem

   Theorem 1. SuPPose ¢, ipEr and

                           lim ip(t)/¢(t + 1) = oo .
                           t-oo

Then there exists an fEA,ip such that for any Positive integerm, any bEHoo(U) and

any geenU)*,

                           c(fM+b)gaA,dim
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for some constant c, where ¢nz(t)=:ip(t/m).

   Proof. Our proof follows the same lines as [6], ss3, pp. 248-251. (cf. [3], ss3)

Without loss of generality, we may assume that ip(t)==O for t;il{O. For t2.0, we

define

              ¢(t)=¢(log t), dio(t)=¢(Iog t+1), W'm(t)== ipm(log t>.

Then dio is a continuous nondecreasing nonnegative function on [O, oo), and

              dio(O)=O, lim ¢o(t)=oo, lim ip'(t)/opo(t)=oo.
                      t-oo t-.oo

Using a W.Rudin's lemma ([5], pp.59-60), we can show the following iemma (cf.

[6], p.248, Lemma; [3], g3, Lemma 2):

   Lemma. There exist sequences {tk} and {ah} of Positive numbers increasing to oo,

and {nk} ofPositive integers increasing to oo, and {rk} and {pk} with

                      O<ri <pi <r2<p2<･ ･ ･ . 1

such that if ule(2)=ahz"k and Rk=:: {rle<121:;lpk}, then for lelll2 the followingconditions

hold :

                k-1
       (a) tlel.l)4=aj' and lf(t)/¢o(t)>le for t}l:lth ;

                g'=1

       (b) I.¢o(luhl)dpt=le-2 ;

(1) (C) S.,dio(izakl)dpt>(2le2)-･i ;

       (d) luh(z)1}litle if lzl}lirk;

       (e) lule(z)1;il{1uk--i(2)l/5 if ri:!l{lz1;lple-i.

   We now define

                         oo                   f(z):-=uk(z) (zGU).
                        k:::1

The series converges uniformly on compact subsets of U, by (1-e). Hence fEiiH(U).

By (1-a), (1-d) and (1-e), we have

(2) M;;{51zakY4+51ule+il/4 on {rfe:;l121Sph+i},

(3) lf1211ule1/2 on Rle.
   Using (2), we have

            i{rk<lzlsrk+i}di(lfl)dptIS{j{r,<:,i$.,.,}¢(51Ukl/4+51Uk+il/4)dp

          IE{f{rk<lzlsr,.,}{op(51"leV2)+di(51Uk+il/2)}dpt
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  . :ndf{gfudio(!ukDdte+fuopo(Iuk+il)dLt.

It follows from (1-b) that

            fudi(lfl )dFt=(I gzE$r,} + ]iX. lil {rk < izi{rk+i})di(lfl )dpt

                    g'I{ixi$r,}¢(lfDdpt+S.l(le-2+(k+i)-2]<oo.

ThUSFi<EaAp"okitive integer m. suppose that bEiiHoe(u),'' gGH<u)* and h

                                   t t.                        '                                 '
                                                   '               ' P:==g.UB!b(z)I, S:=(2rr)-il"tr.loglg(rie`e)lde

Since loglgl is subharmonic in U, ･ ' ･ .

(4) -oo <6S(2rr)-'
II'.loglg(reiO)ide<oo

                                              (ri$r<1).

   Choose a positive numberc so that '

(5) Iog c+6-m log 4>O.                                              '                                                     ttt   We shall see that ch is not in A,ipm･

   Since tle-.Foo, there exists a positive integer Klll2 such that

                                                 '                      (tfe/4)M>P if le;llK.

It follows from (1-d) and (3) that

(6) lfM+bllli(Iuhl/4)M on Rk ' ･
for le211K Fix le;l;K and rE(rk, pk]. By Jensen's convexity theorem, (4),

we have
                                           '                                tt
 ,., (2T)-'Si,, U"m(lch(reie,)l)delllgb((2T)"Il.log luk(reie)lde) .

                               -=T(Iuk(r)1). .
                                                    '                         '                       t// t ttt

(7)
 ,, (,-,), (,-.) .,I,R"(ep,'//'(Liei)dl,`i-fR,`if(i"hi)dpt.. for kii.{<. '

                   fR,T'(IzthDdpt> (2fe)-i for le}ll2. .. .

==
(
f
m+ ip)g,

(6) and (5),
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It follows from (7) that

                                oo oo                   . '.ep'm(Ich l)dFt2- ,:.Ii ]". j., IU'm(Ich Ddpt 2. ,l;. l.), (2le)- i = oo .

Hence chGA,¢m. This completes the proof.

   Remaark. If ¢ satisfies the growth condition

                         lim sup ¢(t+l)/ip(t)<oo,
                           t-oo

then A,ipm is ciosed under scalar multiplication. (cf. [5], p.58) In that case, the

conclusion chfA,ipn; is simply that heA,em. Moreover, if ¢ also satisfies the

growth condition

                          lim sup ip(t+1)/¢(t)<oo ,
                           t-oe

then the condition lim ip(t)/ip(t) :=oo implies that lim ip(t)/¢(t+1)==oo. Theorem D is

               t-. oa t- oo
therefore a special case of Theorem 1.

   Using Theorem 1, we obtain its anaiogue in the case of several comp!ex

variables :

   Theoreirt 2. Let nlll2 be an integer. Assume that ip and ip are as in Theorem 1.

Then there exists an fEA¢(B,,) with the following PrQPerty :

   lf m is a Positive integer, bEllO"(B.), g(iiH<B.)' ewith g(zi, O,･･･,O) f O in U,

and

                         h=(fM+b)g,

then some constant mulptiple of h fails in Aipm(B.).

   Proof. (cf. [6], pp.246-247, Proof of Corollary 2.5.) By Theorem 1, there exists

an .fbGH<U) which satisfies the foliowing two conditions :

   (a) I.g5(loglfh(z)I) (i-lzi2)"'idJl(z)<oo ;

   (b) If m isa positiveinteger, boEEIOe(U), gbEll(U)", and ho=(.fbM+bo)gb, then

     there exists a constant c such that

                      iugbm(log lcho(z)D (i-lzl2)'t'i d2(z)= .o.

   Define

               f(zi, ･･･, zn)==.fb(zi) for (zi, ･･-, zn)aB..

By Fubini's theorem and (a),

       IB.g5(log l fl)dR =z"-i ((n- i)! )- ' I.g5(log l fb(2)l) (1- lz1 2)"'i d,R(z)< oo ,
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so that fEAip(B.).

   Suppose that m is apositive integer, bEHOe(Bn), geiH(B,,)" with g(zi, O,･･･, O,)

$ O in U, and h==(fM+b)g. Define

                           he(zi)==h(zi, O, -･･, O),

                           b,(2,)=b(z,, O, ..., O),

                           gb(zi)=g(zi, O, ･･･, O),

for ziEU. Then bociiHOO(U>, goEH(U)", afidho--(foM+bo)go. Itfollowsfrom Fubini's

theorem and (b) that for some constant c

(8) SB.¢m(10glCh(Zi! O, ''', O)Dd,1(zi, z2, ･･ , zn)

             =T'i-i((n-1)! )'i Itfgbm(log lcho(2i)D (1- l2il2)'t -"i dR(2i) == oo .

   Fix ziEU. Put p(2i)=(1-Izil2)112 ancl

             D[r] :=: {(z2, ･ ･ - , 2n)EC"-'; 12212+･ . . +12n12<r2}

for rE(O, p(zi)]. Define

                G[2i] (22, ･･･, 2n)=ipm(loglck(zi, z2, ･･･, zn)1)

for (22, ･･･ , zn)ED[p(zi)]. Since chEiiH(Bn)" and ¢m is a nondecreasing convex func-

tion, G[zi] is plurisubharmonic in D[p(zi)]. Hence

             T"Hi((n-1)!)"i(1-iziI2)"-'gbm(loglch(zi, O, ･･･, O)I)

                    = lim rrn'i ((n-1)!)'ir2"-2G[zi](O, ..., O)
                      rrp(al)

                    I;;I,li,M(.,)iD[,] G[2i] (Z2, ''', Zn) dl(z2, ny ny ･, zn)

                    =ID[,(.,)]G[2i] (22, ''', Zn) d2(z2, ･･-, 2n).

It follows form Fubini's theorem that

(9) IB.9b"z(IOglCh(Zi, O) ''', O)l) d2(zi, z2, ･･-, zn)

             =::iurc"'i ((n-1)!)-i (1-Izi12)'i-' gb,n(logich(zi, O, ･ ･ ･ , O)l) dR(2i)

             -<juCIR(Zi)jD[,(.,)]G[2i] (Z2, '･･ ,2n) clZ(z2, ･･･, 2n)

             =I..sbnt(loglchi)d2.

    By (8) and (9), we have
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                           f..¢m( 10g [Chl)d2 == oo .

This completes the proof.

           4. Zero sets of fumctions in tlte spaces AP(Bn) and HP(Bn)

   Theorem 3. (cf. Theorem C and Theorern E in g2)

     (a) For any PE(O, oo) and any integer n}ll,

                    v(AP-(Bn)")Ev(AP(Bn)")Sv(AP'(Bn)")･

     (b) For any PE(O, oo) and any integer nlll2,

                    v(H'P-(Bn)")Ev(HP(Bn)")Ev(HP'(Bn)")･

   Proof. Put

                          t-i ePt (t ;lllp-i)
                     ¢(t)=( p, (t<P-i),

                     ¢(t)=eP` (-oo<t<oo).

Then ip and ¢ satisfy the assumptions in Theorem 1. Hence Theorem 1 and
Theorem 2 give

                    p(AP(Bn)*)Ev(AP'(Bn*) (n)1, O<P<oo).

Likewise, Theorem B gives

                    v(HP(Bn)")E v(IIP'(Bn)") (nlll2, O<P<oo).

    'Mkeorem 4. (cf.[3], g4, Theorem 5; [4], g4, Theorem 3)

      (a) For any integer nll,

                      v( U AP(Bn)*)gv(AO(B.)').
                        o<p<oo

      (b) For any integer n}l2,

                      v( U HP(Bn)")$v(AT(Bn)").
                        o<p<co
    Proof. Put

                      ¢(t)-max(O, t) (-oo<t<oo),

                           exp(Vt) (t;l:1)                      di(t)==(

                             e (t<1).

By applying Theorem 1, Theorem 2 and Theorem B to these ¢ and ip, we have
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              V( U AP(Bn)")Cv(Aip(Bn)")$ p(Adi(Bn)")==v(AO(Bn)*)

               O<p<oo

for any n>.1 and

              v( U flP(Bn)")Dv(Hip(Bn)")$v(Hip(Bn)*)==:v(Ar(Bn)")

               O<p<oo

for any nlll2.

    Theorem 5. (cf. [4], g4, Theorem 2)

     (a) For any integer n}lll,

                     v( n AP(B.)*)==7tv(flco(B.)*).

                      O<p<oo

     (b) For any integer n}lz2,

                     v( n HP(B.)')2v(Hco(B.)").
                      o<p<co

   Proof. Fix n21iil. Put

                     ¢(t)={exp(t2) (t}lo)

                         il (t<O),

                     ip(t) .. leXP(t3) (tlllo)

                         kl (t<O).
Theorem 2 (or Theorem 1) then establishes the existence of an fEAdi(Bn) with the

following property :

   If geH<B.)" and g(zi, O, -･･, O);z O in U, then cfgeAdi(B.) for some constant c.

   Suppose that vf6v(HOO(B.)*). Then there exists an hEHoo(Bn)* and a gGiH<Bn)*

such that the zero set of g is empty and h:= fs. Hence cheAQ(Bn) for some constant

c. Since Hoo(B.)cAip(B.), it follows that cheHOa(B.). This contradicts the fact

hEHOO(B.). ThusvfGv(HOO(B.)*). Ontheotherhand, vfcrv(Adi(B.)')cv( fi AP(Bn)").

                                                          O<p<oo
Hence we cbtain (a).

   Apply Theorem B instead of Theorem 2 (or Theorem 1). The same reasoning

as above now gives (b).

   Corollary. (cf. [3], g4, Remark 1 and g5, Remark 3)

     (a) There exists an fE n AP(U) whose zero set does not satistv the Blaschke

                         O<P<oe
       condition.

     (b) fi HP(U)S A AP(U).
                          o<p<oo o<p<co
   Proof. These are immediate consequences of Theorem A and Theorem 5.
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